1
|
Jari S, Ratne N, Tadas M, Katariya R, Kale M, Umekar M, Taksande B. Imidazoline receptors as a new therapeutic target in Huntington's disease: A preclinical overview. Ageing Res Rev 2024; 101:102482. [PMID: 39236858 DOI: 10.1016/j.arr.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
An autosomal dominant neurodegenerative disease called Huntington's disease (HD) is characterized by motor dysfunction, cognitive decline, and a variety of psychiatric symptoms due to the expansion of polyglutamine in the Huntingtin gene. The disease primarily affects the striatal neurons within the basal ganglia, leading to significant neuronal loss and associated symptoms such as chorea and dystonia. Current therapeutic approaches focus on symptom management without altering the disease's progression, highlighting a pressing need for novel treatment strategies. Recent studies have identified imidazoline receptors (IRs) as promising targets for neuroprotective and disease-modifying interventions in HD. IRs, particularly the I1 and I2 subtypes, are involved in critical physiological processes such as neurotransmission, neuronal excitability, and cell survival. Activation of these receptors has been shown to modulate neurotransmitter release and provide neuroprotective effects in preclinical models of neurodegeneration. This review discusses the potential of IR-targeted therapies to not only alleviate multiple symptoms of HD but also possibly slow the progression of the disease. We emphasize the necessity for ongoing research to further elucidate the role of IRs in HD and develop selective ligands that could lead to effective and safe treatments, thereby significantly improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sakshi Jari
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nandini Ratne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
2
|
Łukawski K, Czuczwar SJ. Assessment of drug-drug interactions between moxonidine and antiepileptic drugs in the maximal electroshock seizure test in mice. Basic Clin Pharmacol Toxicol 2021; 130:28-34. [PMID: 34622546 DOI: 10.1111/bcpt.13669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is a common comorbid condition with epilepsy, and drug interactions between antihypertensive and antiepileptic drugs (AEDs) are likely in patients. Experimental studies showed that centrally active imidazoline compounds belonging to antihypertensive drugs can affect seizure susceptibility. The purpose of this study was to assess the effect of moxonidine, an I1 -imidazoline receptor agonist, on the anticonvulsant efficacy of numerous AEDs (carbamazepine, phenobarbital, valproate, phenytoin, oxcarbazepine, topiramate and lamotrigine) in the mouse model of maximal electroshock. Besides, the combinations of moxonidine and AEDs were investigated for adverse effects in the passive avoidance task and the chimney test. Drugs were administered intraperitoneally (ip). Moxonidine at doses of 1 and 2 mg/kg ip did not affect the convulsive threshold. Among tested AEDs, moxonidine (2 mg/kg) potentiated the protective effect of valproate against maximal electroshock. This interaction could be pharmacodynamic because the brain concentration of valproate was not significantly changed by moxonidine. The antihypertensive drug did not cause adverse effects when combined with AEDs. This study shows that moxonidine may have a neutral or positive effect on the anticonvulsant activity of AEDs in patients with epilepsy. The enhancement of the anticonvulsant action of valproate by moxonidine needs further investigations to elucidate potential mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
3
|
Xi H, Tao T, Zhang R, Xue X, Zhu Y, Liu J, Xin X, Zeng X. The 2-(2-benzofuranyl)-2-imidazoline provides neuroprotection against focal cerebral ischemia-reperfusion injury in diabetic rats: Influence of microglia and possible mechanisms of action. Brain Res Bull 2021; 174:230-239. [PMID: 34175385 DOI: 10.1016/j.brainresbull.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023]
Abstract
Increased microglial NADPH oxidase (NOX2) production may make an important contribution to the increased incidence and severity of ischemic stroke associated with diabetes. Imidazoline receptors are closely associated with neuroprotection, but the neuroprotective effects of the selective I2-imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline (2BFI) in diabetes has not been established. The effect of 2BFI on microglial NOX2 production was investigated using a co-culture of neurons and microglia, and the effect on cerebral ischemia-reperfusion (IR) injury was determined in diabetic rats. Garcia neurological scores, brain infarct volumes, brain water content, TUNEL staining, blood-brain barrier, and immunofluorescent labeling for microglia were evaluated. Western blots were used to determine gp91phox and Tyr1472 expression. Anti-inflammatory cytokine (IL-10) and inflammatory cytokine secretion was determined using ELISA kits. The brain infarct volumes, TUNEL-positive neurons, expression of microglia, brain water content, blood-brain barrier structure damage, and gp91phox and Tyr1472 expression were increased, the Garcia neurological scores were significantly decreased in the IR group, and 2BFI relieved these alterations. The IL-10 concentration was increased in the IR group; 2BFI significantly improved this increase. The neuron apoptosis and necrosis rates, and production of reactive oxygen species (ROS) and inflammatory cytokines, including IL-6, IL-8, TNF-α, and 8-iso-PGF2α, were significantly increased by high glucose stimulation combined with oxygen-glucose deprivation treatment, which were inhibited by 2BFI. The 2BFI ameliorated cerebral ischemia-reperfusion injury in diabetes and decreased neuron death in an in vitro model. The mechanism underlying these findings may be related to the decreased production of inflammatory factors and reactive oxygen species from microglia.
Collapse
Affiliation(s)
- Hongjie Xi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Tao Tao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Ruru Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Xinxin Xue
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Yana Zhu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Jiuyang Liu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Xianyi Xin
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Xianzhang Zeng
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
4
|
Evaluating the effects of 2-BFI and tracizoline, two potent I2-imidazoline receptor agonists, on cognitive performance and affect in middle-aged rats. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:989-996. [DOI: 10.1007/s00210-020-02042-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/13/2020] [Indexed: 01/01/2023]
|
5
|
Abás S, Rodríguez-Arévalo S, Bagán A, Griñán-Ferré C, Vasilopoulou F, Brocos-Mosquera I, Muguruza C, Pérez B, Molins E, Luque FJ, Pérez-Lozano P, de Jonghe S, Daelemans D, Naesens L, Brea J, Loza MI, Hernández-Hernández E, García-Sevilla JA, García-Fuster MJ, Radan M, Djikic T, Nikolic K, Pallàs M, Callado LF, Escolano C. Bicyclic α-Iminophosphonates as High Affinity Imidazoline I2 Receptor Ligands for Alzheimer’s Disease. J Med Chem 2020; 63:3610-3633. [DOI: 10.1021/acs.jmedchem.9b02080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sònia Abás
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sergio Rodríguez-Arévalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Foteini Vasilopoulou
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Iria Brocos-Mosquera
- Department of Pharmacology, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Carolina Muguruza
- Department of Pharmacology, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, E-08193 Barcelona, Spain
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, E-08193 Cerdanyola, Spain
| | - F. Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, E-08921 Santa Coloma de Gramanet, Spain
| | - Pilar Pérez-Lozano
- Unit of Pharmaceutical Technology, Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Steven de Jonghe
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Lieve Naesens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - José Brea
- Innopharma screening platform, BioFarma research group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Isabel Loza
- Innopharma screening platform, BioFarma research group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elena Hernández-Hernández
- IUNICS University of the Balearic Islands (UIB), and Health Research Institute of the Balearic Islands (IdISBa), Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Jesús A. García-Sevilla
- IUNICS University of the Balearic Islands (UIB), and Health Research Institute of the Balearic Islands (IdISBa), Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - M. Julia García-Fuster
- IUNICS University of the Balearic Islands (UIB), and Health Research Institute of the Balearic Islands (IdISBa), Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Milica Radan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Teodora Djikic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Mercè Pallàs
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Luis F. Callado
- Department of Pharmacology, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
6
|
Fouda MA, El-Sayed SS, Abdel-Rahman AA. Restoration of Rostral Ventrolateral Medulla Cystathionine- γ Lyase Activity Underlies Moxonidine-Evoked Neuroprotection and Sympathoinhibition in Diabetic Rats. J Pharmacol Exp Ther 2017; 364:170-178. [PMID: 29133386 DOI: 10.1124/jpet.117.243865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
We recently demonstrated a fundamental role for cystathionine-γ lyase (CSE)-derived hydrogen sulfide (H2S) in the cardioprotective effect of the centrally acting drug moxonidine in diabetic rats. Whether a downregulated CSE/H2S system in the rostral ventrolateral medulla (RVLM) underlies neuronal oxidative stress and sympathoexcitation in diabetes has not been investigated. Along with addressing this question, we tested the hypothesis that moxonidine prevents the diabetes-evoked neurochemical effects by restoring CSE/H2S function within its major site of action, the RVLM. Ex vivo studies were performed on RVLM tissues of streptozotocin (55 mg/kg, i.p.) diabetic rats treated daily for 3 weeks with moxonidine (2 or 6 mg/kg; gavage), H2S donor sodium hydrosulfide (NaHS) (3.4 mg/kg, i.p.), CSE inhibitor DL-propargylglycine (DLP) (37.5 mg/kg, i.p.), a combination of DLP with moxonidine, or their vehicle. Moxonidine alleviated RVLM oxidative stress, neuronal injury, and increased tyrosine hydroxylase immunoreactivity (sympathoexcitation) by restoring CSE expression/activity as well as heme oxygenase-1 (HO-1) expression. A pivotal role for H2S in moxonidine-evoked neuroprotection is supported by the following: 1) NaHS replicated the moxonidine-evoked neuroprotection, and the restoration of RVLM HO-1 expression in diabetic rats; and 2) DLP abolished moxonidine-evoked neuroprotection in diabetic rats, and caused RVLM neurotoxicity, reminiscent of a diabetes-evoked neuronal phenotype, in healthy rats. These findings suggest a novel role for RVLM CSE/H2S/HO-1 in moxonidine-evoked neuroprotection and sympathoinhibition, and as a therapeutic target for developing new drugs for alleviating diabetes-evoked RVLM neurotoxicity and cardiovascular anomalies.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Shaimaa S El-Sayed
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
7
|
Effects of I 2 -imidazoline receptor (IR) alkylating BU99006 in the mouse brain: Upregulation of nischarin/I 1 -IR and μ-opioid receptor proteins and modulation of associated signalling pathways. Neurochem Int 2017; 108:169-176. [DOI: 10.1016/j.neuint.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
|
8
|
Abás S, Erdozain AM, Keller B, Rodríguez-Arévalo S, Callado LF, García-Sevilla JA, Escolano C. Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I 2 Receptor Ligands. ACS Chem Neurosci 2017; 8:737-742. [PMID: 28029766 DOI: 10.1021/acschemneuro.6b00426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The imidazoline I2 receptors (I2-IRs) are widely distributed in the brain, and I2-IR ligands may have therapeutic potential as neuroprotective agents. Since structural data for I2-IR remains unknown, the discovery of selective I2-IR ligands devoid of α2-adrenoceptor (α2-AR) affinity is likely to provide valuable tools in defining the pharmacological characterization of these receptors. We report the pharmacological characterization of a new family of (2-imidazolin-4-yl)phosphonates. Radioligand binding studies showed that they displayed a higher affinity for I2-IRs than idazoxan, and high I2/α2 selectivity. In vivo studies in mice showed that acute treatments with 1b and 2c significantly increased p-FADD/FADD ratio (an index of cell survival) in the hippocampus when compared with vehicle-treated controls. Additionally, acute and repeated treatments with 2c, but not with 1b, markedly reduced hippocampal p35 cleavage into neurotoxic p25. The present results indicate a neuroprotective potential of (2-imidazolin-4-yl)phosphonates acting at I2-IRs.
Collapse
Affiliation(s)
- Sònia Abás
- Laboratory
of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology,
Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences,
and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Amaia M. Erdozain
- Department
of Pharmacology, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Salud Mental, CIBERSAM
| | - Benjamin Keller
- Laboratory
of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands (UIB), Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Sergio Rodríguez-Arévalo
- Laboratory
of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology,
Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences,
and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Luis F. Callado
- Department
of Pharmacology, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Salud Mental, CIBERSAM
| | - Jesús A. García-Sevilla
- Laboratory
of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands (UIB), Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Carmen Escolano
- Laboratory
of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology,
Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences,
and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
9
|
Abstract
Since first introduced more than two decades ago, the research in imidazoline I2 receptors has been steadily increasing. This review provides an update on the current status of I2 receptor pharmacology. Imidazoline I2 receptors or I2 binding sites refer to several (at least four) different proteins that bind to [3H]-idazoxan and [3H]-2-BFI with high affinity. The molecular identities of the proteins remain elusive. One of the proteins (45kD) seems to be consistent with the identity of brain creatine kinase. The biological functions of I2 receptors have been primarily unveiled by the studies of selective I2 receptor ligands. Accumulating evidence suggests that I2 receptor ligands are effective analgesics for persistent and chronic painful conditions such as inflammatory, neuropathic and postoperative pain. One selective I2 receptor ligand, CR4056, has been advanced to phase II clinical trial with the therapeutic indication of chronic inflammatory pain (osteoarthritis). The expansion to the treatment of other chronic pain conditions should be expected if CR4056 could eventually be approved as a new drug. I2 receptor ligands also demonstrate robust discriminative stimulus activity and induce a characteristic discriminative cue in animals. Biochemical and preclinical in vivo investigations also suggest that I2 receptor ligands have neuroprotective activity and modulate body temperature. The emerging discrepancies of a range of purported selective I2 receptor ligands suggest different pharmacological effects mediated by discrete I2 receptor components which likely attribute to the I2 receptor-related proteins. It is proposed that the I2 receptors represent an emerging drug target for the treatment of neurological disorders such as pain and stroke, and deserve more research attention to translate preclinical findings to pharmacotherapies.
Collapse
Affiliation(s)
- Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|