1
|
Nogovitsyn N, Ballester P, Lasby M, Dunlop K, Ceniti AK, Squires S, Rowe J, Ho K, Suh J, Hassel S, Souza R, Casseb RF, Harris JK, Zamyadi M, Arnott SR, Strother SC, Hall G, Lam RW, Poppenk J, Lebel C, Bray S, Metzak P, MacIntosh BJ, Goldstein BI, Wang J, Rizvi SJ, MacQueen G, Addington J, Harkness KL, Rotzinger S, Kennedy SH, Frey BN. An empirical analysis of structural neuroimaging profiles in a staging model of depression. J Affect Disord 2024; 351:631-640. [PMID: 38290583 DOI: 10.1016/j.jad.2024.01.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
We examine structural brain characteristics across three diagnostic categories: at risk for serious mental illness; first-presenting episode and recurrent major depressive disorder (MDD). We investigate whether the three diagnostic groups display a stepwise pattern of brain changes in the cortico-limbic regions. Integrated clinical and neuroimaging data from three large Canadian studies were pooled (total n = 622 participants, aged 12-66 years). Four clinical profiles were used in the classification of a clinical staging model: healthy comparison individuals with no history of depression (HC, n = 240), individuals at high risk for serious mental illness due to the presence of subclinical symptoms (SC, n = 80), first-episode depression (FD, n = 82), and participants with recurrent MDD in a current major depressive episode (RD, n = 220). Whole-brain volumetric measurements were extracted with FreeSurfer 7.1 and examined using three different types of analyses. Hippocampal volume decrease and cortico-limbic thinning were the most informative features for the RD vs HC comparisons. FD vs HC revealed that FD participants were characterized by a focal decrease in cortical thickness and global enlargement in amygdala volumes. Greater total amygdala volumes were significantly associated with earlier onset of illness in the FD but not the RD group. We did not confirm the construct validity of a tested clinical staging model, as a differential pattern of brain alterations was identified across the three diagnostic groups that did not parallel a stepwise clinical staging approach. The pathological processes during early stages of the illness may fundamentally differ from those that occur at later stages with clinical progression.
Collapse
Affiliation(s)
- Nikita Nogovitsyn
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Pedro Ballester
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Mike Lasby
- Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katharine Dunlop
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Amanda K Ceniti
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Scott Squires
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Jessie Rowe
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Keith Ho
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada
| | - JeeSu Suh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Roberto Souza
- Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raphael F Casseb
- Neuroimaging Laboratory, University of Campinas, Campinas, SP, Brazil
| | | | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | | | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Geoffrey Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jordan Poppenk
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Signe Bray
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Paul Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Bradley J MacIntosh
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Hurvitz Brain Sciences Program, Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Computational Radiology & Artificial Intelligence (CRAI) Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry and Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - JianLi Wang
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sakina J Rizvi
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Susan Rotzinger
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Krembil Research Centre, University Health Network, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Krembil Research Centre, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
2
|
Bai X, Wang W, Zhang X, Hu Z, Zhang X, Zhang Y, Tang H, Zhang Y, Yu X, Yuan Z, Zhang P, Li Z, Pei X, Wang Y, Sui B. Hyperperfusion of bilateral amygdala in patients with chronic migraine: an arterial spin-labeled magnetic resonance imaging study. J Headache Pain 2023; 24:138. [PMID: 37848831 PMCID: PMC10583377 DOI: 10.1186/s10194-023-01668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Amygdala, an essential element of the limbic system, has served as an important structure in pain modulation. There is still a lack of clarity about altered cerebral perfusion of amygdala in migraine. This study aimed to investigate the perfusion variances of bilateral amygdala in episodic migraine (EM) and chronic migraine (CM) using multi-delay pseudo-continuous arterial spin-labeled magnetic resonance imaging (pCASL-MRI). METHODS Twenty-six patients with EM, 55 patients with CM (33 CM with medication overuse headache (MOH)), and 26 age- and sex-matched healthy controls (HCs) were included. All participants underwent 3D multi-delay pCASL MR imaging to obtain cerebral perfusion data, including arrival-time-corrected cerebral blood flow (CBF) and arterial cerebral blood volume (aCBV). The CBF and aCBV values in the bilateral amygdala were compared among the three groups. Correlation analyses between cerebral perfusion parameters and clinical variables were performed. RESULTS Compared with HC participants, patients with CM were found to have increased CBF and aCBV values in the left amygdala, as well as increased CBF values in the right amygdala (all P < 0.05). There were no significant differences of CBF and aCBV values in the bilateral amygdala between the HC and EM groups, the EM and CM groups, as well as the CM without and with MOH groups (all P > 0.05). In patients with CM, the increased perfusion parameters of bilateral amygdala were positively correlated with MIDAS score after adjustments for age, sex, and body mass index (BMI). CONCLUSION Hyperperfusion of bilateral amygdala might provide potential hemodynamics evidence in the neurolimbic pain network of CM.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xue Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Pei
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
3
|
Tao Z, Sun N, Yuan Z, Chen Z, Liu J, Wang C, Li S, Ma X, Ji B, Li K. Research on a New Intelligent and Rapid Screening Method for Depression Risk in Young People Based on Eye Tracking Technology. Brain Sci 2023; 13:1415. [PMID: 37891784 PMCID: PMC10605395 DOI: 10.3390/brainsci13101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Depression is a prevalent mental disorder, with young people being particularly vulnerable to it. Therefore, we propose a new intelligent and rapid screening method for depression risk in young people based on eye tracking technology. We hypothesized that the "emotional perception of eye movement" could characterize defects in emotional perception, recognition, processing, and regulation in young people at high risk for depression. Based on this hypothesis, we designed the "eye movement emotional perception evaluation paradigm" and extracted digital biomarkers that could objectively and accurately evaluate "facial feature perception" and "facial emotional perception" characteristics of young people at high risk of depression. Using stepwise regression analysis, we identified seven digital biomarkers that could characterize emotional perception, recognition, processing, and regulation deficiencies in young people at high risk for depression. The combined effectiveness of an early warning can reach 0.974. Our proposed technique for rapid screening has significant advantages, including high speed, high early warning efficiency, low cost, and high intelligence. This new method provides a new approach to help effectively screen high-risk individuals for depression.
Collapse
Affiliation(s)
- Zhanbo Tao
- Police Sports Department, Zhejiang Police College, Hangzhou 310053, China
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
| | - Ningxia Sun
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zeyuan Chen
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
| | - Jiakang Liu
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chen Wang
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuwu Li
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowen Ma
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Kai Li
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB/ NLRP3 pathway and apoptosis. Sci Rep 2023; 13:2111. [PMID: 36747075 PMCID: PMC9902529 DOI: 10.1038/s41598-023-28418-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, we aimed to evaluate the anti-inflammatory and anti-apoptotic effects of melatonin (MLT) on neuropathic pain (NP)-induced anxiety and depression in a rat model. Adult male rats were separated into four groups, i.e., Sham-VEH: healthy animals received a vehicle, Sham-MLT (10 mg/kg), and chronic constrictive injury (CCI)-VEH: nerve ligation received the vehicle, and CCI-MLT. Next, we used behavioral tests to evaluate pain severity, anxiety, and depression. Finally, rats were sacrificed for molecular and histopathological studies. Behavioral tests showed that NP could induce depressive- and anxiety-like behaviors. NP activated NF-κB/NLRP3 inflammasome pathways by upregulating NF-κB, NLRP3, ASC, active Caspase-1, also enhancing the concentrations of cytokines (IL-1β and IL-18) in the prefrontal cortex (PFC) and hippocampus (HC). NP upregulated Bax, downregulated Bcl2, and increased cell apoptosis in the HC and PFC. The rats treated with MLT eliminated the effects of NP, as the reduced pain severity, improved anxiety- and depressive-like behaviors, ameliorated NF-κB/NLRP3 inflammasome pathways, and modulated levels of cytokines in the HC and PFC. MLT could promote cell survival from apoptosis by modulating Bax and Bcl2. Therefore, it might be inferred that its anti-inflammatory and anti-apoptotic properties mediate the beneficial effects of MLT in NP-induced affective disorders.
Collapse
|
5
|
Fan D, He C, Liu X, Zang F, Zhu Y, Zhang H, Zhang H, Zhang Z, Xie C. Altered resting-state cerebral blood flow and functional connectivity mediate suicidal ideation in major depressive disorder. J Cereb Blood Flow Metab 2022; 42:1603-1615. [PMID: 35350926 PMCID: PMC9441724 DOI: 10.1177/0271678x221090998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationships among cerebral blood flow (CBF), functional connectivity (FC) and suicidal ideation (SI) in major depressive disorder (MDD) patients have remained elusive. In this study, we characterized the changes in CBF and FC among 175 individuals including 47 MDD without SI (MDDNSI), 59 MDD with SI (MDDSI), and 69 healthy control (HC) who underwent arterial spin labeling and resting-state functional MRI scans. Then the voxel-wise CBF, seed-based FC and partial correlation analyses were measured. Mediation analysis was carried out to reveal the effects of FC on the association between CBF and behavioral performances in both subgroups. Results showed that CBF was higher in MDDSI patients in the bilateral precuneus compared to HC and MDDNSI participants. MDDSI patients exhibited enhanced FC in the prefrontal-limbic system and decreased FC in the sensorimotor cortex (SMC) relative to MDDNSI patients. CBF and FC were significantly correlated with clinical variables. More importantly, exploratory mediation analyses identified that abnormal FC can mediate the association between regional CBF and behavioral performances. These results highlight the potential role of precuneus gyrus, prefrontal-limbic system as well as SMC in the process of suicide and provide new insights into the neural mechanism underlying suicide in MDD patients.
Collapse
Affiliation(s)
- Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Feifei Zang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yao Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Haisan Zhang
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongxing Zhang
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China.,Psychology School of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Duan X, Xie Y, Zhu X, Chen L, Li F, Feng G, Li L. Quantitative Susceptibility Mapping of Brain Iron Deposition in Patients With Recurrent Depression. Psychiatry Investig 2022; 19:668-675. [PMID: 36059056 PMCID: PMC9441458 DOI: 10.30773/pi.2022.0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Recurrence is the most significant feature of depression and the relationship between iron and recurrent depression is still lack of direct evidence in vivo. METHODS Twenty-one patients with depression and twenty control subjects were included. Gradient-recalled echo, T1 and T2 images were acquired using a 3.0T MRI system. After quantitative susceptibility mapping were reconstructed and standardized, a whole-brain and the regions of interest were respectively analyzed. RESULTS Significant increases in susceptibility were found in multiple recurrent depression patients, which involved several brain regions (frontal lobes, temporal lobe structures, occipital lobes hippocampal regions, putamen, thalamus, cingulum, and cerebellum). Interestingly, no susceptibility changes after treatment compared to pre-treatment (all p>0.05) and no significant correlation between susceptibility and Hamilton Depression Rating Scale were found. Besides, it was close to significance that those with a higher relapse frequency or a longer mean duration of single episode had a higher susceptibility in the putamen, thalamus, and hippocampus. Further studies showed susceptibility across the putamen (ρ2=0.27, p<0.001), thalamus (ρ2=0.21, p<0.001), and hippocampus (ρ2=0.19, p<0.001) were strongly correlated with total course of disease onset. CONCLUSION Brain iron deposition is related to the total course of disease onset, but not the severity of depression, which suggest that brain iron deposition may be a sign of brain damage in multiple recurrent depression.
Collapse
Affiliation(s)
- Xinxiu Duan
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yuhang Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiufang Zhu
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lei Chen
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Feng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lei Li
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
7
|
Wang XH, Liu XF, Ao M, Wang T, He J, Gu YW, Fan JW, Yang L, Yu R, Guo S. Cerebral Perfusion Patterns of Anxiety State in Patients With Pulmonary Nodules: A Study of Cerebral Blood Flow Based on Arterial Spin Labeling. Front Neurosci 2022; 16:912665. [PMID: 35615271 PMCID: PMC9125149 DOI: 10.3389/fnins.2022.912665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose The proportion of patients with somatic diseases associated with anxiety is increasing each year, and pulmonary nodules have become a non-negligible cause of anxiety, the mechanism of which is unclear. The study focus on the cerebral blood flow (CBF) of anxiety in patients with pulmonary nodules to explore the cerebral perfusion pattern of anxiety associated with pulmonary nodules, blood perfusion status and mode of pulmonary nodule induced anxiety state. Materials and Methods Patients with unconfirmed pulmonary nodules were evaluated by Hamilton Anxiety Scale (HAMA). The total score > 14 was defined as anxiety group, and the total score ≤ 14 points was defined as non-anxiety group. A total of 38 patients were enrolled, of which 19 patients were the anxiety group and 19 were the non-anxiety group. All subjects underwent arterial spin labeling imaging using a 3.0 T MRI. A two-sample t-test was performed to compare the CBF between the two groups. The CBF was extracted in brain regions with difference, and Spearman correlation was used to analyze the correlation between CBF and HAMA scores; ROC was used to analyze the performance of CBF to distinguish between the anxiety group and the non-anxiety group. Results The CBF in the right insula/Heschl’s cortex of the anxiety group decreased (cluster = 109, peak t = 4.124, and P < 0.001), and the CBF in the right postcentral gyrus increased (cluster = 53, peak t = −3.912, and P < 0.001) in the anxiety group. But there was no correlation between CBF and HAMA score. The ROC analysis of the CBF of the right insula/Heschl’s cortex showed that the AUC was 0.856 (95%CI, 0.729, 0.983; P < 0.001), the optimal cutoff value of the CBF was 50.899, with the sensitivity of 0.895, and specificity of 0.789. The ROC analysis of CBF in the right postcentral gyrus showed that the AUC was 0.845 (95%CI, 0.718, 0.972; P < 0.001), the optimal cutoff value of CBF was 43.595, with the sensitivity of 0.737, and specificity of 0.842. Conclusion The CBF of the right insula/Heschl’s cortex decreased and the CBF of the right postcentral gyrus increased in patients with pulmonary nodules under anxiety state, and the CBF of the aforementioned brain regions can accurately distinguish the anxiety group from the non-anxiety group.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Fan Liu
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Ao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglan He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue-Wen Gu
- Department of Clinical Psychology, Fourth Military Medical University, Xi’an, China
| | - Jing-Wen Fan
- Department of Clinical Psychology, Fourth Military Medical University, Xi’an, China
| | - Li Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Yang,
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Renqiang Yu,
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Shuliang Guo, , orcid.org/0000-0003-3572-7421
| |
Collapse
|
8
|
Ruilian L, Honglin Q, Jun X, Jianxin L, Qingyun B, Yilin C, Haifeng M. H 2S-mediated aerobic exercise antagonizes the hippocampal inflammatory response in CUMS-depressed mice. J Affect Disord 2021; 283:410-419. [PMID: 33581467 DOI: 10.1016/j.jad.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE This thesis was to investigate the protective effect and mechanism of H2S-mediated aerobic exercise on the antagonism of the hippocampus inflammatory response in CUMS-depressed mice. METHOD Seventy C57BL/6 mice were randomly divided into control group (CG), model control group (MG), model exercise group (ME), H2S enhanced group (HG) and H2S enhanced and exercise group (HE). All mice except CG underwent a 28-day CUMS depression model. ME and HE received moderate-intensity aerobic treadmill training for 8 weeks. They were randomly selected for Nissl staining, Immunofluorescence, methylene blue colorimetric assay, and ELISA. The levels of IL-10 and TNF-ɑ were detected by qRT-PCR, and the expression levels of CBS and inflammatory-related factors in the hippocampus were detected. RESULT Compared with CG, the number of erections, modifications, and crossing grids in MG mice were significantly reduced, the time of forced swimming and forced tail suspension was significantly prolonged, the positive rate of 5-HT decreased, and the symptoms of depression were obvious. The positive rate of CD45+ increased, the inflammatory response was obvious, and the content of H2S and the expression of biosynthetic enzyme CBS decreased. Aerobic exercise and H2S-enhanced mice improved depressive symptoms, decreased proinflammatory factors, increased anti-inflammatory factors, increased H2S content, increased CBS expression, and increased H2S. CONCLUSION H2S may participate in aerobic exercise to antagonize the inflammatory process of the hippocampus in CUMS-depressed mice by reducing the release of inflammatory response factors and hippocampus nerve injury factors, and effectively alleviate inflammatory injury in the hippocampus of depressed mice.
Collapse
Affiliation(s)
- Liu Ruilian
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China.
| | - Qu Honglin
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China.
| | - Xie Jun
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Long Jianxin
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Bai Qingyun
- Jiangxi Key Lab of Natural Drug Research, College of Chemistry and Bioengineering, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Chen Yilin
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| | - Mao Haifeng
- College of Physical Education, Yichun University, Yichun 336000, Jiangxi Province, China
| |
Collapse
|
9
|
Wei Y, Wu L, Wang Y, Liu J, Miao P, Wang K, Wang C, Cheng J. Disrupted Regional Cerebral Blood Flow and Functional Connectivity in Pontine Infarction: A Longitudinal MRI Study. Front Aging Neurosci 2020; 12:577899. [PMID: 33328960 PMCID: PMC7710811 DOI: 10.3389/fnagi.2020.577899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022] Open
Abstract
Abnormal cerebral blood flow (CBF) and resting-state functional connectivity (rs-FC) are sensitive biomarkers of disease progression and prognosis. This study investigated neural underpinnings of motor and cognitive recovery by longitudinally studying the changes of CBF and FC in pontine infarction (PI). Twenty patients underwent three-dimensional pseudo-continuous arterial spin labeling (3D-pcASL), resting-state functional magnetic resonance imaging (rs-fMRI) scans, and behavioral assessments at 1 week, 1, 3, and 6 months after stroke. Twenty normal control (NC) subjects underwent the same examination once. First, we investigated CBF changes in the acute stage, and longitudinal changes from 1 week to 6 months after PI. Brain regions with longitudinal CBF changes were then used as seeds to investigate longitudinal FC alterations during the follow-up period. Compared with NC, patients in the left PI (LPI) and right PI (RPI) groups showed significant CBF alterations in the bilateral cerebellum and some supratentorial brain regions at the baseline stage. Longitudinal analysis revealed that altered CBF values in the right supramarginal (SMG_R) for the LPI group, while the RPI group showed significantly dynamic changes of CBF in the left calcarine sulcus (CAL_L), middle occipital gyrus (MOG_L), and right supplementary motor area (SMA_R). Using the SMG_R as the seed in the LPI group, FC changes were found in the MOG_L, middle temporal gyrus (MTG_L), and prefrontal lobe (IFG_L). Correlation analysis showed that longitudinal CBF changes in the SMG_R and FC values between the SMG_R and MOG_L were associated with motor and memory scores in the LPI group, and longitudinal CBF changes in the CAL_L and SMA_R were related to memory and motor recovery in the RPI group. These longitudinal CBF and accompany FC alterations may provide insights into the neural mechanism underlying functional recovery after PI, including that of motor and cognitive functions.
Collapse
Affiliation(s)
- Ying Wei
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luobing Wu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peifang Miao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Beijing, China
| | - Caihong Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|