1
|
Prevete E, Theunissen EL, Kuypers KPC, Paci R, Reckweg JT, Cavarra M, Toennes SW, Ritscher S, Bersani G, Corazza O, Pasquini M, Ramaekers JG. An exploratory study of the safety profile and neurocognitive function after single doses of mitragynine in humans. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06734-2. [PMID: 39724441 DOI: 10.1007/s00213-024-06734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
RATIONALE Despite the growing scientific interest on mitragynine, the primary alkaloid in kratom (Mitragyna Speciosa), there is a lack of clinical trials in humans. OBJECTIVES This phase 1 study aimed to evaluate mitragynine's safety profile and acute effects on subjective drug experience, neurocognition, and pain tolerance. METHODS A placebo-controlled, single-blind, within-subjects study was conducted in two parts. In part A, eight healthy human volunteers received placebo and three doses of mitragynine (5, 10, and 20 mg) in a sequential dosing scheme, on separate days. In part B, a second group of seven volunteers received placebo and 40 mg of mitragynine. Vital signs, subjective drug experience, neurocognitive function, and pain tolerance were measured at regular intervals for 7 h after administration. RESULTS Overall, mitragynine did not affect most of the outcome measures at any dose. Yet, the lowest dose (5 mg) of mitragynine increased subjective ratings of arousal and attention, accuracy in a sustained attention task, and motor inhibition. The highest dose (40 mg) of mitragynine increased subjective ratings of amnesia and produced mild psychopathological symptoms. Mitragynine did not significantly affect vital signs, and only mild, transient side effects were reported. CONCLUSION The present study suggests that low doses (5-10 mg) of mitragynine may cause subjective feelings of stimulation and enhance attention, while the highest dose (40 mg) may cause inhibitory feelings of amnesia and distress. Mitragynine doses up to 40 mg were well tolerated in this group.
Collapse
Affiliation(s)
- Elisabeth Prevete
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Riccardo Paci
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Mauro Cavarra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Sabrina Ritscher
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Giuseppe Bersani
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Ornella Corazza
- Department of Clinical, Pharmacological and Biological Sciences, College Lane, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Department of Psychology and Cognitive Science, University of Trento, Corso Bettini, 84, Rovereto, 38068, Italy
| | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
2
|
McCallum RT, Thériault RK, Manduca JD, Russell ISB, Culmer AM, Doost JS, Martino TA, Perreault ML. Nrf2 activation rescues stress-induced depression-like behaviour and inflammatory responses in male but not female rats. Biol Sex Differ 2024; 15:16. [PMID: 38350966 PMCID: PMC10863247 DOI: 10.1186/s13293-024-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a recurring affective disorder that is two times more prevalent in females than males. Evidence supports immune system dysfunction as a major contributing factor to MDD, notably in a sexually dimorphic manner. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of antioxidant signalling during inflammation, is dysregulated in many chronic inflammatory disorders; however, its role in depression and the associated sex differences have yet to be explored. Here, we investigated the sex-specific antidepressant and immunomodulatory effects of the potent Nrf2 activator dimethyl fumarate (DMF), as well as the associated gene expression profiles. METHODS Male and female rats were treated with vehicle or DMF (25 mg/kg) whilst subjected to 8 weeks of chronic unpredictable stress. The effect of DMF treatment on stress-induced depression- and anxiety-like behaviours, as well as deficits in recognition and spatial learning and memory were then assessed. Sex differences in hippocampal (HIP) microglial activation and gene expression response were also evaluated. RESULTS DMF treatment during stress exposure had antidepressant effects in male but not female rats, with no anxiolytic effects in either sex. Recognition learning and memory and spatial learning and memory were impaired in chronically stressed males and females, respectively, and DMF treatment rescued these deficits. DMF treatment also prevented stress-induced HIP microglial activation in males. Conversely, females displayed no HIP microglial activation associated with stress exposure. Last, chronic stress elicited sex-specific alterations in HIP gene expression, many of which were normalized in animals treated with DMF. Of note, most of the differentially expressed genes in males normalized by DMF were related to antioxidant, inflammatory or immune responses. CONCLUSIONS Collectively, these findings support a greater role of immune processes in males than females in a rodent model of depression. This suggests that pharmacotherapies that target Nrf2 have the potential to be an effective sex-specific treatment for depression.
Collapse
Affiliation(s)
- Ryan T McCallum
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Rachel-Karson Thériault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Joshua D Manduca
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Isaac S B Russell
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Angel M Culmer
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Tami A Martino
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Dehdar K, Salimi M, Tabasi F, Dehghan S, Sumiyoshi A, Garousi M, Jamaati H, Javan M, Reza Raoufy M. Allergen induces depression-like behavior in association with altered prefrontal-hippocampal circuit in male rats. Neuroscience 2023:S0306-4522(23)00254-3. [PMID: 37286161 DOI: 10.1016/j.neuroscience.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Allergic asthma is a common chronic inflammatory condition associated with psychiatric comorbidities. Notably depression, correlated with adverse outcomes in asthmatic patients. Peripheral inflammation's role in depression has been shown previously. However, evidence regarding the effects of allergic asthma on the medial prefrontal cortex (mPFC)-ventral hippocampus (vHipp) interactions, an important neurocircuitry in affective regulation, is yet to be demonstrated. Herein, we investigated the effects of allergen exposure in sensitized rats on the immunoreactivity of glial cells, depression-like behavior, brain regions volume, as well as activity and connectivity of the mPFC-vHipp circuit. We found that allergen-induced depressive-like behavior was associated with more activated microglia and astrocytes in mPFC and vHipp, as well as reduced hippocampus volume. Intriguingly, depressive-like behavior was negatively correlated with mPFC and hippocampus volumes in the allergen-exposed group. Moreover, mPFC and vHipp activity were altered in asthmatic animals. Allergen disrupted the strength and direction of functional connectivity in the mPFC-vHipp circuit so that, unlike normal conditions, mPFC causes and modulates vHipp activity. Our results provide new insight into the underlying mechanism of allergic inflammation-induced psychiatric disorders, aiming to develop new interventions and therapeutic approaches for improving asthma complications.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhad Tabasi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan; National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
| | - Mani Garousi
- Department of Electrical and Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Prevete E, Kuypers KPC, Theunissen EL, Corazza O, Bersani G, Ramaekers JG. A systematic review of (pre)clinical studies on the therapeutic potential and safety profile of kratom in humans. Hum Psychopharmacol 2022; 37:e2805. [PMID: 34309900 PMCID: PMC9285932 DOI: 10.1002/hup.2805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Kratom (Mitragyna speciosa) is a tropical plant traditionally used as an ethnomedicinal remedy for several conditions in South East Asia. Despite the increased interest in its therapeutical benefits in Western countries, little scientific evidence is available to support such claims, and existing data remain limited to kratom's chronic consumption. OBJECTIVE Our study aims to investigate (pre)clinical evidence on the efficacy of kratom as a therapeutic aid and its safety profile in humans. METHODS A systematic literature search using PubMed and the Medline database was conducted between April and November 2020. RESULTS Both preclinical (N = 57) and clinical (N = 18) studies emerged from our search. Preclinical data indicated a therapeutic value in terms of acute/chronic pain (N = 23), morphine/ethanol withdrawal, and dependence (N = 14), among other medical conditions (N = 26). Clinical data included interventional studies (N = 2) reporting reduced pain sensitivity, and observational studies (N = 9) describing the association between kratom's chronic (daily/frequent) use and safety issues, in terms of health consequences (e.g., learning impairment, high cholesterol level, dependence/withdrawal). CONCLUSIONS Although the initial (pre)clinical evidence on kratom's therapeutic potential and its safety profile in humans is encouraging, further validation in large, controlled clinical trials is required.
Collapse
Affiliation(s)
- Elisabeth Prevete
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Kim Paula Colette Kuypers
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Eef Lien Theunissen
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Ornella Corazza
- Department of Clinical, Pharmacological and Biological SciencesCollege LaneUniversity of HertfordshireHatfieldUnited Kingdom
- Department of Medico‐Surgical Sciences and BiotechnologiesFaculty of Pharmacy and MedicineSapienza University of RomeLatinaItaly
| | - Giuseppe Bersani
- Department of Medico‐Surgical Sciences and BiotechnologiesFaculty of Pharmacy and MedicineSapienza University of RomeLatinaItaly
| | - Johannes Gerardus Ramaekers
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
5
|
Buckhalter S, Soubeyrand E, Ferrone SAE, Rasmussen DJ, Manduca JD, Al-Abdul-Wahid MS, Frie JA, Khokhar JY, Akhtar TA, Perreault ML. The Antidepressant-Like and Analgesic Effects of Kratom Alkaloids are accompanied by Changes in Low Frequency Oscillations but not ΔFosB Accumulation. Front Pharmacol 2021; 12:696461. [PMID: 34413776 PMCID: PMC8369573 DOI: 10.3389/fphar.2021.696461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Mitragyna speciosa (“kratom”), employed as a traditional medicine to improve mood and relieve pain, has shown increased use in Europe and North America. Here, the dose-dependent effects of a purified alkaloid kratom extract on neuronal oscillatory systems function, analgesia, and antidepressant-like behaviour were evaluated and kratom-induced changes in ΔFosB expression determined. Male rats were administered a low or high dose of kratom (containing 0.5 or 1 mg/kg of mitragynine, respectively) for seven days. Acute or repeated low dose kratom suppressed ventral tegmental area (VTA) theta oscillatory power whereas acute or repeated high dose kratom increased delta power, and reduced theta power, in the nucleus accumbens (NAc), prefrontal cortex (PFC), cingulate cortex (Cg) and VTA. The repeated administration of low dose kratom additionally elevated delta power in PFC, decreased theta power in NAc and PFC, and suppressed beta and low gamma power in Cg. Suppressed high gamma power in NAc and PFC was seen selectively following repeated high dose kratom. Both doses of kratom elevated NAc-PFC, VTA-NAc, and VTA-Cg coherence. Low dose kratom had antidepressant-like properties whereas both doses produced analgesia. No kratom-induced changes in ΔFosB expression were evident. These results support a role for kratom as having both antidepressant and analgesic properties that are accompanied by specific changes in neuronal circuit function. However, the absence of drug-induced changes in ΔFosB expression suggest that the drug may circumvent this cellular signaling pathway, a pathway known for its significant role in addiction.
Collapse
Affiliation(s)
- Shoshana Buckhalter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Eric Soubeyrand
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Sarah A E Ferrone
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Duncan J Rasmussen
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Jude A Frie
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Halim SA, Low JH, Chee YC, Alias MR. Seizures among young adults consuming kratom beverages in Malaysia: A case series. Epilepsy Behav 2021; 121:108057. [PMID: 34052638 DOI: 10.1016/j.yebeh.2021.108057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
We report a case series of young adults who were admitted to hospital with seizures after regular kratom beverage consumption. This study aimed to determine kratom consumption habits and seizure characteristics and to explore whether chronic kratom ingestion without concomitant drug abuse leads to recurrent seizure or epilepsy. All patients underwent blood investigations, a brain computed tomography (CT) scan, electroencephalography, and urine testing for mitragynine and drug toxicology. Eleven participants who had a positive urine mitragynine test were included in the study. The longest duration of kratom consumption was 84 months: - most drank more than eight times per month (>200 mL/drink). Seizure developed within 10 minutes or up to 72 hours post-ingestion. Seizure occurred one to three times per year in most cases. Four patients had a focal to bilateral tonic-clonic seizure whereas the remaining participants had a generalized tonic-clonic seizure. Four patients mixed kratom with diphenhydramine syrup, and one patient took methamphetamine. Two patients had positive urine results for recreational drugs (opioid and amphetamine). This study provided indirect evidence that chronic kratom use with or without concomitant drug abuse can cause recurrent seizures in susceptible individuals, which may progress to epilepsy or require antiepileptic medication.
Collapse
Affiliation(s)
- Sanihah Abdul Halim
- Department of Internal Medicine (Neurology), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| | - Jen Hou Low
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Yong Chuan Chee
- Department of Internal Medicine (Neurology), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Muhamad Ridzuan Alias
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|