1
|
Antipsychotic-like effects of a neurotensin receptor type 1 agonist. Behav Brain Res 2016; 305:8-17. [PMID: 26909848 DOI: 10.1016/j.bbr.2016.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/26/2022]
Abstract
Although neurotensin (NT) analogs are known to produce antipsychotic-like effects, the therapeutic possibility of a brain penetrant NTS1 agonist in treating psychiatric disorders has not been well studied. Here, we examined whether PD149163, a brain-penetrant NTS1-specific agonist, displays antipsychotic-like effects in C57BL/6J mice by investigating the effect of PD149163 on amphetamine-mediated hyperactivity and amphetamine-induced disruption of prepulse inhibition. In addition, we assessed the effect of PD149163 on glycogen synthase kinase-3 (GSK-3) activity, a downstream molecular target of antipsychotics and mood stabilizers, using phospho-specific antibodies. PD149163 (0.1 and 0.5mg/kg) inhibited amphetamine-induced hyperactivity in mice, indicating that NTS1 activation inhibits psychomotor agitation. PD149163 (0.5mg/kg) also increased prepulse inhibition, suggesting that NTS1 activation reduces prepulse inhibition deficits which often co-occur with psychosis in humans. Interestingly, PD149163 increased the inhibitory serine phosphorylation on both GSK-3α and GSK-3β in a dose- and time-dependent manner in the nucleus accumbens and medial prefrontal cortex of the mice. Moreover, PD149163 inhibited GSK-3 activity in the nucleus accumbens and medial prefrontal cortex in the presence of amphetamine. Thus, like most current antipsychotics and mood stabilizers, PD149163 inhibited GSK-3 activity in cortico-striatal circuitry. Together, our findings indicate that PD149163 may be a novel antipsychotic.
Collapse
|
2
|
Alburges ME, Hoonakker AJ, Cordova NM, Robson CM, McFadden LM, Martin AL, Hanson GR. Effect of low doses of methamphetamine on rat limbic-related neurotensin systems. Synapse 2015; 69:396-404. [PMID: 25963809 DOI: 10.1002/syn.21829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/16/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022]
Abstract
Administration of methamphetamine (METH) alters limbic-related (LR) neurotensin (NT) systems. Thus, through a D1-receptor mechanism, noncontingent high doses (5-15 mg kg(-1)), and likely self-administration, of METH appears to reduce NT release causing its accumulation and an elevation of NT-like immunoreactivity (NTLI) in limbic-related NT pathways. For comparison, we tested the effect of low doses of METH, that are more like those used in therapy, on NTLI in the core and shell of the nucleus accumbens (NAc and NAs), prefrontal cortex (PFC), ventral tegmental area (VTA), the lateral habenula (Hb) and basolateral amygdala (Amyg). METH at the dose of 0.25 mg kg(-1) in particular, but not 1.00 mg kg(-1), decreased NTLI concentration in all of the LR structures studied, except for the prefrontal cortex; however, these effects were rapid and brief being observed at 5 h but not at 24 h after treatment. In all of the LR areas where NTLI levels were reduced after the low dose of METH, the effect was blocked by pretreatment with either a D1 or a D2 antagonist. Thus, opposite to high doses like those associated with abuse, the therapeutic-like low-dose METH treatment induced reduction in NT tissue levels likely reflected an increase in NT release and a short-term depletion of the levels of this neuropeptide in LR structures, manifesting features comparable to the response of basal ganglia NT systems to similar low doses of METH.
Collapse
Affiliation(s)
- Mario E Alburges
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amanda J Hoonakker
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Nathaniel M Cordova
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Christina M Robson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amber L Martin
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry and Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
3
|
Repeated effects of the neurotensin receptor agonist PD149163 in three animal tests of antipsychotic activity: assessing for tolerance and cross-tolerance to clozapine. Pharmacol Biochem Behav 2014; 128:78-88. [PMID: 25433325 DOI: 10.1016/j.pbb.2014.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
Neurotensin is an endogenous neuropeptide closely associated with the mesolimbic dopaminergic system and shown to possess antipsychotic-like effects. In particular, acute neurotensin receptor activation can inhibit conditioned avoidance response (CAR), attenuate phencyclidine (PCP)-induced prepulse inhibition (PPI) disruptions, and reverse PCP-induced hyperlocomotion. However, few studies have examined the long term effects of repeated neurotensin receptor activation and results are inconsistent. Since clinical administration of antipsychotic therapy often requires a prolonged treatment schedule, here we assessed the effects of repeated activation of neurotensin receptors using an NTS1 receptor selective agonist, PD149163, in 3 behavioral tests of antipsychotic activity. We also investigated whether reactivity to the atypical antipsychotic clozapine was altered following prior PD149163 treatment. Using both normal and prenatally immune activated rats generated through maternal immune activation with polyinosinic:polycytidylic acid, we tested PD149163 in CAR, PCP (1.5mg/kg)-induced PPI disruption, and PCP (3.2mg/kg)-induced hyperlocomotion. For each paradigm, rats were first repeatedly tested with vehicle or PD149163 (1.0, 4.0, 8.0mg/kg, sc) along with vehicle or PCP for PPI and hyperlocomotion tests, then challenged with PD149163 after 2 drug-free days. All rats were then challenged with clozapine (5.0mg/kg, sc). During the repeated test period, PD149163 exhibited antipsychotic-like effects in all three models. On the PD149163 challenge day, prior drug treatment only caused a tolerance effect in CAR. This tolerance in CAR was transferrable to clozapine, as it enhanced clozapine tolerance in the same group of animals. Although no tolerance effect was seen in the PD149163 challenge for the PCP-induced hyperlocomotion test, the clozapine challenge showed increased sensitivity in groups previously exposed to repeated PD149163 treatment. Our findings suggest that repeated exposure to NTS1 receptor agonists can induce a dose-dependent tolerance and cross-tolerance to clozapine to some of its behavioral effects but not others.
Collapse
|
4
|
Responses of the rat basal ganglia neurotensin systems to low doses of methamphetamine. Psychopharmacology (Berl) 2014; 231:2933-40. [PMID: 24522333 PMCID: PMC4102623 DOI: 10.1007/s00213-014-3468-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE Administration of high doses of methamphetamine (METH) in a manner mimicking the binging patterns associated with abuse reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied. OBJECTIVES The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported. METHODS Rats were injected four times (2-h intervals) with either saline or low doses of METH (0.25, 0.50, or 1.00 mg/kg/subcutaneously (s.c.)). For the DA antagonist studies, animals were pretreated with a D1 (SCH23390) or D2 (eticlopride) antagonist 15 min prior to METH or saline treatments. Rats were sacrificed 5-48 h after the last injection. RESULTS METH at doses of 0.25 and 0.50, but not 1.00 mg/kg, rapidly and briefly decreased NTLI concentration in all basal ganglia structures studied. In the posterior dorsal striatum, the reduction in NT level after low-dose METH appeared to be caused principally by D2 stimulation, but both D2 and D1 stimulation were required for the NT responses in the other basal ganglia regions. CONCLUSIONS A novel finding from the present study was that opposite to abuse-mimicking high doses of METH, the therapeutically relevant low-dose METH treatment reduced NT tissue levels likely reflecting an increase in NT release and a short-term depletion of the levels of this neuropeptide in basal ganglia structures. The possible significance is discussed.
Collapse
|
5
|
Activation of neurotensin receptor type 1 attenuates locomotor activity. Neuropharmacology 2014; 85:482-92. [PMID: 24929110 DOI: 10.1016/j.neuropharm.2014.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022]
Abstract
Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders.
Collapse
|
6
|
Prus AJ, Hillhouse TM, LaCrosse AL. Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:78-84. [PMID: 24275076 PMCID: PMC3923471 DOI: 10.1016/j.pnpbp.2013.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
Neurotensin is an endogenous neuropeptide that has significant interactions with monoamine neurotransmitter systems. To date, neurotensin NTS1 receptor agonists, such as PD149163, have been primarily evaluated for the treatment for schizophrenia, drug addiction, and pain. Recently, PD149163 was found to attenuate fear-potentiated startle in rats, an experimental procedure used for screening anxiolytic drugs. The present study sought to assess these findings through testing PD149163 in a conditioned footshock-induced ultrasonic vocalization (USV) model. Conditioning was conducted in male Wistar rats using chambers equipped with shock grid floors and an ultrasonic vocalization detector. PD149163 and the 5-HT1A receptor partial agonist buspirone produced a statistically significant reduction of 22kHz USV counts. The typical antipsychotic haloperidol also reduced 22kHz USV counts, but did so at cataleptic doses. Ten days of repeated administration of PD149163 abolished the inhibitory effects of PD149163 on 22kHz USVs. These findings further support an anxiolytic profile for PD149163. However, tolerance to these effects may limit the utility of these drugs for the treatment of anxiety.
Collapse
Affiliation(s)
- Adam J. Prus
- Psychology Department, Northern Michigan University, Marquette, MI USA,Corresponding author, Adam J. Prus, Ph.D., Associate Professor, Psychology Department, Northern Michigan University, 1401 Presque Isle Ave., Marquette, MI 49855 USA, , Phone: 906-227-2941, Fax: 906-227-2954
| | - Todd M. Hillhouse
- Department of Psychology, Virginia Commonwealth University, Richmond VA, USA
| | | |
Collapse
|
7
|
Hanson GR, Hoonakker AJ, Robson CM, McFadden LM, Frankel PS, Alburges ME. Response of neurotensin basal ganglia systems during extinction of methamphetamine self-administration in rat. J Pharmacol Exp Ther 2013; 346:173-81. [PMID: 23685547 DOI: 10.1124/jpet.113.205310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Because of persistent social problems caused by methamphetamine (METH), new therapeutic strategies need to be developed. Thus, we investigated the response of central nervous system neurotensin (NT) systems to METH self-administration (SA) and their interaction with basal ganglia dopamine (DA) pathways. Neurotensin is a peptide associated with inhibitory feedback pathways to nigrostriatal DA projections. We observed that NT levels decreased in rats during extinction of METH SA when lever pressing resulted in intravenous infusions of saline rather than METH. Thus, 6 h after the first session of extinction, NT levels were 53, 42, and 49% of corresponding controls in the anterior dorsal striatum, posterior dorsal striatum, and globus pallidus, respectively. NT levels were also significantly reduced in corresponding yoked rats in the anterior dorsal striatum (64% of control), but not the other structures examined. The reductions in NT levels in the anterior dorsal striatum particularly correlated with the lever pressing during the first session of extinction (r =s; 0.745). These, and previously reported findings, suggest that the extinction-related reductions in NT levels were mediated by activation of D2 receptors. Finally, administration of the neurotensin receptor 1 (NTR1) agonist [PD149163 [Lys(CH2NH)Lys-Pro,Trp-tert-Leu-Leu-Oet]; 0.25 or 0.5 mg/kg] diminished lever pressing during the first extinction session, whereas the NTR1 antagonist [SR48692 [2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-imethoxyphenyl)pyrazol-3-yl)carbonylamino]tricyclo(3.3.1.1.(3.7))decan-2-carboxylic acid]; 0.3 mg/kg per administration] attenuated the reduction of lever pressing during the second to fourth days of extinction. In summary, these findings support the hypothesis that some of the endogenous basal ganglia NT systems contribute to the elimination of contingent behavior during the early stages of the METH SA extinction process.
Collapse
Affiliation(s)
- Glen R Hanson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Cáceda R, Binder EB, Kinkead B, Nemeroff CB. The role of endogenous neurotensin in psychostimulant-induced disruption of prepulse inhibition and locomotion. Schizophr Res 2012; 136:88-95. [PMID: 22104138 PMCID: PMC3595536 DOI: 10.1016/j.schres.2011.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/20/2022]
Abstract
The neuropeptide neurotensin (NT) is closely associated with dopaminergic and glutamatergic systems in the rat brain. Central injection of NT into the nucleus accumbens (NAcc) or peripheral administration of NT receptor agonists, reduces many of the behavioral effects of psychostimulants. However, the role of endogenous NT in the behavioral effects of psychostimulants (e.g. DA agonists and NMDA receptor antagonists) remains unclear. Using a NTR antagonist, SR142948A, the current studies were designed to examine the role of endogenous NT in DA receptor agonist- and NMDA receptor antagonist-induced disruption of prepulse inhibition of the acoustic startle response (PPI), locomotor hyperactivity and brain-region specific c-fos mRNA expression. Adult male rats received a single i.p. injection of SR142948A or vehicle followed by D-amphetamine, apomorphine or dizocilpine challenge. SR142948A had no effect on baseline PPI, but dose-dependently attenuated d-amphetamine- and dizocilpine-induced PPI disruption and enhanced apomorphine-induced PPI disruption. SR142948A did not significantly affect either baseline locomotor activity or stimulant-induced hyperlocomotion. Systemic SR142948A administration prevented c-fos mRNA induction in mesolimbic terminal fields (prefrontal cortex, lateral septum, NAcc, ventral subiculum) induced by all three psychostimulants implicating the VTA as the site for NT modulation of stimulant-induced PPI disruption. Further characterization of the NT system may be valuable to find clinical useful compounds for schizophrenia and drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMB, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
9
|
Thibault D, Albert PR, Pineyro G, Trudeau LÉ. Neurotensin triggers dopamine D2 receptor desensitization through a protein kinase C and beta-arrestin1-dependent mechanism. J Biol Chem 2011; 286:9174-84. [PMID: 21233215 PMCID: PMC3059057 DOI: 10.1074/jbc.m110.166454] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 01/12/2011] [Indexed: 11/06/2022] Open
Abstract
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.
Collapse
Affiliation(s)
- Dominic Thibault
- From the Department of Pharmacology
- Department of Physiology
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| | - Paul R. Albert
- the Ottawa Hospital Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Graciela Pineyro
- From the Department of Pharmacology
- Department of Psychiatry, Faculty of Medicine, and
- the Centre de Recherche du Centre Hospitalier Universitaire Sainte Justine, Université de Montréal, Quebec H3T 1C5, Canada, and
| | - Louis-Éric Trudeau
- From the Department of Pharmacology
- Department of Physiology
- Department of Psychiatry, Faculty of Medicine, and
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
10
|
Frankel PS, Hoonakker AJ, Alburges ME, McDougall JW, McFadden LM, Fleckenstein AE, Hanson GR. Effect of methamphetamine self-administration on neurotensin systems of the basal ganglia. J Pharmacol Exp Ther 2010; 336:809-15. [PMID: 21131268 DOI: 10.1124/jpet.110.176610] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) dependence causes alarming personal and social damage. Even though many of the problems associated with abuse of METH are related to its profound actions on dopamine (DA) basal ganglia systems, there currently are no approved medications to treat METH addiction. For this reason, we and others have examined the METH-induced responses of neurotensin (NT) systems in the basal ganglia. This neuropeptide is associated with inhibitory feedback pathways to nigrostriatal DA projections, and NT tissue levels are elevated in response to high doses of noncontingent METH because of its increased synthesis in the striatonigral pathway. The present study reports the contingent responses of NT in the basal ganglia to self-administration of METH (SAM). Intravenous infusions of METH linked to appropriate lever-pressing behavior by rats significantly elevated NT content in both dorsal striatum (210%) and substantia nigra (202%). In these same structures, NT levels were also elevated in yoked METH animals (160 and 146%, respectively) but not as much as in the SAM rats. These effects were blocked by a D1, but not D2, antagonist. A NT agonist administered before the day 5 of operant behavior blocked lever-pressing behavior in responding rats, but a NT antagonist had no significant effect on this behavior. These are the first reports that NT systems associated with striatonigral pathway are significantly altered during METH self-administration, and our findings suggest that activation of NT receptors during maintenance of operant responding reduces the associated lever-pressing behavior.
Collapse
Affiliation(s)
- Paul S Frankel
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Norman C, Grimond-Billa SK, Bennett GW, Cassaday HJ. A neurotensin agonist and antagonist decrease and increase activity, respectively, but do not preclude discrete cue conditioning. J Psychopharmacol 2010; 24:373-81. [PMID: 18838494 DOI: 10.1177/0269881108097721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is evidence to suggest that neurotensin (NT) may enhance cognitive function. For example, in aversive trace conditioning, the NT agonist PD149163 selectively increased trace conditioning (Grimond-Billa, et al., 2008). The present study, therefore, examined the role of NT in associative learning, tested using an appetitive trace conditioning procedure (0-s or 10-s inter-stimulus-interval [ISI]) with a mixed frequency noise as a conditioned stimulus (CS) and food delivery as the unconditioned stimulus (UCS). The effects of an NT agonist (PD149163, 0.125 and 0.25 mg/kg, Experiment 1) and an NT antagonist (SR142948A, 0.01 and 0.1 mg/kg, Experiment 2) were compared. To take nonspecific effects of these compounds into account, conditioning to the CS was measured as a percentage of total responding, during UCS deliveries and in the inter-trial-interval (ITI). In both experiments, associative learning to the contiguously (0-s) presented CS was demonstrated, although there was a relative reduction in this learning under 0.125 mg/kg PD149163. Counter to prediction, the only effect on trace conditioning was some overall reduction in responding to the CS in the 10-s group conditioned under 0.25 mg/kg PD149163. The NT antagonist was without any effect on appetitive conditioning. However, these NT compounds were not ineffective: decreases and increases in responding in the ITI, ISI and during UCS deliveries seen under PD149163 and SR142948A were dissociable from effects on discrete cue conditioning.
Collapse
Affiliation(s)
- C Norman
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
12
|
Feifel D, Melendez G, Murray RJ, Tina Tran DN, Rullan MA, Shilling PD. The reversal of amphetamine-induced locomotor activation by a selective neurotensin-1 receptor agonist does not exhibit tolerance. Psychopharmacology (Berl) 2008; 200:197-203. [PMID: 18568338 PMCID: PMC2755044 DOI: 10.1007/s00213-008-1197-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 04/28/2008] [Indexed: 12/27/2022]
Abstract
RATIONALE Neurotensin-1 (NT1) receptor agonists have been proposed as putative antipsychotic drugs. Recently, brain-penetrating NT analogs produced by stability-enhancing modification of the smallest NT fragment, NT(8-13), have demonstrated antipsychotic-like efficacy after acute systemic injection in several preclinical animal tests predictive for antipsychotic efficacy. However, the evidence regarding the persistence versus tolerance of these effects after repeated administration is ambiguous. Previous studies have used compounds that nonselectively activated both NT1 and NT2 receptors or used continuous slow, central infusion of doses rather than daily acute administration, both factors which may have contributed to the ambiguity in the literature regarding the emergence of tolerance. OBJECTIVES To determine if tolerance develops to the antipsychotic-like effects of NT1 receptor agonists, we investigated the effects of subchronic daily systemic administration of PD149163, a brain-penetrating NT analog with selectivity for the NT1 receptor, on amphetamine-induced locomotor activation, a classic preclinical test of antipsychotic efficacy. MATERIALS AND METHODS Sprague-Dawley rats were pretreated with eight consecutive daily subcutaneous (SC) injections of PD149163 or saline. On the ninth day, rats received a pair of SC injections consisting of PD149163 or saline, followed by amphetamine (0.5 mg/kg) or saline. Locomotor activity was then measured in photobeam-equipped cages. RESULTS The results indicated that repeated daily administration of PD149163 was able to antagonize amphetamine's locomotor-activating effect comparable to that of the first dose, despite that repeated administration of PD149163 produced an increase in baseline locomotor activity not seen after the first dose. CONCLUSIONS The results do not support the development of tolerance for the acute antipsychotic-like effect of NT1 agonists and thus lend support to the contention that NT1 agonists are viable candidates as putative novel antipsychotic drugs.
Collapse
Affiliation(s)
- David Feifel
- Department of Psychiatry, UCSD Medical Center, University of California, San Diego, 200 West Arbor Drive, San Diego, CA, USA.
| | | | | | | | | | | |
Collapse
|