1
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
2
|
Liu ZSJ, Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Swinton C, Kim JH, Hernández D, Kidnapillai S, Gray L, Berk M, Dean OM, Walder K. The potential of baicalin to enhance neuroprotection and mitochondrial function in a human neuronal cell model. Mol Psychiatry 2024; 29:2487-2495. [PMID: 38503930 DOI: 10.1038/s41380-024-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Baicalin is a flavone glycoside derived from flowering plants belonging to the Scutellaria genus. Previous studies have reported baicalin's anti-inflammatory and neuroprotective properties in rodent models, indicating the potential of baicalin in neuropsychiatric disorders where alterations in numerous processes are observed. However, the extent of baicalin's therapeutic effects remains undetermined in a human cell model, more specifically, neuronal cells to mimic the brain environment in vitro. As a proof of concept, we treated C8-B4 cells (murine cell model) with three different doses of baicalin (0.1, 1 and 5 μM) and vehicle control (DMSO) for 24 h after liposaccharide-induced inflammation and measured the levels of TNF-α in the medium by ELISA. NT2-N cells (human neuronal-like cell model) underwent identical baicalin treatment, followed by RNA extraction, genome-wide mRNA expression profiles and gene set enrichment analysis (GSEA). We also performed neurite outgrowth assays and mitochondrial flux bioanalysis (Seahorse) in NT2-N cells. We found that in C8-B4 cells, baicalin at ≥ 1 μM exhibited anti-inflammatory effects, lowering TNF-α levels in the cell culture media. In NT2-N cells, baicalin positively affected neurite outgrowth and transcriptionally up-regulated genes in the tricarboxylic acid cycle and the glycolysis pathway. Similarly, Seahorse analysis showed increased oxygen consumption rate in baicalin-treated NT2-N cells, an indicator of enhanced mitochondrial function. Together, our findings have confirmed the neuroprotective and mitochondria enhancing effects of baicalin in human-neuronal like cells. Given the increased prominence of mitochondrial mechanisms in diverse neuropsychiatric disorders and the paucity of mitochondrial therapeutics, this suggests the potential therapeutic application of baicalin in human neuropsychiatric disorders where these processes are altered.
Collapse
Affiliation(s)
- Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia.
| | - Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Courtney Swinton
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Damián Hernández
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Laura Gray
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| |
Collapse
|
3
|
Restaino AC, Walz A, Barclay SM, Fettig RR, Vermeer PD. Tumor-associated genetic amplifications impact extracellular vesicle miRNA cargo and their recruitment of nerves in head and neck cancer. FASEB J 2024; 38:e23803. [PMID: 38963404 PMCID: PMC11262563 DOI: 10.1096/fj.202400625rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Cancer neuroscience is an emerging field of cancer biology focused on defining the interactions and relationships between the nervous system, developing malignancies, and their environments. Our previous work demonstrates that small extracellular vesicles (sEVs) released by head and neck squamous cell carcinomas (HNSCCs) recruit loco-regional nerves to the tumor. sEVs contain a diverse collection of biological cargo, including microRNAs (miRNAs). Here, we asked whether two genes commonly amplified in HNSCC, CCND1, and PIK3CA, impact the sEV miRNA cargo and, subsequently, sEV-mediated tumor innervation. To test this, we individually overexpressed these genes in a syngeneic murine HNSCC cell line, purified their sEVs, and tested their neurite outgrowth activity on dorsal root ganglia (DRG) neurons in vitro. sEVs purified from Ccnd1-overexpressing cells significantly increased neurite outgrowth of DRG compared to sEVs from parental or Pik3ca over-expressing cells. When implanted into C57BL/6 mice, Ccnd1 over-expressing tumor cells promoted significantly more tumor innervation in vivo. qPCR analysis of sEVs shows that increased expression of Ccnd1 altered the packaging of miRNAs (miR-15-5p, miR-17-5p, and miR-21-5p), many of which target transcripts important in regulating axonogenesis. These data indicate that genetic amplifications harbored by malignancies impose changes in sEV miRNA cargo, which can influence tumorc innervation.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Sarah M. Barclay
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Robin R. Fettig
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| |
Collapse
|
4
|
Tsai KW, Yang YF, Wang LJ, Pan CC, Chang CH, Chiang YC, Wang TY, Lu RB, Lee SY. Correlation of potential diagnostic biomarkers (circulating miRNA and protein) of bipolar II disorder. J Psychiatr Res 2024; 172:254-260. [PMID: 38412788 DOI: 10.1016/j.jpsychires.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES We previously identified certain peripheral biomarkers of bipolar II disorder (BD-II) including circulating miRNAs (miR-7-5p, miR-142-3p, miR-221-5p, and miR-370-3p) and proteins (Matrix metallopeptidase 9 (MMP9), phenylalanyl-tRNA synthetase subunit beta (FARSB), peroxiredoxin 2 (PRDX2), carbonic anhydrase 1 (CA-1), and proprotein convertase subtilisin/kexin type 9 (PCSK9)). We try to explore the connection between these biomarkers. METHODS We explored correlations between the peripheral levels of above circulating miRNAs and proteins in our previously collected BD-II (N = 96) patients and control (N = 115) groups. We further searched TargetScan and BioGrid websites to identify direct and indirect interactions between these protein-coding genes and circulating miRNAs. RESULTS In the BD-II group, we identified significant correlations between the miR-221-5p and CA-1 (rho = -0.323, P = 0.001), FARSB (rho = 0.251, P = 0.014), MMP-9 (rho = 0.313, P = 0.002) and PCSK9 (rho = 0.252, P = 0.014). The miR-370-3p also significantly correlated with FARSB expression (rho = 0.330, P = 0.001) and PCSK9 expression (rho = 0.221, P = 0.031) in the BD-II group. Our findings were in line with the modulating axis identified from TargetScan and BioGrid, miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9, suggesting their association with BD-II. CONCLUSION Our result supported that peripheral candidate miRNA and protein biomarkers may interact in BD-II. We concluded that miR-221-5p/CA-1/MMP9 and miR-370-3p/FARSB/PCSK9 axes might act a critical role in the pathomechanism of BD-II.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chuan Pan
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Yang G, Ullah HMA, Parker E, Gorsi B, Libowitz M, Maguire C, King JB, Coon H, Lopez-Larson M, Anderson JS, Yandell M, Shcheglovitov A. Neurite outgrowth deficits caused by rare PLXNB1 mutation in pediatric bipolar disorder. Mol Psychiatry 2023; 28:2525-2539. [PMID: 37032361 DOI: 10.1038/s41380-023-02035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Pediatric bipolar disorder (PBD) is a severe mood dysregulation condition that affects 0.5-1% of children and teens in the United States. It is associated with recurrent episodes of mania and depression and an increased risk of suicidality. However, the genetics and neuropathology of PBD are largely unknown. Here, we used a combinatorial family-based approach to characterize cellular, molecular, genetic, and network-level deficits associated with PBD. We recruited a PBD patient and three unaffected family members from a family with a history of psychiatric illnesses. Using resting-state functional magnetic resonance imaging (rs-fMRI), we detected altered resting-state functional connectivity in the patient as compared to an unaffected sibling. Using transcriptomic profiling of patient and control induced pluripotent stem cell (iPSC)-derived telencephalic organoids, we found aberrant signaling in the molecular pathways related to neurite outgrowth. We corroborated the presence of neurite outgrowth deficits in patient iPSC-derived cortical neurons and identified a rare homozygous loss-of-function PLXNB1 variant (c.1360C>C; p.Ser454Arg) responsible for the deficits in the patient. Expression of wild-type PLXNB1, but not the variant, rescued neurite outgrowth in patient neurons, and expression of the variant caused the neurite outgrowth deficits in cortical neurons from PlxnB1 knockout mice. These results indicate that dysregulated PLXNB1 signaling may contribute to an increased risk of PBD and other mood dysregulation-related disorders by disrupting neurite outgrowth and functional brain connectivity. Overall, this study established and validated a novel family-based combinatorial approach for studying cellular and molecular deficits in psychiatric disorders and identified dysfunctional PLXNB1 signaling and neurite outgrowth as potential risk factors for PBD.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Ethan Parker
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Bushra Gorsi
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, USA
| | - Mark Libowitz
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Colin Maguire
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, USA
| | - Jace B King
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Melissa Lopez-Larson
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Lopez-Larson and Associates, Park City, UT, USA
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Alex Shcheglovitov
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, USA.
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Aamodt CM, White SA. Inhibition of miR-128 Enhances Vocal Sequence Organization in Juvenile Songbirds. Front Behav Neurosci 2022; 16:833383. [PMID: 35283744 PMCID: PMC8914539 DOI: 10.3389/fnbeh.2022.833383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying learned vocal communication are not well characterized. This is a major barrier for developing treatments for conditions affecting social communication, such as autism spectrum disorder (ASD). Our group previously generated an activity-dependent gene expression network in the striatopallidal song control nucleus, Area X, in adult zebra finches to identify master regulators of learned vocal behavior. This dataset revealed that the two host genes for microRNA-128, ARPP21 and R3HDM1, are among the top genes whose expression correlates to how much birds sing. Here we examined whether miR-128 itself is behaviorally regulated in Area X and found that its levels decline with singing. We hypothesized that reducing miR-128 during the critical period for vocal plasticity would enhance vocal learning. To test this, we bilaterally injected an antisense miR-128 construct (AS miR-128) or a control scrambled sequence into Area X at post-hatch day 30 (30 d) using sibling-matched experimental and control pupils. The juveniles were then returned to their home cage and raised with their tutors. Strikingly, inhibition of miR-128 in young birds enhanced the organization of learned vocal sequences. Tutor and pupil stereotypy scores were positively correlated, though the correlation was stronger between tutors and control pupils compared to tutors and AS miR-128 pupils. This difference was driven by AS miR-128 pupils achieving higher stereotypy scores despite their tutors’ lower syntax scores. AS miR-128 birds with tutors on the higher end of the stereotypy spectrum were more likely to produce songs with faster tempos relative to sibling controls. Our results suggest that low levels of miR-128 facilitate vocal sequence stereotypy. By analogy, reducing miR-128 could enhance the capacity to learn to speak in patients with non-verbal ASD. To our knowledge, this study is the first to directly link miR-128 to learned vocal communication and provides support for miR-128 as a potential therapeutic target for ASD.
Collapse
Affiliation(s)
- Caitlin M. Aamodt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, United States
- *Correspondence: Caitlin M. Aamodt,
| | - Stephanie A. White
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Stephanie A. White,
| |
Collapse
|
7
|
Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Mol Psychiatry 2021; 26:2440-2456. [PMID: 33398088 PMCID: PMC9129103 DOI: 10.1038/s41380-020-00981-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.
Collapse
|
8
|
A Comprehensive Review on the Role of Non-Coding RNAs in the Pathophysiology of Bipolar Disorder. Int J Mol Sci 2021; 22:ijms22105156. [PMID: 34068138 PMCID: PMC8152970 DOI: 10.3390/ijms22105156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Aim: Bipolar disorder is a multifactorial disorder being linked with dysregulation of several genes. Among the recently acknowledged factors in the pathophysiology of bipolar disorder are non-coding RNAs (ncRNAs). Methods: We searched PubMed and Google Scholar databases to find studies that assessed the expression profile of miRNAs, lncRNAs and circRNAs in bipolar disorder. Results: Dysregulated ncRNAs in bipolar patients have been enriched in several neuron-related pathways such as GABAergic and glutamatergic synapses, morphine addiction pathway and redox modulation. Conclusion: Altered expression of these transcripts in bipolar disorder provides clues for identification of the pathogenesis of this disorder and design of targeted therapies for the treatment of patients.
Collapse
|
9
|
Guo XD, He XG, Yang FG, Liu MQ, Wang YD, Zhu DX, Zhang GZ, Ma ZJ, Kang XW. Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med 2021; 16:465-476. [PMID: 33955796 DOI: 10.2217/rme-2020-0125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is a severe CNS injury that results in abnormalities in, or loss of, motor, sensory and autonomic nervous function. miRNAs belong to a new class of noncoding RNA that regulates the production of proteins and biological function of cells by silencing translation or interfering with the expression of target mRNAs. Following SCI, miRNAs related to oxidative stress, inflammation, autophagy, apoptosis and many other secondary injuries are differentially expressed, and these miRNAs play an important role in the progression of secondary injuries after SCI. The purpose of this review is to elucidate the differential expression and functional roles of miRNAs after SCI, thus providing references for further research on miRNAs in SCI.
Collapse
Affiliation(s)
- Xu-Dong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Feng-Guang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Ming-Qiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Yi-Dian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Da-Xue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China
| |
Collapse
|
10
|
Crawley O, Conde-Dusman MJ, Pérez-Otaño I. GluN3A NMDA receptor subunits: more enigmatic than ever? J Physiol 2021; 600:261-276. [PMID: 33942912 DOI: 10.1113/jp280879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Non-conventional N-methyl-d-aspartate receptors (NMDARs) containing GluN3A subunits have unique biophysical, signalling and localization properties within the NMDAR family, and are typically thought to counterbalance functions of classical NMDARs made up of GluN1/2 subunits. Beyond their recognized roles in synapse refinement during postnatal development, recent evidence is building a wider perspective for GluN3A functions. Here we draw particular attention to the latest developments for this multifaceted and unusual subunit: from finely timed expression patterns that correlate with plasticity windows in developing brains or functional hierarchies in the mature brain to new insight onto presynaptic GluN3A-NMDARs, excitatory glycine receptors and behavioural impacts, alongside further connections to a range of brain disorders.
Collapse
Affiliation(s)
- Oliver Crawley
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - María J Conde-Dusman
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - Isabel Pérez-Otaño
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| |
Collapse
|
11
|
Meldolesi J. Alternative Splicing by NOVA Factors: From Gene Expression to Cell Physiology and Pathology. Int J Mol Sci 2020; 21:ijms21113941. [PMID: 32486302 PMCID: PMC7312376 DOI: 10.3390/ijms21113941] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
NOVA1 and NOVA2, the two members of the NOVA family of alternative splicing factors, bind YCAY clusters of pre-mRNAs and assemble spliceosomes to induce the maintenance/removal of introns and exons, thus governing the development of mRNAs. Members of other splicing families operate analogously. Activity of NOVAs accounts for up to 700 alternative splicing events per cell, taking place both in the nucleus (co-transcription of mRNAs) and in the cytoplasm. Brain neurons express high levels of NOVAs, with NOVA1 predominant in cerebellum and spinal cord, NOVA2 in the cortex. Among brain physiological processes NOVAs play critical roles in axon pathfinding and spreading, structure and function of synapses, as well as the regulation of surface receptors and voltage-gated channels. In pathology, NOVAs contribute to neurodegenerative diseases and epilepsy. In vessel endothelial cells, NOVA2 is essential for angiogenesis, while in adipocytes, NOVA1 contributes to regulation of thermogenesis and obesity. In many cancers NOVA1 and also NOVA2, by interacting with specific miRNAs and by additional mechanisms, activate oncogenic roles promoting cell proliferation, colony formation, migration, and invasion. In conclusion, NOVAs regulate cell functions of physiological and pathological nature. Single cell identification and distinction, and new therapies addressed to NOVA targets might be developed in the near future.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, San Raffaele Institute and San Raffaele University, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
12
|
A Potential Biomarker MicroRNAs in the Diagnosis of Some Psychiatric and Neurodegenerative Disorders. JOURNAL OF CONTEMPORARY MEDICINE 2020. [DOI: 10.16899/jcm.773570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|