1
|
Popović L, Wintgens JP, Wu Y, Brankatschk B, Menninger S, Degenhart C, Jensen N, Wichert SP, Klebl B, Rossner MJ, Wehr MC. Profiling of ERBB receptors and downstream pathways reveals selectivity and hidden properties of ERBB4 antagonists. iScience 2024; 27:108839. [PMID: 38303712 PMCID: PMC10831936 DOI: 10.1016/j.isci.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
ERBB receptor tyrosine kinases are involved in development and diseases like cancer, cardiovascular, neurodevelopmental, and mental disorders. Although existing drugs target ERBB receptors, the next generation of drugs requires enhanced selectivity and understanding of physiological pathway responses to improve efficiency and reduce side effects. To address this, we developed a multilevel barcoded reporter profiling assay, termed 'ERBBprofiler', in living cells to monitor the activity of all ERBB targets and key physiological pathways simultaneously. This assay helps differentiate on-target therapeutic effects from off-target and off-pathway side effects of ERBB antagonists. To challenge the assay, eight established ERBB antagonists were profiled. Known effects were confirmed, and previously uncharacterized properties were discovered, such as pyrotinib's preference for ERBB4 over EGFR. Additionally, two lead compounds selectively targeting ERBB4 were profiled, showing promise for clinical trials. Taken together, this multiparametric profiling approach can guide early-stage drug development and lead to improved future therapeutic interventions.
Collapse
Affiliation(s)
- Lukša Popović
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| | - Jan P. Wintgens
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Ben Brankatschk
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| | - Sascha Menninger
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Carsten Degenhart
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Niels Jensen
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Sven P. Wichert
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| |
Collapse
|
2
|
Liao IM, Chen JC. Lack of dopamine D4 receptor participation in mouse hyperdopaminergic locomotor response. Behav Brain Res 2020; 396:112925. [PMID: 32971195 DOI: 10.1016/j.bbr.2020.112925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Chronic methamphetamine (METH) treatment induces behavioral sensitization in rodents. During this process, hyperactivation of the mesolimbic dopamine system plays a central role, and dopamine D2-like receptor-based antipsychotics are known to alleviate the behavioral hyperactivity. The atypical antipsychotic, clozapine (Clz), acts partially as a dopamine D4 receptor (D4R) antagonist and mitigates hyperdopaminergic drug addiction and/or comorbid psychotic symptoms; however, it remains unclear whether D4R blockade contributes to the therapeutic effects of Clz. Here, we evaluated the potential role of D4R in regulating hyperdopaminergia-induced behavioral hyperactivity in METH behavioral sensitization and dopamine transporter (DAT) knockdown (KD) mice. Clz or a D4R-selective antagonist, L-745,870, were co-administered to mice with daily METH in a METH sensitization model, and Clz or L-745,870 were administered alone in a DAT KD hyperactivity model. Locomotor activity and accumbal D4R expression were analyzed. Clz suppressed both the initiation and expression of METH behavioral sensitization, as well as DAT KD hyperactivity. However, repetitive Clz treatment induced tolerance to the suppression effect on METH sensitization initiation. In contrast, D4R inhibition by L-745,870 had no effect on METH sensitization or DAT KD hyperactivity. Accumbal D4R expression was similar between METH-sensitized mice with and without Clz co-treatment. In sum, our results suggest the mesolimbic D4R does not participate in behavioral sensitization encoded by hyperdopaminergia, a finding which likely extends to the therapeutic effects of Clz. Therefore, molecular targets other than D4R should be prioritized in the development of future therapeutics for treatment of hyperdopaminergia-dependent neuropsychiatric disorders.
Collapse
Affiliation(s)
- I-Mei Liao
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, United States
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Keelung, Taiwan; Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
3
|
Piatkov I, Caetano D, Assur Y, Lau SL, Coelho M, Jones T, Nguyen T, Boyages S, McLean M. CYP2C19*17 protects against metabolic complications of clozapine treatment. World J Biol Psychiatry 2017; 18:521-527. [PMID: 28664816 DOI: 10.1080/15622975.2017.1347712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Clozapine (CZ) is the most effective drug for managing treatment-resistant schizophrenic disorders. Its use has been limited due to adverse effects, which include weight gain and new-onset diabetes, but the incidence of these varies between patients. METHODS We investigated 187 Clozapine Clinic patients (of whom 137 consented for genotyping) for the presence of CYP2C19*17 and its association with CZ and norclozapine (NCZ) levels, and clinical outcomes. RESULTS Thirty-nine percent of genotyped patients were carriers of the CYP2C 19*17 polymorphism. This group demonstrated significantly higher NCZ serum levels, and significantly lower fasting glucose (5.66 ± 1.19 vs 6.72 ± 3.01 mmol/l, P = 0.009) and Hb1Ac (35.36 ± 4.78 vs 49.40 ± 20.60 mmol/mol, P = 0.006) levels compared to non-carriers of this polymorphism. CZ-treated patients with CYP2C19*17/*17 had a significantly lower prevalence of diabetes as well as a higher likelihood of clinical improvement of their schizophrenia, compared to those without this polymorphism (P = 0.012 and P = 0.031, respectively). CONCLUSIONS Our data suggest that CYP2C19*17 ultra-rapid-metaboliser status is a protective factor against the development of diabetes during clozapine treatment, and increases the likelihood of improvement in schizophrenia. The role of NCZ in treatment response and side effects, including metabolic syndrome, warrants further pharmacogenetic, pharmacokinetic and pharmacodynamic studies.
Collapse
Affiliation(s)
- Irina Piatkov
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Dorgival Caetano
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia.,c Blacktown Mental Health Service , Blacktown Hospital, WSLHD , Blacktown , Australia
| | - Yolinda Assur
- c Blacktown Mental Health Service , Blacktown Hospital, WSLHD , Blacktown , Australia
| | - Sue Lynn Lau
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| | - Micheline Coelho
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Trudi Jones
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Tristan Nguyen
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Steven Boyages
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| | - Mark McLean
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| |
Collapse
|
4
|
Kristóf E, Doan-Xuan QM, Sárvári AK, Klusóczki Á, Fischer-Posovszky P, Wabitsch M, Bacso Z, Bai P, Balajthy Z, Fésüs L. Clozapine modifies the differentiation program of human adipocytes inducing browning. Transl Psychiatry 2016; 6:e963. [PMID: 27898069 PMCID: PMC5290354 DOI: 10.1038/tp.2016.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
Administration of second-generation antipsychotic drugs (SGAs) often leads to weight gain and consequent cardio-metabolic side effects. We observed that clozapine but not six other antipsychotic drugs reprogrammed the gene expression pattern of differentiating human adipocytes ex vivo, leading to an elevated expression of the browning marker gene UCP1, more and smaller lipid droplets and more mitochondrial DNA than in the untreated white adipocytes. Laser scanning cytometry showed that up to 40% of the differentiating single primary and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes had the characteristic morphological features of browning cells. Furthermore, clozapine significantly upregulated ELOVL3, CIDEA, CYC1, PGC1A and TBX1 genes but not ZIC1 suggesting induction of the beige-like and not the classical brown phenotype. When we tested whether browning induced by clozapine can be explained by its known pharmacological effect of antagonizing serotonin (5HT) receptors, it was found that browning cells expressed 5HT receptors 2A, 1D, 7 and the upregulation of browning markers was diminished in the presence of exogenous 5HT. Undifferentiated progenitors or completely differentiated beige or white adipocytes did not respond to clozapine administration. The clozapine-induced beige cells displayed increased basal and oligomycin-inhibited (proton leak) oxygen consumption, but these cells showed a lower response to cAMP stimulus as compared with control beige adipocytes indicating that they are less capable to respond to natural thermogenic anti-obesity cues. Our data altogether suggest that novel pharmacological stimulation of these masked beige adipocytes can be a future therapeutic target for the treatment of SGA-induced weight gain.
Collapse
Affiliation(s)
- E Kristóf
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Q-M Doan-Xuan
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - A K Sárvári
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Á Klusóczki
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - P Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - M Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Z Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - P Bai
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Z Balajthy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - L Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary,MTA-DE Stem Cells, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary,Department of Biochemistry and Molecular Biology, University of Debrecen, Life Science Building, H-4032 Debrecen, Egyetem tér 1, Hungary. E-mail:
| |
Collapse
|
5
|
Osman M, Devadas V. Clozapine-induced dysphagia with secondary substantial weight loss. BMJ Case Rep 2016; 2016:bcr-2016-216445. [PMID: 27543610 DOI: 10.1136/bcr-2016-216445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dysphagia is listed as a 'rare' side effect following clozapine treatment. In this case report, we describe how significant clozapine-induced dysphagia has led to significant reduction of nutritional intake with subsequent substantial weight loss. An 18-year-old single man with an established diagnosis of treatment-resistant paranoid schizophrenia recovered well on a therapeutic dose of clozapine. However, he was noted to lose weight significantly (up to 20% of his original weight) as the dose was uptitrated. This was brought about by development of dysphagia, likely to be due to clozapine. Addition of nutritional supplementary liquids and initiation of a modified behavioural dietary/swallowing programme, while repeatedly mastering the Mendelsohn manoeuvre technique, alleviated the swallowing difficulties and restored his weight.
Collapse
Affiliation(s)
- Mugtaba Osman
- Department of Psychiatry, Letterkenny General Hospital, Letterkenny, Ireland
| | - Vekneswaran Devadas
- Department of Psychiatry, Letterkenny General Hospital, Letterkenny, Ireland
| |
Collapse
|