1
|
Yu S, Chen X, Yang T, Cheng J, Liu E, Jiang L, Song M, Shu H, Ma Y. Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention. Rev Neurosci 2024; 35:895-916. [PMID: 38967133 DOI: 10.1515/revneuro-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
Collapse
Affiliation(s)
- Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Tao Yang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jingmin Cheng
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Enyu Liu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Lingli Jiang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Yuan Ma
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
2
|
Liu C, Chen X, Yang S, Wang X, Sun P, Wang J, Zhu G. Insight into cerebral microvessel endothelial regulation of cognitive impairment: A systematic review of the causes and consequences. Exp Neurol 2024; 385:115116. [PMID: 39675515 DOI: 10.1016/j.expneurol.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Research on cognitive impairment (CI) has increasingly focused on the central nervous system, identifying numerous neuronal targets and circuits of relevance for CI pathogenesis and treatment. Brain microvascular endothelial cells (BMECs) form a barrier between the peripheral and central nervous systems, constituting the primary component of the blood-brain barrier (BBB) and playing a vital role in maintaining neural homeostasis. Stemming from the recognition of the close link between vascular dysfunction and CI, in recent years intense research has been devoted to characterize the pathological changes and molecular mechanisms underlying BMEC dysfunction both during normal aging and in disorders of cognition such as Alzheimer's disease and vascular dementia. In this review, keywords such as "dementia", "cognitive impairment", and "endothelium" were used to search PubMed and Web of Science. Based on the literature thus retrieved, we first review some common triggers of CI, i.e., amyloid beta and tau deposition, chronic cerebral hypoperfusion, hyperglycemia, viral infections, and neuroinflammation, and describe the specific mechanisms responsible for endothelial damage. Second, we review molecular aspects of endothelial damage leading to BBB disruption, neuronal injury, and myelin degeneration, which are crucial events underlying CI. Finally, we summarize the potential targets of endothelial damage in the development of cognitive dysfunction associated with Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and physiological aging. A thorough understanding of the induction mechanism and potential outcomes of microvascular endothelial damage is of great significance for the study of CI, to guide both diagnostic and therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Chang Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyu Chen
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peiyang Sun
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
3
|
Li F, Jia Y, Fang J, Gong L, Zhang Y, Wei S, Wu L, Jiang P. Neuroprotective Mechanism of MOTS-c in TBI Mice: Insights from Integrated Transcriptomic and Metabolomic Analyses. Drug Des Devel Ther 2024; 18:2971-2987. [PMID: 39050800 PMCID: PMC11268520 DOI: 10.2147/dddt.s460265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a condition characterized by structural and physiological disruptions in brain function caused by external forces. However, as the highly complex and heterogenous nature of TBI, effective treatments are currently lacking. Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) has shown notable antinociceptive and anti-inflammatory effects, yet its detailed neuroprotective effects and mode of action remain incompletely understood. This study investigated the neuroprotective effects and the underlying mechanisms of MOTS-c. Methods Adult male C57BL/6 mice were randomly divided into three groups: control (CON) group, MOTS-c group and TBI group. Enzyme-linked immunosorbent assay (ELISA) kit method was used to measure the expression levels of MOTS-c in different groups. Behavioral tests were conducted to assess the effects of MOTS-c. Then, transcriptomics and metabolomics were performed to search Differentially Expressed Genes (DEGs) and Differentially Expressed Metabolites (DEMs), respectively. Moreover, the integrated transcriptomics and metabolomics analysis were employed using R packages and online Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results ELISA kit method showed that TBI resulted in a decrease in the expression of MOTS-c. and peripheral administration of MOTS-c could enter the brain tissue after TBI. Behavioral tests revealed that MOTS-c improved memory, learning, and motor function impairments in TBI mice. Additionally, transcriptomic analysis screened 159 differentially expressed genes. Metabolomic analysis identified 491 metabolites with significant differences. Integrated analysis found 14 KEGG pathways, primarily related to metabolic pathways. Besides, several signaling pathways were enriched, including neuroactive ligand-receptor interaction and retrograde endocannabinoid signaling. Conclusion TBI reduced the expression of MOTS-c. MOTS-c reduced inflammatory responses, molecular damage, and cell death by down-regulating macrophage migration inhibitory factor (MIF) expression and activating the retrograde endocannabinoid signaling pathway. In addition, MOTS-c alleviated the response to hypoxic stress and enhanced lipid β-oxidation to provide energy for the body following TBI. Overall, our study offered new insights into the neuroprotective mechanisms of MOTS-c in TBI mice.
Collapse
Affiliation(s)
- Fengfeng Li
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yang Jia
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Jun Fang
- Anesthesiology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Linqiang Gong
- Gastroenterology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yazhou Zhang
- Foot and Ankle Surgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Shanshan Wei
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
4
|
Wasielewska JM, Szostak K, McInnes LE, Quek H, Chaves JCS, Liddell JR, Koistinaho J, Oikari LE, Donnelly PS, White AR. Patient-Derived Blood-Brain Barrier Model for Screening Copper Bis(thiosemicarbazone) Complexes as Potential Therapeutics in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1432-1455. [PMID: 38477556 DOI: 10.1021/acschemneuro.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Kathryn Szostak
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan E McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jari Koistinaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki 00014,Finland
- Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
5
|
Sakamoto R, Kamoda T, Sato K, Ogoh S, Katayose M, Neki T, Iwamoto E. Acute aerobic exercise enhances cerebrovascular shear-mediated dilation in young adults: the role of cerebral shear. J Appl Physiol (1985) 2024; 136:535-548. [PMID: 38153849 DOI: 10.1152/japplphysiol.00543.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023] Open
Abstract
Exercise-induced increases in shear rate (SR) acutely improve peripheral endothelial function, but the presence of this mechanism in cerebral arteries remains unclear. Thus, we evaluated shear-mediated dilation of the internal carotid artery (ICA), which is an index of cerebrovascular endothelial function, before and after exercise. Shear-mediated dilation was measured with 30 s of hypercapnia in 16 young adults before and 10 min after 30 min of sitting rest (CON) or three cycling exercises on four separate days. The target exercise intensity was 80% of oxygen uptake at the ventilatory threshold. To manipulate the ICA SR during exercise, participants breathed spontaneously (ExSB, SR increase) or hyperventilated without (ExHV, no increase in SR) or with ([Formula: see text], restoration of SR increase) addition of CO2 to inspiratory air. Shear-mediated dilation was calculated as a percent increase in diameter from baseline. Doppler ultrasound measures ICA velocity and diameter. The CON trial revealed that 30 min of sitting did not alter shear-mediated dilation (4.34 ± 1.37% to 3.44 ± 1.23%, P = 0.052). ICA dilation after exercise compared with preexercise levels increased in the ExSB trial (3.32 ± 1.37% to 4.74 ± 1.84%, P < 0.01), remained unchanged in the ExHV trial (4.07 ± 1.55% to 3.21 ± 1.48%, P = 0.07), but was elevated in the [Formula: see text] trial (3.35 ± 1.15% to 4.33 ± 2.12%, P = 0.04). Our results indicate that exercise-induced increases in cerebral shear may play a crucial role in improving cerebrovascular endothelial function after acute exercise in young adults.NEW & NOTEWORTHY We found that 30-min cycling (target intensity was 80% of the ventilatory threshold) with increasing shear of the internal carotid artery (ICA) enhanced transient hypercapnia-induced shear-mediated dilation of the ICA, reflecting improved cerebrovascular endothelial function. This enhancement of ICA dilation was diminished by suppressing the exercise-induced increase in ICA shear via hyperventilation. Our results indicate that increases in cerebral shear may be a key stimulus for improving cerebrovascular endothelial function after exercise in young adults.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tatsuki Kamoda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Kohei Sato
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Masaki Katayose
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
6
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Seto M, Dumitrescu L, Mahoney ER, Sclafani AM, De Jager PL, Menon V, Koran MEI, Robinson RA, Ruderfer DM, Cox NJ, Seyfried NT, Jefferson AL, Schneider JA, Bennett DA, Petyuk VA, Hohman TJ. Multi-omic characterization of brain changes in the vascular endothelial growth factor family during aging and Alzheimer's disease. Neurobiol Aging 2023; 126:25-33. [PMID: 36905877 PMCID: PMC10106439 DOI: 10.1016/j.neurobiolaging.2023.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The vascular endothelial growth factor (VEGF) signaling family has been implicated in neuroprotection and clinical progression in Alzheimer's disease (AD). Previous work in postmortem human dorsolateral prefrontal cortex demonstrated that higher transcript levels of VEGFB, PGF, FLT1, and FLT4 are associated with AD dementia, worse cognitive outcomes, and higher AD neuropathology. To expand prior work, we leveraged bulk RNA sequencing data, single nucleus RNA (snRNA) sequencing, and both tandem mass tag and selected reaction monitoring mass spectrometry proteomic measures from the post-mortem brain. Outcomes included AD diagnosis, cognition, and AD neuropathology. We replicated previously reported VEGFB and FLT1 results, whereby higher expression was associated with worse outcomes, and snRNA results suggest microglia, oligodendrocytes, and endothelia may play a central role in these associations. Additionally, FLT4 and NRP2 expression were associated with better cognitive outcomes. This study provides a comprehensive molecular picture of the VEGF signaling family in cognitive aging and AD and critical insight towards the biomarker and therapeutic potential of VEGF family members in AD.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annah M Sclafani
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary E I Koran
- Department of Radiology, Stanford Hospital, Stanford, CA, USA
| | - Renã A Robinson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Myeloid-derived MIF drives RIPK1-mediated cerebromicrovascular endothelial cell death to exacerbate ischemic brain injury. Proc Natl Acad Sci U S A 2023; 120:e2219091120. [PMID: 36693098 PMCID: PMC9945963 DOI: 10.1073/pnas.2219091120] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a multifaced protein that plays important roles in multiple inflammatory conditions. However, the role of MIF in endothelial cell (EC) death under inflammatory condition remains largely unknown. Here we show that MIF actively promotes receptor-interacting protein kinase 1 (RIPK1)-mediated cell death under oxygen-glucose deprivation condition. MIF expression is induced by surgical trauma in peripheral myeloid cells both in perioperative humans and mice. We demonstrate that MIF-loaded myeloid cells induced by peripheral surgery adhere to the brain ECs after distal middle cerebral artery occlusion (dMCAO) and exacerbate the blood-brain barrier (BBB) disruption. Genetic depletion of myeloid-derived MIF in perioperative ischemic stroke (PIS) mice with MCAO following a surgical insult leads to significant reduction in ECs apoptosis and necroptosis and the associated BBB disruption. The adoptive transfer of peripheral blood mononuclear cells (PBMC) from surgical MIFΔLyz2 mice to wild-type (WT) MCAO mice also shows reduced ECs apoptosis and necroptosis compared to the transfer of PBMC from surgical MIFf l/f l mice to MCAO recipients. The genetic inhibition of RIPK1 also attenuates BBB disruption and ECs death compared to that of WT mice in PIS. The administration of MIF inhibitor (ISO-1) and RIPK1 inhibitor (Nec-1s) can both reduce the brain EC death and neurological deficits following PIS. We conclude that myeloid-derived MIF promotes ECs apoptosis and necroptosis through RIPK1 kinase-dependent pathway. The above findings may provide insights into the mechanism as how peripheral inflammation promotes the pathology in central nervous system.
Collapse
|
9
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
10
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
11
|
Teixeira L, Temerozo JR, Pereira-Dutra FS, Ferreira AC, Mattos M, Gonçalves BS, Sacramento CQ, Palhinha L, Cunha-Fernandes T, Dias SSG, Soares VC, Barreto EA, Cesar-Silva D, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, Reis PA, Hottz ED, Bozza FA, Bou-Habib DC, Saraiva EM, de Almeida CJG, Viola JPB, Souza TML, Bozza PT. Simvastatin Downregulates the SARS-CoV-2-Induced Inflammatory Response and Impairs Viral Infection Through Disruption of Lipid Rafts. Front Immunol 2022; 13:820131. [PMID: 35251001 PMCID: PMC8895251 DOI: 10.3389/fimmu.2022.820131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.
Collapse
Affiliation(s)
- Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - André Costa Ferreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, Brazil
| | - Mayara Mattos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Barbara Simonson Gonçalves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Suelen S. G. Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ester A. Barreto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Camila R. R. Pão
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Caroline S. de Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia A. Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Dumith C. Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília J. G. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Patrícia T. Bozza, ;
| |
Collapse
|
12
|
Hoyles L, Pontifex MG, Rodriguez-Ramiro I, Anis-Alavi MA, Jelane KS, Snelling T, Solito E, Fonseca S, Carvalho AL, Carding SR, Müller M, Glen RC, Vauzour D, McArthur S. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. MICROBIOME 2021; 9:235. [PMID: 34836554 PMCID: PMC8626999 DOI: 10.1186/s40168-021-01181-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Communication between the gut microbiota and the brain is primarily mediated via soluble microbe-derived metabolites, but the details of this pathway remain poorly defined. Methylamines produced by microbial metabolism of dietary choline and L-carnitine have received attention due to their proposed association with vascular disease, but their effects upon the cerebrovascular circulation have hitherto not been studied. RESULTS Here, we use an integrated in vitro/in vivo approach to show that physiologically relevant concentrations of the dietary methylamine trimethylamine N-oxide (TMAO) enhanced blood-brain barrier (BBB) integrity and protected it from inflammatory insult, acting through the tight junction regulator annexin A1. In contrast, the TMAO precursor trimethylamine (TMA) impaired BBB function and disrupted tight junction integrity. Moreover, we show that long-term exposure to TMAO protects murine cognitive function from inflammatory challenge, acting to limit astrocyte and microglial reactivity in a brain region-specific manner. CONCLUSION Our findings demonstrate the mechanisms through which microbiome-associated methylamines directly interact with the mammalian BBB, with consequences for cerebrovascular and cognitive function. Video abstract.
Collapse
Affiliation(s)
- Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK.
| | | | - Ildefonso Rodriguez-Ramiro
- Norwich Medical School, University of East Anglia, Norwich, UK
- Metabolic Syndrome Group, Madrid Institute for Advanced Studies (IMDEA) in Food, E28049, Madrid, Spain
| | - M Areeb Anis-Alavi
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Khadija S Jelane
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Tom Snelling
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Federico II University, Naples, Italy
| | - Sonia Fonseca
- The Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Ana L Carvalho
- The Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Simon R Carding
- Norwich Medical School, University of East Anglia, Norwich, UK
- The Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Robert C Glen
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
13
|
Chen X, Gao F, Lin C, Chen A, Deng J, Chen P, Lin M, Xie B, Liao Y, Gong C, Zheng X. mTOR-mediated autophagy in the hippocampus is involved in perioperative neurocognitive disorders in diabetic rats. CNS Neurosci Ther 2021; 28:540-553. [PMID: 34784444 PMCID: PMC8928925 DOI: 10.1111/cns.13762] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Perioperative neurocognitive disorders (PND) are common neurological complications after surgery. Diabetes mellitus (DM) has been reported to be an independent risk factor for PND, but little is known about its mechanism of action. Mammalian target of rapamycin (mTOR) signaling is crucial for neuronal growth, development, apoptosis, and autophagy, but the dysregulation of mTOR signaling leads to neurological disorders. The present study investigated whether rapamycin can attenuate PND by inhibiting mTOR and activating autophagy in diabetic rats. Methods Male diabetic Sprague‐Dawley rats underwent tibial fracture surgery under isoflurane anesthesia to establish a PND model. Cognitive functions were examined using the Morris water maze test. The levels of phosphorylated mTOR (p‐mTOR), phosphorylated tau (p‐tau), autophagy‐related proteins (Beclin‐1, LC3), and apoptosis‐related proteins (Bax, Bcl‐2, cleaved caspase‐3) in the hippocampus were examined on postoperative days 3, 7, and 14 by Western blot. Hippocampal amyloid β (Aβ) levels were examined by immunohistochemistry. Results The data showed that surgical trauma and/or DM impaired cognitive function, induced mTOR activation, and decreased Beclin‐1 levels and the LC3‐II/I ratio. The levels of Aβ and p‐tau and the hippocampal apoptotic responses were significantly higher in diabetic or surgery‐treated rats than in control rats and were further increased in diabetic rats subjected to surgery. Pretreatment of rats with rapamycin inhibited mTOR hyperactivation and restored autophagic function, effectively decreasing tau hyperphosphorylation, Aβ deposition, and apoptosis in the hippocampus. Furthermore, surgical trauma‐induced neurocognitive disorders were also reversed by pretreatment of diabetic rats with rapamycin. Conclusion The results demonstrate that mTOR hyperactivation regulates autophagy, playing a critical role in the mechanism underlying PND, and reveal that the modulation of mTOR signaling could be a promising therapeutic strategy for PND in patients with diabetes.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Cuicui Lin
- Department of Anesthesiology, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Mingxue Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Bingxin Xie
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Cansheng Gong
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.,Fujian Provincial Institute of Emergency Medicine, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China
| |
Collapse
|