1
|
White SW, Callahan H, Smith SJ, Padilla FM. Fluoxetine attenuates the anxiolytic effects of the probiotic VSL#3 in a stress-vulnerable genetic line of aves in the chick social-separation stress test, a dual screening assay. Pharmacol Biochem Behav 2024; 245:173880. [PMID: 39277109 DOI: 10.1016/j.pbb.2024.173880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Anxiety disorders represent one of the most common and debilitating illnesses worldwide. However, the development of novel therapeutics for anxiety disorders has lagged compared to other mental illnesses. A growing body of research suggests the gut microbiota plays a role in the etiopathology of anxiety disorders and may, therefore, serve as a novel target for their treatment through the use of probiotics. The use of dietary supplements like probiotics is increasing and their interaction with pharmacotherapies is not well understood. Utilizing the chick social-separation stress test, the primary aim of this study was to evaluate the commercially-available multi-strain probiotic found in VSL#3 for potential anxiolytic-like and/or antidepressant-like effects in the stress-vulnerable Black Australorp genetic line. A secondary aim was to evaluate the interaction between probiotics and the SSRI fluoxetine. Animals were treated with either saline, probiotics, fluoxetine, or probiotics + fluoxetine for 8 days prior to exposure to a 90-min isolation stressor that produces both a panic-like (i.e., anxiety-like) state followed by a state of behavioral despair (i.e., depression-like). The 8-day probiotic regimen produced anxiolytic-like effects but did not attenuate behavioral despair. Fluoxetine failed to significantly alter behavior in either of the two phases. Moreover, the combination of fluoxetine with probiotics attenuated the anxiolytic-like effects of probiotics. The fluoxetine + probiotics combination had no effect on behavioral despair. The results of the current study align with other preclinical studies and some clinical trials suggesting probiotics may offer beneficial effects on anxiety. Investigations examining the anxiolytic-like mechanism of probiotics are needed before any conclusions can be made. Additionally, as the use of probiotics becomes more popular, research on the interactions between probiotic-microbiota and psychotropic medications is necessary.
Collapse
Affiliation(s)
- Stephen W White
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Haylie Callahan
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA
| | - Sequioa J Smith
- University of Florida, Department of Neuroscience, Gainesville, FL, USA
| | - Felicia M Padilla
- Department of Psychology & Philosophy, Sam Houston State University, Huntsville, TX 77341, USA
| |
Collapse
|
2
|
Näslund J, Landin J, Hieronymus F, Banote RK, Kettunen P. Anxiolytic-like effects of acute serotonin-releasing agents in zebrafish models of anxiety: experimental study and systematic review. Acta Neuropsychiatr 2024:1-19. [PMID: 39463428 DOI: 10.1017/neu.2024.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Though commonly used to model affective disorders, zebrafish display notable differences in terms of the structure and function of the brain serotonin system, including responses to pharmacological interventions, as compared to mammals. For example, elevation of brain serotonin following acute administration of serotonin reuptake inhibitors (SRIs) generally has anxiogenic effects, both in the clinical situation and in rodent models of anxiety, but previous research has indicated the opposite in zebrafish. However, several issues remain unresolved. We conducted a systematic review of SRI effects in zebrafish models of anxiety and, on the basis of these results, performed a series of experiments further investigating the influence of serotonin-releasing agents on anxiety-like behaviour in zebrafish, with sex-segregated wild-type animals being administered either escitalopram, or the serotonin releaser fenfluramine, in the light-dark test. In the systematic review, we find that the available literature indicates an anxiolytic-like effect of SRIs in the novel-tank diving test. Regarding the light-dark test, most studies reported no behavioural effects of SRIs, although the few that did generally saw anxiolytic-like responses. In the experimental studies, consistent anxiolytic-like effects were observed with neither sex nor habituation influencing treatment response. We find that the general effect of acute SRI administration in zebrafish indeed appears to be anxiolytic-like, indicating, at least partly, differences in the functioning of the serotonin system as compared to mammals and that caution is advised when using zebrafish to model affective disorders.
Collapse
Affiliation(s)
- Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Landin
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Hieronymus
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hosp1ital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
White SW, Squires GD, Smith SJ, Wright GM, Sufka KJ, Rimoldi JM, Gadepalli RS. Anxiolytic-like effects of an mGluR 5 antagonist and a mGluR 2/3 agonist, and antidepressant-like effects of an mGluR 7 agonist in the chick social separation stress test, a dual-drug screening model of treatment-resistant depression. Pharmacol Biochem Behav 2023:173588. [PMID: 37348610 DOI: 10.1016/j.pbb.2023.173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Modulation of glutamate receptors has demonstrated anxiolytic and/or antidepressant effects in rodent stress models. The chick social-separation stress paradigm exposes socially raised aves to an isolation stressor which elicits distress vocalizations (DVocs) in an attempt to re-establish contact. The model presents a state of panic during the first 5 min followed by a state of behavioral despair during the last 60 to 90 min. Making it useful as a dual anxiolytic/antidepressant screening assay. Further research has identified the Black Australorp strain as a stress-vulnerable, treatment-resistant, and ketamine-sensitive genetic line. Utilizing this genetic line, we sought to evaluate modulation of glutamatergic receptors for potential anxiolytic and/or antidepressant effects. Separate dose-response studies were conducted for the following drugs: the AMPA PAM LY392098, the mGluR 5 antagonist MPEP, the mGluR 2/3 agonist LY404039, the mGluR 2/3 antagonist LY341495, and the mGluR 7 agonist AMN082. The norepinephrine α2 agonist clonidine and the NMDA antagonist ketamine were included as comparison for anxiolytic (anti-panic) and antidepressant effects, respectively. As in previous studies, clonidine reduced DVoc rates during the first 5 min (attenuation of panic) and ketamine elevated DVoc rates (attenuation of behavioral despair) during the last 60 min of isolation. The mGluR 2/3 agonist LY404039 and the mGluR 5 antagonist MPEP decreased DVoc rates during the first 5 min of isolation indicative of anxiolytic effects like that of clonidine while the mGluR 7 agonist AMN082 elevated DVoc rates in the later hour of isolation, representative of antidepressant effects like that of ketamine. Collectively, these findings suggest that certain glutamate targets may be clinically useful in treating panic disorder and/or treatment-resistant depression.
Collapse
Affiliation(s)
- Stephen W White
- Department of Psychology & Philosophy, Sam Houston State University, United States of America.
| | - Gwendolyn D Squires
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Sequioa J Smith
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Gwendolyn M Wright
- Department of Psychology & Philosophy, Sam Houston State University, United States of America
| | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - John M Rimoldi
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| | - Rama S Gadepalli
- Department of Biomolecular Sciences, University of Mississippi, United States of America; Research Institute of Pharmaceutical Sciences, University of Mississippi, United States of America
| |
Collapse
|
4
|
Pullin AN, Farrar VS, Loxterkamp JW, Jones CT, Calisi RM, Horback K, Lein PJ, Makagon MM. Providing height to pullets does not influence hippocampal dendritic morphology or brain-derived neurotrophic factor at the end of the rearing period. Poult Sci 2022; 101:102161. [PMID: 36252500 PMCID: PMC9579382 DOI: 10.1016/j.psj.2022.102161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/16/2023] Open
Abstract
Pullets reared with diverse behavioral experiences are faster to learn spatial cognition tasks and acclimate more successfully to laying environments with elevated structures. However, the neural underpinnings of the improved spatial abilities are unclear. The objective of this study was to determine whether providing structural height in the rearing environment affected the development of the hippocampus and whether hippocampal neural metrics correlated with individual behavior on spatial cognition tasks. Female Dekalb White pullets were reared in a floor pen (FL), single-tiered aviary (ST), or two-tiered aviary (TT; 5 pens/treatment). Pullets completed floor-based Y-maze and elevated visual cliff tasks to evaluate depth perception at 15 and 16 wk, respectively. At 16 wk, brains were removed for Golgi-Cox staining (n = 12 for FL, 13 for ST, 13 total pullets for TT; 2 to 3 pullets/pen) and qPCR to measure gene expression of brain-derived neurotrophic factor (BDNF; n = 10 for FL, 11 for ST, and 9 pullets for TT). Rearing environment did not affect various morphometric outcomes of dendritic arborization, including Sholl profiles; mean dendritic length; sum dendritic length; number of dendrites, terminal tips, or nodes; soma size; or BDNF mRNA expression (P > 0.05). Hippocampal subregion did affect dendritic morphology, with multipolar neurons from the ventral subregion differing in several characteristics from multipolar neurons in the dorsomedial or dorsolateral subregions (P < 0.05). Neural metrics did not correlate with individual differences in behavior during the spatial cognition tasks. Overall, providing height during rearing did not affect dendritic morphology or BDNF at 16 wk of age, but other metrics in the hippocampus or other brain regions warrant further investigation. Additionally, other structural or social components or the role of animal personality are areas of future interest for how rearing environments influence pullet behavior.
Collapse
Affiliation(s)
- Allison N. Pullin
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Corresponding author:
| | - Victoria S. Farrar
- Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Jason W. Loxterkamp
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Claire T. Jones
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Rebecca M. Calisi
- Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Kristina Horback
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Maja M. Makagon
- Center for Animal Welfare, Department of Animal Science, University of California, Davis, CA 95616, USA,Animal Behavior Graduate Group, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Mao A, Giraudet CSE, Liu K, De Almeida Nolasco I, Xie Z, Xie Z, Gao Y, Theobald J, Bhatta D, Stewart R, McElligott AG. Automated identification of chicken distress vocalizations using deep learning models. J R Soc Interface 2022; 19:20210921. [PMID: 35765806 PMCID: PMC9240672 DOI: 10.1098/rsif.2021.0921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
The annual global production of chickens exceeds 25 billion birds, which are often housed in very large groups, numbering thousands. Distress calling triggered by various sources of stress has been suggested as an 'iceberg indicator' of chicken welfare. However, to date, the identification of distress calls largely relies on manual annotation, which is very labour-intensive and time-consuming. Thus, a novel convolutional neural network-based model, light-VGG11, was developed to automatically identify chicken distress calls using recordings (3363 distress calls and 1973 natural barn sounds) collected on an intensive farm. The light-VGG11 was modified from VGG11 with significantly fewer parameters (9.3 million versus 128 million) and 55.88% faster detection speed while displaying comparable performance, i.e. precision (94.58%), recall (94.89%), F1-score (94.73%) and accuracy (95.07%), therefore more useful for model deployment in practice. To additionally improve light-VGG11's performance, we investigated the impacts of different data augmentation techniques (i.e. time masking, frequency masking, mixed spectrograms of the same class and Gaussian noise) and found that they could improve distress calls detection by up to 1.52%. Our distress call detection demonstration on continuous audio recordings, shows the potential for developing technologies to monitor the output of this call type in large, commercial chicken flocks.
Collapse
Affiliation(s)
- Axiu Mao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Claire S. E. Giraudet
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kai Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, People's Republic of China
- Animal Health Research Centre, Chengdu Research Institute, City University of Hong Kong, Chengdu, People's Republic of China
| | - Inês De Almeida Nolasco
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 North Road You Ai, Nanning 530001, Guangxi, People's Republic of China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 North Road You Ai, Nanning 530001, Guangxi, People's Republic of China
| | - Yue Gao
- School of Computer Science and Electronic Engineering, University of Surrey, Guildford, UK
| | | | - Devaki Bhatta
- Agsenze, Parc House, Kingston Upon Thames, London, UK
| | - Rebecca Stewart
- Dyson School of Design Engineering, Imperial College London, London, UK
| | - Alan G. McElligott
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
6
|
Ogbonna AC, Chaudhry AS, Asher L. Effect of Dietary Vitamin D3 and Ultraviolet B Light on Growth Performance, Blood Serum Parameters, Gut Histology, and Welfare Indicators of Broilers. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.806967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stressors are commonly encountered by all farmed species, including chickens, but the impact of these stressors on the animal and their productivity can be influenced by the environmental conditions in which they are kept. This study investigated the effects of dietary vitamin D3 (vitD3) and ultraviolet light (UVB) on growth performance, organ weight, serum corticosterone levels (CORT), serum 25-hydroxy vitamin D (25-OH-D3) status, gut histology, and welfare indicators of broiler chickens challenged with social isolation stress. One day (d) old Ross 308 broiler chicks (n = 192) were individually weighed, wing-tagged, and allocated to non-isolated (control) and isolated groups; control birds were never isolated, while isolated birds were subjected to regular sessions of social isolation for about 15-min periods over the course of 3 d a week for 2 weeks starting from d 10 (1.30 h total exposure) with inter treatment interval of 48 h. Birds were treated with either dietary vitD3 at 4,000 IU/kg (HD) or UVB light (UVB). The UVB lamp (24 Watt 12% UVB D3, 55 cm) with wavelength: 280–315 nm, intensity; 28.12 μW/cm2 hung 50 cm above the substrate was used for the broilers in all the treatment groups but were filtered to remove UVB in the HD group. Growth performance measure; body weight gain, feed intake, and feed conversion ratio were estimated at the end of starter (day 10), grower (day 24), and finisher periods (day 38). Broilers were feather and gait scored to measure welfare at 22/35 and 24/37 days of age, respectively. The selected birds were weighed and euthanized to obtain serum to determine 25-OH-D3 and CORT levels, GIT weights, and gut histology. Subjecting the birds to 2-week social isolation (for 15 min, three times per week) increased CORT levels but did not alter GP and 25-OH-D3 levels of broilers. However, UVB-treated broilers demonstrated better welfare, duodenal absorptive capacity, and reduced FCR compared to HD chickens. Results suggest some beneficial effects of UVB lighting on welfare indicators and the potential to support early life growth of commercial broilers reared indoors, which are often challenged with stressors.
Collapse
|
7
|
MacLellan A, Fureix C, Polanco A, Mason G. Can animals develop depression? An overview and assessment of ‘depression-like’ states. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Describing certain animal behaviours as ‘depression-like’ or ‘depressive’ has become common across several fields of research. These typically involve unusually low activity or unresponsiveness and/or reduced interest in pleasure (anhedonia). While the term ‘depression-like’ carefully avoids directly claiming that animals are depressed, this narrative review asks whether stronger conclusions can be legitimate, with animals developing the clinical disorder as seen in humans (cf., DSM-V/ICD-10). Here, we examine evidence from animal models of depression (especially chronically stressed rats) and animals experiencing poor welfare in conventional captive conditions (e.g., laboratory mice and production pigs in barren environments). We find troubling evidence that animals are indeed capable of experiencing clinical depression, but demonstrate that a true diagnosis has yet to be confirmed in any case. We thus highlight the importance of investigating the co-occurrence of depressive criteria and discuss the potential welfare and ethical implications of animal depression.
Collapse
Affiliation(s)
- Aileen MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Carole Fureix
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Andrea Polanco
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Georgia Mason
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
8
|
González-Palomares E, López-Jury L, Wetekam J, Kiai A, García-Rosales F, Hechavarria JC. Male Carollia perspicillata bats call more than females in a distressful context. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202336. [PMID: 34040789 PMCID: PMC8113905 DOI: 10.1098/rsos.202336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Distress calls are a vocalization type widespread across the animal kingdom, emitted when the animals are under duress, e.g. when captured by a predator. Here, we report on an observation we came across serendipitously while recording distress calls from the bat species Carollia perspicillata, i.e. the existence of sex difference in the distress calling behaviour of this species. We show that in C. perspicillata bats, males are more likely to produce distress vocalizations than females when hand-held. Male bats call more, their calls are louder, harsher (faster amplitude modulated) and cover lower carrier frequencies than female vocalizations. We discuss our results within a framework of potential hormonal, neurobiological and behavioural differences that could explain our findings, and open multiple paths to continue the study of sex-related differences in vocal behaviour in bats.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Johannes Wetekam
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ava Kiai
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francisco García-Rosales
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Julio C. Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Herborn KA, McElligott AG, Mitchell MA, Sandilands V, Bradshaw B, Asher L. Spectral entropy of early-life distress calls as an iceberg indicator of chicken welfare. J R Soc Interface 2020; 17:20200086. [PMID: 32517633 PMCID: PMC7328393 DOI: 10.1098/rsif.2020.0086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chicks (Gallus gallus domesticus) make a repetitive, high energy ‘distress’ call when stressed. Distress calls are a catch-all response to a range of environmental stressors, and elicit food calling and brooding from hens. Pharmacological and behavioural laboratory studies link expression of this call with negative affective state. As such, there is an a priori expectation that distress calls on farms indicate not only physical, but emotional welfare. Using whole-house recordings on 12 commercial broiler flocks (n = 25 090–26 510/flock), we show that early life (day 1–4 of placement) distress call rate can be simply and linearly estimated using a single acoustic parameter: spectral entropy. After filtering to remove low-frequency machinery noise, spectral entropy per minute of recording had a correlation of −0.88 with a manual distress call count. In videos collected on days 1–3, age-specific behavioural correlates of distress calling were identified: calling was prevalent (spectral entropy low) when foraging/drinking were high on day 1, but when chicks exhibited thermoregulatory behaviours or were behaviourally asynchronous thereafter. Crucially, spectral entropy was predictive of important commercial and welfare-relevant measures: low median daily spectral entropy predicted low weight gain and high mortality, not only into the next day, but towards the end of production. Further research is required to identify what triggers, and thus could alleviate, distress calling in broiler chicks. However, within the field of precision livestock farming, this work shows the potential for simple descriptors of the overall acoustic environment to be a novel, tractable and real-time ‘iceberg indicator’ of current and future welfare.
Collapse
Affiliation(s)
- Katherine A Herborn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Alan G McElligott
- Centre for Research in Ecology, Evolution and Behaviour, Department of Life Sciences, University of Roehampton, London, UK
| | - Malcolm A Mitchell
- Department of Animal and Veterinary Sciences, SRUC, Easter Bush, Midlothian, UK
| | - Victoria Sandilands
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC, Easter Bush, Midlothian, UK
| | - Brett Bradshaw
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy Asher
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Housing Horses in Individual Boxes Is a Challenge with Regard to Welfare. Animals (Basel) 2019; 9:ani9090621. [PMID: 31466327 PMCID: PMC6770668 DOI: 10.3390/ani9090621] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 11/17/2022] Open
Abstract
Horses are mainly housed in individual boxes. This housing system is reported to be highly detrimental with regard to welfare and could trigger the expression of four behavioural indicators of a compromised welfare state: stereotypies, aggressiveness toward humans, unresponsiveness to the environment, and stress-related behaviours. The aim of this study was to identify housing and management factors that could alleviate the detrimental effects of individual boxes on welfare. A total of 187 horses were observed over 50 days by scan sampling. The impact of 12 factors was investigated on the expression of the four behavioural indicators in three different analyses. The results show that the majority of factors tested did not influence the expression of the behavioural indicators. Only three (straw bedding, a window opening onto the external environment, and a reduced quantity of concentrated feed) would have beneficial, although limited, effects. Furthermore, the longer the horses spent in individual boxes, the more likely they were to express unresponsiveness to the environment. To preserve the welfare of horses, it seems necessary to allow free exercise, interactions with conspecifics, and fibre consumption as often as possible, to ensure the satisfaction of the species' behavioural and physiological needs.
Collapse
|
11
|
Maximino C, van der Staay FJ. Behavioral models in psychopathology: epistemic and semantic considerations. Behav Brain Funct 2019; 15:1. [PMID: 30823933 PMCID: PMC6397463 DOI: 10.1186/s12993-019-0152-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/14/2019] [Indexed: 03/12/2023] Open
Abstract
The use of animals in neurosciences has a long history. It is considered indispensable in areas in which “translational” research is deemed invaluable, such as behavioral pharmacology and comparative psychology. Animal models are being used in pharmacology and genetics to screen for treatment targets, and in the field of experimental psychopathology to understand the neurobehavioral underpinnings of a disorder and of its putative treatment. The centrality of behavioral models betrays the complexity of the epistemic and semantic considerations which are needed to understand what a model is. In this review, such considerations are made, and the breadth of model building and evaluation approaches is extended to include theoretical considerations on the etiology of mental disorders. This expansion is expected to help improve the validity of behavioral models and to increase their translational value. Moreover, the role of theory in improving construct validity creates the need for behavioral scientists to fully engage this process.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Grupo de Pesquisas em Neurofarmacologia e Psicopatologia Experimental, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III - Av. dos Ipês, S/N, Marabá, Brazil
| | - Franz Josef van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Veterinary Faculty, University Utrecht, P.O.Box 80.151, 3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Family and Personality Predictors of Clinical Depression and Anxiety in Emerging Adults: Common, Distinctive, or a Vulnerability Continuum? J Nerv Ment Dis 2018; 206:537-543. [PMID: 29905664 DOI: 10.1097/nmd.0000000000000839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is an ongoing debate on the relationship between depression and anxiety, but data on similarities and differences in their predictor profiles are scarce. The aim of our study was to compare family and personality predictors of these disorders among 220 "emerging adults." As such, two clinical groups with noncomorbid depressive and anxiety disorders, and one healthy control group were assessed by sociodemographic questionnaires, Structured Clinical Interview for DSM-IV Disorders and NEO Personality Inventory, Revised. We found significant overlap in family and personality risk profiles, with increasing effect size for predictors common to anxiety and depression when the categories "no disorder-anxiety disorder-depressive disorder" were considered as existing along a continuum. Among the contributing factors we assessed, family psychiatric history, family structure and conflicts with parents were more significant than personality traits. Our study indicates that emerging adults may be more vulnerable to depression than anxiety in the presence of family and personality risk factors.
Collapse
|
13
|
Lima-Maximino MG, Cueto-Escobedo J, Rodríguez-Landa JF, Maximino C. FGIN-1-27, an agonist at translocator protein 18 kDa (TSPO), produces anti-anxiety and anti-panic effects in non-mammalian models. Pharmacol Biochem Behav 2018; 171:66-73. [PMID: 29698632 DOI: 10.1016/j.pbb.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/19/2022]
Abstract
FGIN-1-27 is an agonist at the translocator protein 18 kDa (TSPO), a cholesterol transporter that is associated with neurosteroidogenesis. This protein has been identified as a peripheral binding site for benzodiazepines; in anamniotes, however, a second TSPO isoform that is absent in amniotes has been implicated in erythropoiesis. Functional conservation of the central benzodiazepine-binding site located in the GABAA receptors has been demonstrated in anamniotes and amniotes alike; however, it was not previously demonstrated for TSPO. The present investigation explored the behavioral effects of FGIN-1-27 on an anxiety test in zebrafish (Danio rerio, Family: Cyprinide) and on a mixed anxiety/panic test on wall lizards (Tropidurus oreadicus, Family: Tropiduridae). Results showed that FGIN-1-27 reduced anxiety-like behavior in the zebrafish light/dark preference test similar to diazepam, but with fewer sedative effects. Similarly, FGIN-1-27 also reduced anxiety- and fear-like behaviors in the defense test battery in wall lizards, again producing fewer sedative-like effects than diazepam; the benzodiazepine was also unable to reduce fear-like behaviors in this species. These results A) underline the functional conservation of TSPO in defensive behavior in anamniotes; B) strengthen the proposal of using anamniote behavior as models in behavioral pharmacology; and C) suggest TSPO/neurosteroidogenesis as a target in treating anxiety disorders.
Collapse
Affiliation(s)
- Monica Gomes Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII, Marabá, Brazil
| | - Jonathan Cueto-Escobedo
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - Caio Maximino
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| |
Collapse
|
14
|
Carpenter JM, Jourdan MK, Fountain EM, Ali Z, Abe N, Khan IA, Sufka KJ. The effects of Sceletium tortuosum (L.) N.E. Br. extract fraction in the chick anxiety-depression model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:329-332. [PMID: 27553978 DOI: 10.1016/j.jep.2016.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/28/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sceletium tortuosum (L.) N.E. Br. has been reported to elevate mood, reduce anxiety and stress and alleviate pain. AIM OF STUDY This study sought to examine the effects of an S. tortuosum alkaloid enriched fraction in the chick anxiety-depression model, a model that shows high predictive validity as a pharmacological screening assay. MATERIAL AND METHODS Socially-raised male Silver Laced Wyandotte chicks (4-6 days old) were given IP vehicle, imipramine (10mg/kg), or S. tortuosum fraction (10, 20, 30mg/kg in Exp. 1 or 50, 75, 100mg/kg in Exp. 2) 15min prior to a 60min isolation test period in which distress vocalizations (DVoc) were continuously recorded. RESULTS Vehicle chicks displayed high DVoc rates in the anxiety phase (first 3min). DVoc rates declined about 50% (i.e., behavioral despair) in the depression phase (30-60min). S. tortuosum fraction at 75 and 100mg/kg decreased DVoc rates during the anxiety phase indicative of an anxiolytic effect. Imipramine, but not S. tortuosum groups, increased DVoc rates in the depression phase indicative of an antidepressant effect. CONCLUSIONS The findings suggest that an alkaloid enriched S. tortuosum fraction may benefit some forms of stress-related disorders.
Collapse
Affiliation(s)
- Jessica M Carpenter
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Mary K Jourdan
- Department of Psychology, University of Mississippi, University, MS 38677, USA
| | - Emily M Fountain
- Department of Psychology, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Naohito Abe
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Kenneth J Sufka
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA; Department of Psychology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
15
|
Maximino C, Silva RXDC, da Silva SDNS, Rodrigues LDSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 2015; 9:233. [PMID: 26441567 PMCID: PMC4561806 DOI: 10.3389/fnbeh.2015.00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023] Open
Abstract
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Rhayra Xavier do Carmo Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Suéllen de Nazaré Santos da Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Laís do Socorro dos Santos Rodrigues
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Hellen Barbosa
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Tayana Silva de Carvalho
- Universität Duisburg-EssenEssen, Germany
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Luana Ketlen dos Reis Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Monica Gomes Lima
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Karen Renata Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
16
|
de Haas EN, Bolhuis JE, Kemp B, Groothuis TGG, Rodenburg TB. Parents and early life environment affect behavioral development of laying hen chickens. PLoS One 2014; 9:e90577. [PMID: 24603500 PMCID: PMC3948370 DOI: 10.1371/journal.pone.0090577] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/03/2014] [Indexed: 01/28/2023] Open
Abstract
Severe feather pecking (SFP) in commercial laying hens is a maladaptive behavior which is associated with anxiety traits. Many experimental studies have shown that stress in the parents can affect anxiety in the offspring, but until now these effects have been neglected in addressing the problem of SFP in commercially kept laying hens. We therefore studied whether parental stock (PS) affected the development of SFP and anxiety in their offspring. We used flocks from a brown and white genetic hybrid because genetic background can affect SFP and anxiety. As SFP can also be influenced by housing conditions on the rearing farm, we included effects of housing system and litter availability in the analysis. Forty-seven rearing flocks, originating from ten PS flocks were followed. Behavioral and physiological parameters related to anxiety and SFP were studied in the PS at 40 weeks of age and in the rearing flocks at one, five, ten and fifteen weeks of age. We found that PS had an effect on SFP at one week of age and on anxiety at one and five weeks of age. In the white hybrid, but not in the brown hybrid, high levels of maternal corticosterone, maternal feather damage and maternal whole-blood serotonin levels showed positive relations with offsprings' SFP at one week and offsprings' anxiety at one and five weeks of age. Disruption and limitation of litter supply at an early age on the rearing farms increased SFP, feather damage and fearfulness. These effects were most prominent in the brown hybrid. It appeared that hens from a brown hybrid are more affected by environmental conditions, while hens from a white hybrid were more strongly affected by parental effects. These results are important for designing measures to prevent the development of SFP, which may require a different approach in brown and white flocks.
Collapse
Affiliation(s)
- Elske N. de Haas
- Adaptation Physiology Group, Department of Animal Science, Wageningen University and Research, Wageningen, The Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Science, Wageningen University and Research, Wageningen, The Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Science, Wageningen University and Research, Wageningen, The Netherlands
| | - Ton G. G. Groothuis
- Behavioural Biology, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, The Netherlands
| | - T. Bas Rodenburg
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
Stewart AM, Kalueff AV. Anxiolytic drug discovery: what are the novel approaches and how can we improve them? Expert Opin Drug Discov 2013; 9:15-26. [PMID: 24206163 DOI: 10.1517/17460441.2014.857309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Contemporary biological psychiatry uses experimental (animal) models to increase our understanding of affective disorder pathogenesis. Despite the well-recognized spectrum nature of affective disorders, modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the integrative mechanisms and pathogenesis is essential in order to develop new effective therapies. AREAS COVERED In this review, the authors emphasize the importance of a 'domain interplay-oriented' approach to experimental affective research. They also highlight the need to expand the scope of anxiolytic drug targets to better understand the pathogenesis of anxiety-spectrum disorders. EXPERT OPINION There is the potential to markedly improve the utility of animal models for affective disorders. First, the authors suggest that one such way would be by analyzing the systems of several domains and their interplay to better understand disease pathogenesis. Further, it could also be improved by expanding the range of model species and by extending the spectrum of anxiolytic drug targets; this would help to focus on emerging and unconventional systems to better develop new therapies.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute , 309 Palmer Court, Slidell, LA 70458 , USA +1 240 328 2275 ; +1 240 328 2275 ;
| | | |
Collapse
|
18
|
Sufka KJ, White SW. Identification of a treatment-resistant, ketamine-sensitive genetic line in the chick anxiety-depression model. Pharmacol Biochem Behav 2013; 113:63-7. [DOI: 10.1016/j.pbb.2013.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
|
19
|
In vitro structure-activity relationships of aplysinopsin analogs and their in vivo evaluation in the chick anxiety-depression model. Bioorg Med Chem 2013; 21:7083-90. [PMID: 24084296 DOI: 10.1016/j.bmc.2013.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/28/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
Aplysinopsins are tryptophan-derived natural products that have been isolated from a variety of marine organisms and have been shown to possess a range of biological activities. In vitro receptor binding assays showed that of the 12 serotonin receptor subtypes, analogues showed a high affinity for the 5-HT2B and 5-HT2C receptor subtypes, with selectivity for 5-HT2B over 5-HT2C. While no conclusions could be drawn about the number and position of N-methylations, bromination at C-4 and C-5 of the indole ring resulted in greater binding affinities, with Ki's as low as 35 nM. This data, combined with previous knowledge of the CNS activity of aplysinopsin analogs, suggested that these compounds may have potential as leads for antidepressant drugs. Compounds 3c, 3u, and 3x were evaluated in the chick anxiety-depression model to assess their in vivo efficacy. Compound 3c showed a modest antidepressant effect at a dose of 30 nM/kg in the animal model.
Collapse
|
20
|
Hymel KA, Salmeto AL, Loria MJ, White SW, Sufka KJ. Strain vulnerability and resiliency in the chick anxiety-depression model. Physiol Behav 2013; 120:124-9. [PMID: 23911807 DOI: 10.1016/j.physbeh.2013.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022]
Abstract
Increasing research is focused on genetic contributions to variability in stress-related endophenotypes in humans and animal model simulations. The current study sought to identify strain vulnerabilities and resiliencies to an isolation-stressor in the chick anxiety-depression model. Nine different strains of socially raised chicks were tested in isolated or non-isolated conditions for 90 min in which distress vocalization (DVoc) rates were collected and then transformed to depression-like phase threshold (@ 25, 50, 75 and 95%) latencies. In general, chicks in the non-isolated condition displayed relatively low DVoc rates throughout the test session, despite some variability in initial rates. Chicks in the isolated condition displayed relatively high DVoc rates in the first 3 min, indicative of an anxiety-like state, which declined by approximately 50% within 10-25 min in all strains and remained stable thereafter, indicative of a depression-like state. Contrast effects revealed that, relative to all other strains, the Black Australorp strain displayed shorter and the Producrain displayed longer depression threshold latencies, respectively. Of the remaining strains, the Silver Laced Wyandotte displayed depression thresholds that best represent an intermediate stress response. These findings identify vulnerable and resilient strains for examining depression-related endophenotypes in the chick anxiety-depression model.
Collapse
Affiliation(s)
- Kristen A Hymel
- Department of Psychology, University of Mississippi, Oxford, MS 38677, USA.
| | | | | | | | | |
Collapse
|
21
|
Loria MJ, White SW, Robbins SA, Salmeto AL, Hymel KA, Murthy SN, Manda P, Sufka KJ. Brain-derived neurotrophic factor response in vulnerable and resilient genetic lines in the chick anxiety–depression model. Behav Brain Res 2013; 245:29-33. [DOI: 10.1016/j.bbr.2013.01.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 01/04/2023]
|
22
|
Atanasova NA. Mechanistic explanations and animal model simulations in neuroscience. J EXP THEOR ARTIF IN 2012. [DOI: 10.1080/0952813x.2012.693684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Seehuus B, Blokhuis H, Mendl M, Keeling L. Developing a method to investigate motivational sequences in the chick. ACTA AGR SCAND A-AN 2012. [DOI: 10.1080/09064702.2012.721388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Hymel KA, Sufka KJ. Pharmacological reversal of cognitive bias in the chick anxiety-depression model. Neuropharmacology 2011; 62:161-6. [PMID: 21722654 DOI: 10.1016/j.neuropharm.2011.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
Cognitive bias presents in clinical populations where anxious individuals adopt a more pessimistic interpretation of ambiguous aversive stimuli and depressed individuals adopt both a more pessimistic interpretation of ambiguous aversive stimuli and a less optimistic interpretation of ambiguous appetitive stimuli. These biases have been reversed by anxiolytics and antidepressants. In the current study, chicks exposed to an isolation stressor of 5-min to induce an anxiety-like state or 60-min to induce a depressive-like state were tested in a straight alley maze to a series of morphed ambiguous appetitive (chick silhouette) to aversive (owl silhouette) cues. Chicks in the depression-like state displayed more pessimistic-like and less optimistic-like approach behavior to ambiguous aversive and appetitive cues, respectively. Both forms of cognitive bias were reversed by 15.0 mg/kg imipramine. Chicks in anxiety-like state displayed more pessimistic-like approach behavior under the ambiguous aversive stimulus cues. However, 0.10 mg/kg clonidine produced modest sedation and thus, was ineffective at reversing this bias. The observation that cognitive biases of more pessimism and less optimism can be reversed in the depression-like phase by imipramine adds to the validity of the chick anxiety-depression model as a neuropsychiatric simulation. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Kristen A Hymel
- Department of Psychology, University of Mississippi, Oxford, MS 38677, USA.
| | | |
Collapse
|
25
|
Stewart A, Gaikwad S, Hart P, Kyzar E, Roth A, Kalueff AV. Experimental models for anxiolytic drug discovery in the era of omes and omics. Expert Opin Drug Discov 2011; 6:755-69. [PMID: 22650981 DOI: 10.1517/17460441.2011.586028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Animal behavioral models have become an indispensable tool for studying anxiety disorders and testing anxiety-modulating drugs. However, significant methodological and conceptual challenges affect the translational validity and accurate behavioral dissection in such models. They are also often limited to individual behavioral domains and fail to target the disorder's real clinical picture (its spectrum or overlap with other disorders), which hinder screening and development of novel anxiolytic drugs. AREAS COVERED In this article, the authors discuss and emphasize the importance of high-throughput multi-domain neurophenotyping based on the latest developments in video-tracking and bioinformatics. Additionally, the authors also explain how bioinformatics can provide new insight into the neural substrates of brain disorders and its benefit for drug discovery. EXPERT OPINION The throughput and utility of animal models of anxiety and other brain disorders can be markedly increased by a number of ways: i) analyzing systems of several domains and their interplay in a wider spectrum of model species; ii) using a larger number of end points generated by video-tracking tools; iii) correlating behavioral data with genomic, proteomic and other physiologically relevant markers using online databases and iv) creating molecular network-based models of anxiety to identify new targets for drug design and discovery. Experimental models utilizing bioinformatics tools and online databases will not only improve our understanding of both gene-behavior interactions and complex trait interconnectivity but also highlight new targets for novel anxiolytic drugs.
Collapse
Affiliation(s)
- Adam Stewart
- Tulane University Medical School, Department of Pharmacology and Neuroscience Program , Tulane Neurophenotyping Platform, SL-83, 1430 Tulane Ave, New Orleans, LA 70112 , USA +1 504 988 3354 ;
| | | | | | | | | | | |
Collapse
|
26
|
The effects of environmental enrichment in the chick anxiety-depression model. Behav Brain Res 2011; 221:276-81. [PMID: 21402107 DOI: 10.1016/j.bbr.2011.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 03/03/2011] [Accepted: 03/06/2011] [Indexed: 01/07/2023]
Abstract
As a validation step of an animal simulation, the effects of environmental enrichment were tested in the anxiety-depression model, in which socially raised chicks are placed in isolation for a 2h test period. Isolated chicks display an initial high rate of distress vocalizations, constituting the anxiety-like phase, followed by a marked decline and plateau in rates of vocalizations for the remainder of time in isolation, characterizing the depression-like phase. Four separate groups of domestic fowl chicks were group housed under enriched, impoverished (i.e., non-enriched) or a combination of the two housing conditions for six days and tested at 7d posthatch in the aforementioned isolation procedure. Rates of distress vocalizations in the anxiety-like (2-3 min) or depression-like (30-120 min) phases were not affected by housing conditions. However, chicks continuously housed in enriched environments and chicks housed in the enriched environments on days 4-6 displayed a delay in the onset of the depression-like phase. The beneficial effect of environmental enrichment on the depression-like phase is consistent with other stress paradigms and provides another step towards validating the chick anxiety-depression model as a clinical simulation.
Collapse
|
27
|
Salmeto AL, Hymel KA, Carpenter EC, Brilot BO, Bateson M, Sufka KJ. Cognitive bias in the chick anxiety–depression model. Brain Res 2011; 1373:124-30. [DOI: 10.1016/j.brainres.2010.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 11/28/2022]
|
28
|
Domain interplay in mice and men: New possibilities for the “natural kinds” theory of emotion. NEW IDEAS IN PSYCHOLOGY 2011. [DOI: 10.1016/j.newideapsych.2010.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Antidepressant efficacy screening of novel targets in the chick anxiety-depression model. Behav Pharmacol 2009; 20:146-54. [DOI: 10.1097/fbp.0b013e32832a8082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|