1
|
Zhang Y, Zhang R, Hong H, Wang S, Xie L, Cui L, Li J, Hong L, Li K, Zeng Q, Zhou Y, Zhang M, Sun J, Huang P. An Investigation of Cerebral Vascular Functional Properties in Middle-to-Old Age Community People With High Vascular Risk Profiles. J Magn Reson Imaging 2024; 60:2020-2029. [PMID: 38329184 DOI: 10.1002/jmri.29278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Vascular degeneration is an important cause of brain damage in aging. Assessing the functional properties of the cerebral vascular system may aid early diagnosis and prevention. PURPOSE To investigate the relationships between potential vascular functional markers and vascular risks, brain parenchymal damage, and cognition. STUDY TYPE Retrospective. SUBJECTS Two hundred two general community subjects (42-80 years, males/females: 127/75). FIELD STRENGTH/SEQUENCE 3 T, spin echo T1W/T2W/FLAIR, resting-state functional MRI with an echo-planar sequence (rsfMRI), pseudo-continuous arterial spin labeling (pCASL) with a three-dimensional gradient-spin echo sequence. ASSESSMENT Cerebral blood flow (CBF) in gray matter calculated using pCASL, blood transit times calculated using rsfMRI, and the SD of internal carotid arteries signal (ICAstd) calculated using rsfMRI; visual assessment for lacunes; quantification of white matter hyperintensity volume; permutation test for quality control; collection of demographic and clinical data, Montreal Cognitive Assessment, Mini-Mental State Examination. STATISTICAL TESTS Kolmogorov-Smirnov test; Spearman rank correlation analysis; Multivariable linear regression analysis controlling for covariates; The level of statistical significance was set at P < 0.05. RESULTS Age was negatively associated with ICAstd (β = -0.180). Diabetes was associated with longer blood transit time from large arteries to capillary bed (β = 0.185, adjusted for age, sex, and intracranial volume). Larger ICAstd was associated with less presence of lacunes (odds ratio: 0.418, adjusted for age and sex). Higher gray matter CBF (β = 0.154) and larger ICAstd (β = 0.136) were associated with better MoCA scores (adjusted for age, sex, and education). DATA CONCLUSION Prolonged blood transit time, decreased ICAstd, and diminished CBF were associated with vascular dysfunction and cognitive impairment. They may serve as vascular functional markers in future studies. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cui
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Weber RZ, Buil BA, Rentsch NH, Bosworth A, Zhang M, Kisler K, Tackenberg C, Zlokovic BV, Rust R. A molecular brain atlas reveals cellular shifts during the repair phase of stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608971. [PMID: 39229128 PMCID: PMC11370539 DOI: 10.1101/2024.08.21.608971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Allison Bosworth
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
3
|
Chien C, Heine J, Khalil A, Schlenker L, Hartung TJ, Boesl F, Schwichtenberg K, Rust R, Bellmann‐Strobl J, Franke C, Paul F, Finke C. Altered brain perfusion and oxygen levels relate to sleepiness and attention in post-COVID syndrome. Ann Clin Transl Neurol 2024; 11:2016-2029. [PMID: 38874398 PMCID: PMC11330224 DOI: 10.1002/acn3.52121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Persisting neurological symptoms after COVID-19 affect up to 10% of patients and can manifest in fatigue and cognitive complaints. Based on recent evidence, we evaluated whether cerebral hemodynamic changes contribute to post-COVID syndrome (PCS). METHODS Using resting-state functional magnetic resonance imaging, we investigated brain perfusion and oxygen level estimates in 47 patients (44.4 ± 11.6 years; F:M = 38:9) and 47 individually matched healthy control participants. Group differences were calculated using two-sample t-tests. Multivariable linear regression was used for associations of each regional perfusion and oxygen level measure with cognition and sleepiness measures. Exploratory hazard ratios were calculated for each brain metric with clinical measures. RESULTS Patients presented with high levels of fatigue (79%) and daytime sleepiness (45%). We found widespread decreased brain oxygen levels, most evident in the white matter (false discovery rate adjusted-p-value (p-FDR) = 0.038) and cortical grey matter (p-FDR = 0.015). Brain perfusion did not differ between patients and healthy participants. However, delayed patient caudate nucleus perfusion was associated with better executive function (p-FDR = 0.008). Delayed perfusion in the cortical grey matter and hippocampus were associated with a reduced risk of daytime sleepiness (hazard ratio (HR) = 0.07, p = 0.037 and HR = 0.06, p = 0.034). Decreased putamen oxygen levels were associated with a reduced risk of poor cognitive outcome (HR = 0.22, p = 0.019). Meanwhile, lower thalamic oxygen levels were associated with a higher risk of cognitive fatigue (HR = 6.29, p = 0.017). INTERPRETATION Our findings of lower regional brain blood oxygen levels suggest increased cerebral metabolism in PCS, which potentially holds a compensatory function. These hemodynamic changes were related to symptom severity, possibly representing metabolic adaptations.
Collapse
Affiliation(s)
- Claudia Chien
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Josephine Heine
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Ahmed Khalil
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Lars Schlenker
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Tim J. Hartung
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Fabian Boesl
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Katia Schwichtenberg
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Rebekka Rust
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Judith Bellmann‐Strobl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Christiana Franke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Finke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
4
|
Kagialis A, Simos N, Manolitsi K, Vakis A, Simos P, Papadaki E. Functional connectivity-hemodynamic (un)coupling changes in chronic mild brain injury are associated with mental health and neurocognitive indices: a resting state fMRI study. Neuroradiology 2024; 66:985-998. [PMID: 38605104 PMCID: PMC11133187 DOI: 10.1007/s00234-024-03352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE To examine hemodynamic and functional connectivity alterations and their association with neurocognitive and mental health indices in patients with chronic mild traumatic brain injury (mTBI). METHODS Resting-state functional MRI (rs-fMRI) and neuropsychological assessment of 37 patients with chronic mTBI were performed. Intrinsic connectivity contrast (ICC) and time-shift analysis (TSA) of the rs-fMRI data allowed the assessment of regional hemodynamic and functional connectivity disturbances and their coupling (or uncoupling). Thirty-nine healthy age- and gender-matched participants were also examined. RESULTS Patients with chronic mTBI displayed hypoconnectivity in bilateral hippocampi and parahippocampal gyri and increased connectivity in parietal areas (right angular gyrus and left superior parietal lobule (SPL)). Slower perfusion (hemodynamic lag) in the left anterior hippocampus was associated with higher self-reported symptoms of depression (r = - 0.53, p = .0006) and anxiety (r = - 0.484, p = .002), while faster perfusion (hemodynamic lead) in the left SPL was associated with lower semantic fluency (r = - 0.474, p = .002). Finally, functional coupling (high connectivity and hemodynamic lead) in the right anterior cingulate cortex (ACC)) was associated with lower performance on attention and visuomotor coordination (r = - 0.50, p = .001), while dysfunctional coupling (low connectivity and hemodynamic lag) in the left ventral posterior cingulate cortex (PCC) and right SPL was associated with lower scores on immediate passage memory (r = - 0.52, p = .001; r = - 0.53, p = .0006, respectively). Uncoupling in the right extrastriate visual cortex and posterior middle temporal gyrus was negatively associated with cognitive flexibility (r = - 0.50, p = .001). CONCLUSION Hemodynamic and functional connectivity differences, indicating neurovascular (un)coupling, may be linked to mental health and neurocognitive indices in patients with chronic mTBI.
Collapse
Affiliation(s)
- Antonios Kagialis
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, 71003, Crete, Greece
| | - Nicholas Simos
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Katina Manolitsi
- Department of Neurosurgery, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Antonios Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, 71003, Crete, Greece.
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
5
|
Amemiya S, Takao H, Abe O. Resting-State fMRI: Emerging Concepts for Future Clinical Application. J Magn Reson Imaging 2024; 59:1135-1148. [PMID: 37424140 DOI: 10.1002/jmri.28894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) has been developed as a method of investigating spontaneous neural activity. Based on its low-frequency signal synchronization, rsfMRI has made it possible to identify multiple macroscopic structures termed resting-state networks (RSNs) on a single scan of less than 10 minutes. It is easy to implement even in clinical practice, in which assigning tasks to patients can be challenging. These advantages have accelerated the adoption and growth of rsfMRI. Recently, studies on the global rsfMRI signal have attracted increasing attention. Because it primarily arises from physiological events, less attention has hitherto been paid to the global signal than to the local network (i.e., RSN) component. However, the global signal is not a mere nuisance or a subsidiary component. On the contrary, it is quantitatively the dominant component that accounts for most of the variance in the rsfMRI signal throughout the brain and provides rich information on local hemodynamics that can serve as an individual-level diagnostic biomarker. Moreover, spatiotemporal analyses of the global signal have revealed that it is closely and fundamentally associated with the organization of RSNs, thus challenging the basic assumptions made in conventional rsfMRI analyses and views on RSNs. This review introduces new concepts emerging from rsfMRI spatiotemporal analyses focusing on the global signal and discusses how they may contribute to future clinical medicine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Tudor T, Spinazzi EF, Alexander JE, Mandigo GK, Lavine SD, Grinband J, Connolly ES. Progressive microvascular failure in acute ischemic stroke: A systematic review, meta-analysis, and time-course analysis. J Cereb Blood Flow Metab 2024; 44:192-208. [PMID: 38016953 PMCID: PMC10993872 DOI: 10.1177/0271678x231216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/30/2023]
Abstract
This systematic review, meta-analysis, and novel time course analysis examines microvascular failure in the treatment of acute ischemic stroke (AIS) patients undergoing endovascular therapy (EVT) and/or thrombolytic administration for stroke management. A systematic review and meta-analysis following PRIMSA-2020 guidelines was conducted along with a novel curve-of-best fit analysis to elucidate the time-course of microvascular failure. Scopus and PubMed were searched using relevant keywords to identify studies that examine recanalization and reperfusion assessment of AIS patients following large vessel occlusion. Meta-analysis was conducted using a random-effects model. Curve-of-best-fit analysis of microvascular failure rate was performed with a negative exponential model. Twenty-seven studies with 1151 patients were included. Fourteen studies evaluated patients within a standard stroke onset-to-treatment time window (≤6 hours after last known normal) and thirteen studies had an extended time window (>6 hours). Our analysis yields a 22% event rate of microvascular failure following successful recanalization (95% CI: 16-30%). A negative exponential curve modeled a microvascular failure rate asymptote of 28.5% for standard time window studies, with no convergence of the model for extended time window studies. Progressive microvascular failure is a phenomenon that is increasingly identified in clinical studies of AIS patients undergoing revascularization treatment.
Collapse
Affiliation(s)
- Thilan Tudor
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia E Alexander
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace K Mandigo
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Sean D Lavine
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Grinband
- Departments of Psychiatry and Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Schneider SC, Kaczmarz S, Göttler J, Kufer J, Zott B, Priller J, Kallmayer M, Zimmer C, Sorg C, Preibisch C. Stronger influence of systemic than local hemodynamic-vascular factors on resting-state BOLD functional connectivity. Neuroimage 2023; 281:120380. [PMID: 37741595 DOI: 10.1016/j.neuroimage.2023.120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Correlated fluctuations in the blood oxygenation level dependent (BOLD) signal of resting-state functional MRI (i.e., BOLD-functional connectivity, BOLD-FC) reflect a spectrum of neuronal and non-neuronal processes. In particular, there are multiple hemodynamic-vascular influences on BOLD-FC on both systemic (e.g., perfusion delay) and local levels (e.g., neurovascular coupling). While the influence of individual factors has been studied extensively, combined and comparative studies of systemic and local hemodynamic-vascular factors on BOLD-FC are scarce, notably in humans. We employed a multi-modal MRI approach to investigate and compare distinct hemodynamic-vascular processes and their impact on homotopic BOLD-FC in healthy controls and patients with unilateral asymptomatic internal carotid artery stenosis (ICAS). Asymptomatic ICAS is a cerebrovascular disorder, in which neuronal functioning is largely preserved but hemodynamic-vascular processes are impaired, mostly on the side of stenosis. Investigated indicators for local hemodynamic-vascular processes comprise capillary transit time heterogeneity (CTH) and cerebral blood volume (CBV) from dynamic susceptibility contrast (DSC) MRI, and cerebral blood flow (CBF) from pseudo-continuous arterial spin labeling (pCASL). Indicators for systemic processes are time-to-peak (TTP) from DSC MRI and BOLD lags from functional MRI. For each of these parameters, their influence on BOLD-FC was estimated by a comprehensive linear mixed model. Equally across groups, we found that individual mean BOLD-FC, local (CTH, CBV, and CBF) and systemic (TTP and BOLD lag) hemodynamic-vascular factors together explain 40.7% of BOLD-FC variance, with 20% of BOLD-FC variance explained by hemodynamic-vascular factors, with an about two-times larger contribution of systemic versus local factors. We conclude that regional differences in blood supply, i.e., systemic perfusion delays, exert a stronger influence on BOLD-FC than impairments in local neurovascular coupling.
Collapse
Affiliation(s)
- Sebastian C Schneider
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany.
| | - Stephan Kaczmarz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Philips GmbH Market DACH, Hamburg, Germany
| | - Jens Göttler
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Jan Kufer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Benedikt Zott
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Josef Priller
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany
| | - Michael Kallmayer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for vascular surgery, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Claus Zimmer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Christian Sorg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Neurology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
| |
Collapse
|
8
|
Antypa D, Simos NJ, Panou T, Spyridaki E, Kagialis A, Kosteletou E, Kavroulakis E, Mastorodemos V, Papadaki E. Distinct hemodynamic and functional connectivity features of fatigue in clinically isolated syndrome and multiple sclerosis: accounting for the confounding effect of concurrent depression symptoms. Neuroradiology 2023:10.1007/s00234-023-03174-1. [PMID: 37301785 DOI: 10.1007/s00234-023-03174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE This study aims to identify common and distinct hemodynamic and functional connectivity (FC) features for self-rated fatigue and depression symptoms in patients with clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis (RR-MS). METHODS Twenty-four CIS, 29 RR-MS patients, and 39 healthy volunteers were examined using resting-state fMRI (rs-fMRI) to obtain whole-brain maps of (i) hemodynamic response patterns (through time shift analysis), (ii) FC (via intrinsic connectivity contrast maps), and (iii) coupling between hemodynamic response patterns and FC. Each regional map was correlated with fatigue scores, controlling for depression, and with depression scores, controlling for fatigue. RESULTS In CIS patients, the severity of fatigue was associated with accelerated hemodynamic response in the insula, hyperconnectivity of the superior frontal gyrus, and evidence of reduced hemodynamics-FC coupling in the left amygdala. In contrast, depression severity was associated with accelerated hemodynamic response in the right limbic temporal pole, hypoconnectivity of the anterior cingulate gyrus, and increased hemodynamics-FC coupling in the left amygdala. In RR-MS patients, fatigue was associated with accelerated hemodynamic response in the insula and medial superior frontal cortex, increased functional role of the left amygdala, and hypoconnectivity of the dorsal orbitofrontal cortex, while depression symptom severity was linked to delayed hemodynamic response in the medial superior frontal gyrus; hypoconnectivity of the insula, ventromedial thalamus, dorsolateral prefrontal cortex, and posterior cingulate; and decreased hemodynamics-FC coupling of the medial orbitofrontal cortex. CONCLUSION There are distinct FC and hemodynamic responses, as well as different magnitude and topography of hemodynamic connectivity coupling, associated with fatigue and depression in early and later stages of MS.
Collapse
Affiliation(s)
- Despina Antypa
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Nicholas John Simos
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology, Hellas, Heraklion, Crete, Greece
| | - Theodora Panou
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Eirini Spyridaki
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Antonios Kagialis
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Emmanouela Kosteletou
- Institute of Applied Mathematics, Foundation for Research and Technology, Hellas, Heraklion, Crete, Greece
| | - Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Vasileios Mastorodemos
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology, Hellas, Heraklion, Crete, Greece.
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece.
| |
Collapse
|
9
|
Braban A, Leech R, Murphy K, Geranmayeh F. Cerebrovascular Reactivity Has Negligible Contribution to Hemodynamic Lag After Stroke: Implications for Functional Magnetic Resonance Imaging Studies. Stroke 2023; 54:1066-1077. [PMID: 36972348 PMCID: PMC7614432 DOI: 10.1161/strokeaha.122.041880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/21/2022] [Indexed: 03/29/2023]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) is ubiquitously used to study poststroke recovery. However, the fMRI-derived hemodynamic responses are vulnerable to vascular insult which can result in reduced magnitude and temporal delays (lag) in the hemodynamic response function (HRF). The cause of HRF lag remains controversial, and a better understanding of it is required to ensure accurate interpretation of poststroke fMRI studies. In this longitudinal study, we investigate the relationship between hemodynamic lag and cerebrovascular reactivity (CVR) following stroke. METHODS Voxel-wise lag maps were calculated relative to a mean gray matter reference signal for 27 healthy controls and 59 patients with stroke across 2 time points (≈2 weeks and ≈4 months poststroke) and 2 conditions: resting-state and breath-holding. The breath-holding condition was additionally used to calculate CVR in response to hypercapnia. HRF lag was computed for both conditions across tissue compartments: lesion, perilesional tissue, unaffected tissue of the lesioned hemisphere, and their homolog regions in the unaffected hemisphere. CVR and lag maps were correlated. Group, condition, and time effects were assessed using ANOVA analyses. RESULTS Compared with the average gray matter signal, a relative hemodynamic lead was observed in the primary sensorimotor cortices in resting-state and bilateral inferior parietal cortices in the breath-holding condition. Whole-brain hemodynamic lag was significantly correlated across conditions irrespective of group, with regional differences across conditions suggestive of a neural network pattern. Patients showed relative lag in the lesioned hemisphere which significantly reduced over time. Breath-hold derived lag and CVR had no significant voxel-wise correlation in controls, or patients within the lesioned hemisphere or the homologous regions of the lesion and perilesional tissue in the right hemisphere (mean r<0.1). CONCLUSIONS The contribution of altered CVR to HRF lag was negligible. We suggest that HRF lag is largely independent of CVR, and could partly reflect intrinsic neural network dynamics among other factors.
Collapse
Affiliation(s)
- Andra Braban
- Clinical Language and Cognition group, Imperial College London, UK
| | - Robert Leech
- Centre for Neuroimaging Science, King's College London, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, UK
| | | |
Collapse
|
10
|
Khalil AA, Tanritanir AC, Grittner U, Kirilina E, Villringer A, Fiebach JB, Mekle R. Reproducibility of cerebral perfusion measurements using BOLD delay. Hum Brain Mapp 2023; 44:2778-2789. [PMID: 36840928 PMCID: PMC10089099 DOI: 10.1002/hbm.26244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/26/2023] Open
Abstract
BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test-retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.
Collapse
Affiliation(s)
- Ahmed A Khalil
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ayse C Tanritanir
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Cognitive Neuroscience Berlin, Free University, Berlin, Germany
| | - Arno Villringer
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Li S, Zhao W, Liu G, Ren C, Meng R, Wang Y, Song H, Ma Q, Ding Y, Ji X. Chronic remote ischemic conditioning for symptomatic internal carotid or middle cerebral artery occlusion: A prospective cohort study. CNS Neurosci Ther 2022; 28:1365-1371. [PMID: 35702956 PMCID: PMC9344079 DOI: 10.1111/cns.13874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2023] Open
Abstract
AIMS Remote ischemic conditioning (RIC) has been demonstrated to reduce recurrent stroke in patients with intracranial artery stenosis. This study aimed to evaluate the effects of RIC in patients with the symptomatic internal carotid artery (ICA) or middle cerebral artery (MCA) occlusion. METHODS This study is based on a high-volume single-center prospective cohort study in China, which included patients with symptomatic ICA or MCA occlusion with impaired hemodynamics and receiving chronic RIC. Clinical follow-up visits were performed regularly, and cardio-cerebrovascular events were assessed. RESULTS In total, 131 patients (68 with ICA occlusion and 63 with MCA occlusion; mean age, 52.6 ± 13.7 years; stroke, 73.5%; transient ischemic attack TIA, 26.5%) qualified for the analysis; the mean follow-up period was 8.8 years (range, 3-14 years). The compliance of RIC was 95.6 ± 3.7%, and no associated severe adverse events happened. The annual risk of ischemic stroke and ischemic cerebrovascular events was 2.4% and 3.3%, respectively. The cumulative probabilities of ischemic cerebrovascular events and major adverse cardiovascular and cerebrovascular events were 32.8% and 44.8% at 14 years, respectively. CONCLUSION In patients with symptomatic ICA or MCA occlusion with impaired hemodynamics, chronic RIC is well-tolerated, and it appears to be associated with a low annual risk of ischemic stroke and cardio-cerebrovascular events.
Collapse
Affiliation(s)
- Sijie Li
- Department of Emergency, Xuanwu Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiyou Liu
- Department of Emergency, Xuanwu Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Cai S, Shi Z, Zhou S, Liang Y, Wang L, Wang K, Zhang L. Cerebrovascular Dysregulation in Patients with Glioma Assessed with Time-shifted BOLD fMRI. Radiology 2022; 304:155-163. [PMID: 35380491 DOI: 10.1148/radiol.212192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Microscopic vascular events, such as neovascularization and neurovascular uncoupling, are common in cerebral glioma. Mapping the cerebrovascular network remodeling at the macroscopic level may provide an alternative approach to assess hemodynamic dysregulation in patients with glioma. Purpose To investigate cerebrovascular dynamics and their relevance to tumor aggressiveness by using time-shift analysis (TSA) of the systemic low-frequency oscillation (sLFO) of the resting-state blood oxygenation level-dependent signal and a decision tree model. Materials and Methods In this retrospective study, 96 patients with histologically confirmed cerebral glioma were consecutively included (March 2012 to February 2017). TSA was performed to quantify the temporal properties of sLFO signals. Alteration in the time-shift properties was assessed in the tumor region and the contralesional hemisphere relative to the brains of healthy controls by using the Mann-Whitney U test. A decision tree model based on time-shift features was developed to predict the World Health Organization (WHO) glioma grade. Results A total of 88 patients with glioma (WHO grade II, 45; grade III, 21; grade IV, 22; mean age, 42 years; age range, 20-73 years; 51 men) and 40 healthy individuals from the 1000 Functional Connectomes Project (mean age, 32 years; age range, 24-49 years; 19 men) were included. The sLFO of the brain tissues was characterized by increased time shift in the tumor region and enhanced correlation with the global reference signal in the contralesional hemisphere compared with healthy brains. The proportion of tumor voxels with negative correlation to the reference signal significantly increased with the glioma malignancy grade. The decision tree model achieved an accuracy of 91% (80 of 88 patients) in predicting the glioma malignancy grade at the individual level (P = .004) based on the time-shift features. Conclusion Gliomas induced grade-specific cerebrovascular dysregulation in the entire brain, with altered time-shift features of systemic low-frequency oscillation signals. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Siqi Cai
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Zhifeng Shi
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Shihui Zhou
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Yuchao Liang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Lei Wang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Kai Wang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Lijuan Zhang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
13
|
An J, Zhao L, Duan R, Sun K, Lu W, Yang J, Liang Y, Liu J, Zhang Z, Li L, Shi J. Potential nanotherapeutic strategies for perioperative stroke. CNS Neurosci Ther 2022; 28:510-520. [PMID: 35243774 PMCID: PMC8928924 DOI: 10.1111/cns.13819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
AIMS Based on the complex pathological environment of perioperative stroke, the development of targeted therapeutic strategies is important to control the development of perioperative stroke. DISCUSSIONS Recently, great progress has been made in nanotechnology, and nanodrug delivery systems have been developed for the treatment of ischemic stroke. CONCLUSION In this review, the pathological processes and mechanisms of ischemic stroke during perioperative stroke onset were systematically sorted. As a potential treatment strategy for perioperative stroke, the review also summarizes the multifunctional nanodelivery systems based on ischemic stroke, thus providing insight into the nanotherapeutic strategies for perioperative stroke.
Collapse
Affiliation(s)
- Jingyi An
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Ling Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxin Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, China.,Key Laboratories of the Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Papadaki E, Simos NJ, Kavroulakis E, Bertsias G, Antypa D, Fanouriakis A, Maris T, Sidiropoulos P, Boumpas DT. Converging evidence of impaired brain function in systemic lupus erythematosus: changes in perfusion dynamics and intrinsic functional connectivity. Neuroradiology 2022; 64:1593-1604. [DOI: 10.1007/s00234-022-02924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
15
|
Khalil A, Röhrs K, Nolte CH, Galinovic I. Total perfusion-diffusion mismatch detected using resting-state functional MRI. BJR Case Rep 2021; 7:20210056. [PMID: 35136628 PMCID: PMC8803244 DOI: 10.1259/bjrcr.20210056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
Total perfusion-diffusion mismatch is a well-recognised phenomenon in patients with acute ischaemic stroke. We describe a case of total perfusion-diffusion mismatch detected using an emerging contrast-agent-free perfusion imaging technique in a young patient with acute cerebellar stroke.
Collapse
Affiliation(s)
| | - Kian Röhrs
- Department of Neurology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Ivana Galinovic
- Center for Stroke Research Berlin, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
16
|
Hu JY, Kirilina E, Nierhaus T, Ovadia-Caro S, Livne M, Villringer K, Margulies D, Fiebach JB, Villringer A, Khalil AA. A novel approach for assessing hypoperfusion in stroke using spatial independent component analysis of resting-state fMRI. Hum Brain Mapp 2021; 42:5204-5216. [PMID: 34323339 PMCID: PMC8519861 DOI: 10.1002/hbm.25610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
Individualized treatment of acute stroke depends on the timely detection of ischemia and potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possible to characterize cerebral blood flow from blood‐oxygen‐level‐dependent (BOLD) signals without the administration of exogenous contrast agents. In this study, we applied spatial independent component analysis to resting‐state fMRI data of 37 stroke patients scanned within 24 hr of symptom onset, 17 of whom received follow‐up scans the next day. Our analysis revealed “Hypoperfusion spatially‐Independent Components” (HICs) whose spatial patterns of BOLD signal resembled regions of delayed perfusion depicted by dynamic susceptibility contrast MRI. These HICs were detected even in the presence of excessive patient motion, and disappeared following successful tissue reperfusion. The unique spatial and temporal features of HICs allowed them to be distinguished with high accuracy from other components in a user‐independent manner (area under the curve = 0.93, balanced accuracy = 0.90, sensitivity = 1.00, and specificity = 0.85). Our study therefore presents a new, noninvasive method for assessing blood flow in acute stroke that minimizes interpretative subjectivity and is robust to severe patient motion.
Collapse
Affiliation(s)
- Jiun-Yiing Hu
- Department of Internal Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Evgeniya Kirilina
- Department of Neurophysics, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Neurocomputation and Neuroimaging Unit, Center for Cognitive Neuroscience Berlin (CCNB), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Till Nierhaus
- Neurocomputation and Neuroimaging Unit, Center for Cognitive Neuroscience Berlin (CCNB), Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Michelle Livne
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| | - Ahmed A Khalil
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
17
|
Zhong S, Sun K, Zuo X, Chen A. Monitoring and Prognostic Analysis of Severe Cerebrovascular Diseases Based on Multi-Scale Dynamic Brain Imaging. Front Neurosci 2021; 15:684469. [PMID: 34276294 PMCID: PMC8277932 DOI: 10.3389/fnins.2021.684469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Severe cerebrovascular disease is an acute cerebrovascular event that causes severe neurological damage in patients, and is often accompanied by severe dysfunction of multiple systems such as breathing and circulation. Patients with severe cerebrovascular disease are in critical condition, have many complications, and are prone to deterioration of neurological function. Therefore, they need closer monitoring and treatment. The treatment strategy in the acute phase directly determines the prognosis of the patient. The case of this article selected 90 patients with severe cerebrovascular disease who were hospitalized in four wards of the Department of Neurology and the Department of Critical Care Medicine in a university hospital. The included cases were in accordance with the guidelines for the prevention and treatment of cerebrovascular diseases. Patients with cerebral infarction are given routine treatments such as improving cerebral circulation, protecting nutrient brain cells, dehydration, and anti-platelet; patients with cerebral hemorrhage are treated within the corresponding safe time window. We use Statistical Product and Service Solutions (SPSS) Statistics21 software to perform statistical analysis on the results. Based on the study of the feature extraction process of convolutional neural network, according to the hierarchical principle of convolutional neural network, a backbone neural network MF (Multi-Features)—Dense Net that can realize the fusion, and extraction of multi-scale features is designed. The network combines the characteristics of densely connected network and feature pyramid network structure, and combines strong feature extraction ability, high robustness and relatively small parameter amount. An end-to-end monitoring algorithm for severe cerebrovascular diseases based on MF-Dense Net is proposed. In the experiment, the algorithm showed high monitoring accuracy, and at the same time reached the speed of real-time monitoring on the experimental platform. An improved spatial pyramid pooling structure is designed to strengthen the network’s ability to merge and extract local features at the same level and at multiple scales, which can further improve the accuracy of algorithm monitoring by paying a small amount of additional computational cost. At the same time, a method is designed to strengthen the use of low-level features by improving the network structure, which improves the algorithm’s monitoring performance on small-scale severe cerebrovascular diseases. For patients with severe cerebrovascular disease in general, APACHEII1, APACHEII2, APACHEII3 and the trend of APACHEII score change are divided into high-risk group and low-risk group. The overall severe cerebrovascular disease, severe cerebral hemorrhage and severe cerebral infarction are analyzed, respectively. The differences are statistically significant.
Collapse
Affiliation(s)
- Suting Zhong
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Neurosurgery, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, China
| | - Xiaobing Zuo
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Aihong Chen
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Frey D, Livne M, Leppin H, Akay EM, Aydin OU, Behland J, Sobesky J, Vajkoczy P, Madai VI. A precision medicine framework for personalized simulation of hemodynamics in cerebrovascular disease. Biomed Eng Online 2021; 20:44. [PMID: 33933080 PMCID: PMC8088619 DOI: 10.1186/s12938-021-00880-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cerebrovascular disease, in particular stroke, is a major public health challenge. An important biomarker is cerebral hemodynamics. To measure and quantify cerebral hemodynamics, however, only invasive, potentially harmful or time-to-treatment prolonging methods are available. RESULTS We present a simulation-based approach which allows calculation of cerebral hemodynamics based on the patient-individual vessel configuration derived from structural vessel imaging. For this, we implemented a framework allowing segmentation and annotation of brain vessels from structural imaging followed by 0-dimensional lumped simulation modeling of cerebral hemodynamics. For annotation, a 3D-graphical user interface was implemented. For 0D-simulation, we used a modified nodal analysis, which was adapted for easy implementation by code. The simulation enables identification of areas vulnerable to stroke and simulation of changes due to different systemic blood pressures. Moreover, sensitivity analysis was implemented allowing the live simulation of changes to simulate procedures and disease progression. Beyond presentation of the framework, we demonstrated in an exploratory analysis in 67 patients that the simulation has a high specificity and low-to-moderate sensitivity to detect perfusion changes in classic perfusion imaging. CONCLUSIONS The presented precision medicine approach using novel biomarkers has the potential to make the application of harmful and complex perfusion methods obsolete.
Collapse
Affiliation(s)
- Dietmar Frey
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany.
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany.
| | - Michelle Livne
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
| | - Heiko Leppin
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
| | - Ela M Akay
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Orhun U Aydin
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jonas Behland
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jan Sobesky
- Johanna Etienne Hospital Neuss, Berlin, Germany
- Centre for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Vince I Madai
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- School of Computing and Digital Technology, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, Birmingham, UK
| |
Collapse
|
19
|
Antypa D, Simos NJ, Kavroulakis E, Bertsias G, Fanouriakis A, Sidiropoulos P, Boumpas D, Papadaki E. Anxiety and depression severity in neuropsychiatric SLE are associated with perfusion and functional connectivity changes of the frontolimbic neural circuit: a resting-state f(unctional) MRI study. Lupus Sci Med 2021; 8:8/1/e000473. [PMID: 33927003 PMCID: PMC8094334 DOI: 10.1136/lupus-2020-000473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To examine the hypothesis that perfusion and functional connectivity disturbances in brain areas implicated in emotional processing are linked to emotion-related symptoms in neuropsychiatric SLE (NPSLE). METHODS Resting-state fMRI (rs-fMRI) was performed and anxiety and/or depression symptoms were assessed in 32 patients with NPSLE and 18 healthy controls (HC). Whole-brain time-shift analysis (TSA) maps, voxel-wise global connectivity (assessed through intrinsic connectivity contrast (ICC)) and within-network connectivity were estimated and submitted to one-sample t-tests. Subgroup differences (high vs low anxiety and high vs low depression symptoms) were assessed using independent-samples t-tests. In the total group, associations between anxiety (controlling for depression) or depression symptoms (controlling for anxiety) and regional TSA or ICC metrics were also assessed. RESULTS Elevated anxiety symptoms in patients with NPSLE were distinctly associated with relatively faster haemodynamic response (haemodynamic lead) in the right amygdala, relatively lower intrinsic connectivity of orbital dlPFC, and relatively lower bidirectional connectivity between dlPFC and vmPFC combined with relatively higher bidirectional connectivity between ACC and amygdala. Elevated depression symptoms in patients with NPSLE were distinctly associated with haemodynamic lead in vmPFC regions in both hemispheres (lateral and medial orbitofrontal cortex) combined with relatively lower intrinsic connectivity in the right medial orbitofrontal cortex. These measures failed to account for self-rated, milder depression symptoms in the HC group. CONCLUSION By using rs-fMRI, altered perfusion dynamics and functional connectivity was found in limbic and prefrontal brain regions in patients with NPSLE with severe anxiety and depression symptoms. Although these changes could not be directly attributed to NPSLE pathology, results offer new insights on the pathophysiological substrate of psychoemotional symptomatology in patients with lupus, which may assist its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Despina Antypa
- Department of Psychiatry, University of Crete School of Medicine, Heraklion, Greece
| | - Nicholas J Simos
- School of Electronics and Computer Engineering, Technical University of Crete, Chania, Crete, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | | | - George Bertsias
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Antonis Fanouriakis
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece.,"Attikon" University Hospital, Athens, Greece
| | - Prodromos Sidiropoulos
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece
| | - Dimitrios Boumpas
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece.,"Attikon" University Hospital, Athens, Greece.,Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Joint Academic Rheumatology Program, and 4th Department of Medicine, Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Efrosini Papadaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece .,Department of Radiology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
20
|
Kavroulakis E, Simos NJ, Maris TG, Zaganas I, Panagiotakis S, Papadaki E. Evidence of Age-Related Hemodynamic and Functional Connectivity Impairment: A Resting State fMRI Study. Front Neurol 2021; 12:633500. [PMID: 33833727 PMCID: PMC8021915 DOI: 10.3389/fneur.2021.633500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To assess age-related changes in intrinsic functional brain connectivity and hemodynamics during adulthood in the context of the retrogenesis hypothesis, which states that the rate of age-related changes is higher in late-myelinating (prefrontal, lateral-posterior temporal) cerebrocortical areas as compared to early myelinating (parietal, occipital) regions. In addition, to examine the dependence of age-related changes upon concurrent subclinical depression symptoms which are common even in healthy aging. Methods: Sixty-four healthy adults (28 men) aged 23-79 years (mean 45.0, SD = 18.8 years) were examined. Resting-state functional MRI (rs-fMRI) time series were used to compute voxel-wise intrinsic connectivity contrast (ICC) maps reflecting the strength of functional connectivity between each voxel and the rest of the brain. We further used Time Shift Analysis (TSA) to estimate voxel-wise hemodynamic lead or lag for each of 22 ROIs from the automated anatomical atlas (AAL). Results: Adjusted for depression symptoms, gender and education level, reduced ICC with age was found primarily in frontal, temporal regions, and putamen, whereas the opposite trend was noted in inferior occipital cortices (p < 0.002). With the same covariates, increased hemodynamic lead with advancing age was found in superior frontal cortex and thalamus, with the opposite trend in inferior occipital cortex (p < 0.002). There was also evidence of reduced coupling between voxel-wise intrinsic connectivity and hemodynamics in the inferior parietal cortex. Conclusion: Age-related intrinsic connectivity reductions and hemodynamic changes were demonstrated in several regions-most of them part of DMN and salience networks-while impaired neurovascular coupling was, also, found in parietal regions. Age-related reductions in intrinsic connectivity were greater in anterior as compared to posterior cortices, in line with implications derived from the retrogenesis hypothesis. These effects were affected by self-reported depression symptoms, which also increased with age.
Collapse
Affiliation(s)
- Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Nicholas J Simos
- Department of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Ioannis Zaganas
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Simeon Panagiotakis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
21
|
Tanrıtanır AC, Villringer K, Galinovic I, Grittner U, Kirilina E, Fiebach JB, Villringer A, Khalil AA. The Effect of Scan Length on the Assessment of BOLD Delay in Ischemic Stroke. Front Neurol 2020; 11:381. [PMID: 32431665 PMCID: PMC7214917 DOI: 10.3389/fneur.2020.00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/15/2020] [Indexed: 01/21/2023] Open
Abstract
Objectives: To evaluate the impact of resting-state functional MRI scan length on the diagnostic accuracy, image quality and lesion volume estimation of BOLD delay maps used for brain perfusion assessment in acute ischemic stroke. Methods: Sixty-three acute ischemic stroke patients received a 340 s resting-state functional MRI within 24 h of stroke symptom onset. BOLD delay maps were calculated from the full scan and four shortened versions (68 s, 136 s, 204 s, 272 s). The BOLD delay lesions on these maps were compared in terms of spatial overlap and volumetric agreement with the lesions derived from the full scans and with time-to-maximum (Tmax) lesions derived from DSC-MRI in a subset of patients (n = 10). In addition, the interpretability and quality of these maps were compared across different scan lengths using mixed models. Results: Shortened BOLD delay scans showed a small volumetric bias (ranging from 0.05 to 5.3 mL; between a 0.13% volumetric underestimation and a 7.7% overestimation relative to the mean of the volumes, depending on scan length) compared to the full scan. Decreased scan length was associated with decreased spatial overlap with both the BOLD delay lesions derived from the full scans and with Tmax lesions. Only the two shortest scan lengths (68 and 136 s) were associated with substantially decreased interpretability, decreased structure clarity, and increased noisiness of BOLD delay maps. Conclusions: BOLD delay maps derived from resting-state fMRI scans lasting 272 and 204 s provide sufficient diagnostic quality and adequate assessment of perfusion lesion volumes. Such shortened scans may be helpful in situations where quick clinical decisions need to be made.
Collapse
Affiliation(s)
| | - Kersten Villringer
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Galinovic
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Cognitive Neuroscience Berlin, Free University, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ahmed A Khalil
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
22
|
Villringer K, Zimny S, Galinovic I, Nolte CH, Fiebach JB, Khalil AA. The Association Between Recanalization, Collateral Flow, and Reperfusion in Acute Stroke Patients: A Dynamic Susceptibility Contrast MRI Study. Front Neurol 2019; 10:1147. [PMID: 31708866 PMCID: PMC6823193 DOI: 10.3389/fneur.2019.01147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Collateral circulation in ischemic stroke patients plays an important role in infarct evolution und assessing patients' eligibility for endovascular treatment. By means of dynamic susceptibility contrast MRI, we aimed to investigate the effects of reperfusion, recanalization, and collateral flow on clinical and imaging outcomes after stroke. Methods: Retrospective analysis of 184 patients enrolled into the prospective observational 1000Plus study (clinicaltrials.org NCT00715533). Inclusion criteria were vessel occlusion on baseline MR-angiography, imaging within 24 h after stroke onset and follow-up perfusion imaging. Baseline Higashida score using subtracted dynamic MR perfusion source images was used to quantify collateral flow. The influence of these variables, and their interaction with vessel recanalization, on clinical and imaging outcomes was assessed using robust linear regression. Results: Ninety-eight patients (53.3%) showed vessel recanalization. Higashida score (p = 0.002), and recanalization (p = 0.0004) were independently associated with reperfusion. However, we found no evidence that the association between Higashida score and reperfusion relied on recanalization status (p = 0.2). NIHSS on admission (p < 0.0001) and recanalization (p = 0.001) were independently associated with long-term outcome at 3 months, however, Higashida score (p = 0.228) was not. Conclusion: Higashida score and recanalization were independently associated with reperfusion, but the association between recanalization and reperfusion was similar regardless of collateral flow quality. Recanalization was associated with long-term outcome. DSC-based measures of collateral flow were not associated with long-term outcome, possibly due to the complex dynamic nature of collateral recruitment, timing of imaging and the employed post-processing.
Collapse
Affiliation(s)
- Kersten Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sascha Zimny
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Ev.-Luth. Diakonissenanstalt zu Flensburg, Flensburg, Germany
| | - Ivana Galinovic
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H Nolte
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Mind, Brain, Body Institute, Berlin School of Mind and Brain, Humboldt-Universität Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Aso T, Urayama S, Fukuyama H, Murai T. Axial variation of deoxyhemoglobin density as a source of the low-frequency time lag structure in blood oxygenation level-dependent signals. PLoS One 2019; 14:e0222787. [PMID: 31545839 PMCID: PMC6756514 DOI: 10.1371/journal.pone.0222787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 01/24/2023] Open
Abstract
Perfusion-related information is reportedly embedded in the low-frequency component of a blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal. The blood-propagation pattern through the cerebral vascular tree is detected as an interregional lag variation of spontaneous low-frequency oscillations (sLFOs). Mapping of this lag, or phase, has been implicitly treated as a projection of the vascular tree structure onto real space. While accumulating evidence supports the biological significance of this signal component, the physiological basis of the “perfusion lag structure,” a requirement for an integrative resting-state fMRI-signal model, is lacking. In this study, we conducted analyses furthering the hypothesis that the sLFO is not only largely of systemic origin, but also essentially intrinsic to blood, and hence behaves as a virtual tracer. By summing the small fluctuations of instantaneous phase differences between adjacent vascular regions, a velocity response to respiratory challenges was detected. Regarding the relationship to neurovascular coupling, the removal of the whole lag structure, which can be considered as an optimized global-signal regression, resulted in a reduction of inter-individual variance while preserving the fMRI response. Examination of the T2* and S0, or non-BOLD, components of the fMRI signal revealed that the lag structure is deoxyhemoglobin dependent, while paradoxically presenting a signal-magnitude reduction in the venous side of the cerebral vasculature. These findings provide insight into the origin of BOLD sLFOs, suggesting that they are highly intrinsic to the circulating blood.
Collapse
Affiliation(s)
- Toshihiko Aso
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Shinnichi Urayama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Tong Y, Hocke LM, Frederick BB. Low Frequency Systemic Hemodynamic "Noise" in Resting State BOLD fMRI: Characteristics, Causes, Implications, Mitigation Strategies, and Applications. Front Neurosci 2019; 13:787. [PMID: 31474815 PMCID: PMC6702789 DOI: 10.3389/fnins.2019.00787] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/15/2019] [Indexed: 01/06/2023] Open
Abstract
Advances in functional magnetic resonance imaging (fMRI) acquisition have improved signal to noise to the point where the physiology of the subject is the dominant noise source in resting state fMRI data (rsfMRI). Among these systemic, non-neuronal physiological signals, respiration and to some degree cardiac fluctuations can be removed through modeling, or in the case of newer, faster acquisitions such as simultaneous multislice acquisition, simple spectral filtering. However, significant low frequency physiological oscillation (∼0.01-0.15 Hz) remains in the signal. This is problematic, as it is the precise frequency band occupied by the neuronally modulated hemodynamic responses used to study brain connectivity, precluding its removal by spectral filtering. The source of this signal, and its method of production and propagation in the body, have not been conclusively determined. Here, we summarize the defining characteristics of the systemic low frequency noise signal, and review some current theories about the signal source and the evidence supporting them. The strength and distribution of the systemic LFO signal make characterizing and removing it essential for accurate quantification, especially for resting state connectivity, when no stimulation can be compared with the signal. Widespread correlated non-neuronal signals obscure and distort the more localized patterns of neuronal correlations between interacting brain regions; they may even cause apparent connectivity between regions with no neuronal interaction. Here, we discuss a simple method we have developed to parse the global, moving, blood-borne signal from the stationary, neuronal connectivity signals, substantially reducing the negative correlations that result from global signal regression. Finally, we will discuss some of the uses to which the moving systemic low frequency oscillation can be put if we consider it a "signal" carrying information, rather than simply "noise" complicating the interpretation of resting state connectivity. Properly utilizing this signal may offer insights into subtle hemodynamic alterations that can be used as early indicators of circulatory dysfunction in a number of neuropsychiatric conditions, such as prodromal stroke, moyamoya, and Alzheimer's disease.
Collapse
Affiliation(s)
- Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Lia M. Hocke
- McLean Imaging Center, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Blaise B. Frederick
- McLean Imaging Center, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|