1
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2024; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
2
|
Diwan D, Mehla J, Nelson JW, Quirk JD, Song S, Cao S, Meron B, Mostofa A, Zipfel GJ. Development and Validation of a Prechiasmatic Mouse Model of Subarachnoid Hemorrhage to Measure Long-Term Cognitive Deficits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403977. [PMID: 39443821 PMCID: PMC11633547 DOI: 10.1002/advs.202403977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Controllable and reproducible animal models of aneurysmal subarachnoid hemorrhage (SAH) are crucial for the systematic study of the pathophysiology and treatment of this debilitating condition. However, current animal models have not been successful in replicating the pathology and disabilities seen in SAH patients, especially the long-term neurocognitive deficits that affect the survivor's quality of life. Therefore, there is an unmet need to develop experimental models that reliably replicate the long-term clinical ramifications of SAH - especially in mice where genetic manipulations are straightforward and readily available. To address this need, a standardized mouse SAH model is developed that reproducibly produced significant and trackable long-term cognitive deficits. SAH is induced by performing double blood injections into the prechiasmatic cistern - a simple modification to the well-characterized single prechiasmatic injection mouse model of SAH. Following SAH, mice recapitulated key characteristics of SAH patients, including cerebral edema measured by MRI - an indicator of early brain injury (EBI), neuroinflammation, apoptosis, and long-term cognitive impairment. This newly developed SAH mouse model is considered an ideal paradigm for investigating the complex SAH pathophysiology and identifying novel druggable therapeutic targets for treating SAH severity and SAH-associated long-term neurocognitive deficits in patients.
Collapse
Affiliation(s)
- Deepti Diwan
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Jogender Mehla
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - James W. Nelson
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - James D. Quirk
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO63110USA
| | - Sheng‐Kwei Song
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO63110USA
| | - Sarah Cao
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Benjamin Meron
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Aminah Mostofa
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Gregory J. Zipfel
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| |
Collapse
|
3
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
4
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
5
|
Wang G, Lin N. NAD-Dependent Protein Deacetylase Sirtuin-1 Mediated Mitophagy Regulates Early Brain Injury After Subarachnoid Hemorrhage. J Inflamm Res 2024; 17:1971-1981. [PMID: 38562659 PMCID: PMC10984195 DOI: 10.2147/jir.s451922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background This study focuses on the role of SIRT1 in neuroinflammation caused by early brain injury (EBI) after subarachnoid hemorrhage (SAH), and explores its mechanism in mitophagy after SAH. Methods C57BL/6J mice and primary microglia SAH in vivo and in vitro models were constructed to explore the expression level of SIRT1 in neuroinflammation after SAH. Subsequently, the brain edema content, blood-brain barrier (BBB) damage and neurological function scores of the mice were observed after using the SIRT1 inhibitor EX-527. q-PCR and Western blot were used to detect relevant genes and proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of IL-6, IL-1β, and TNF-α inflammatory factors. Immunofluorescence staining was used to observe the positive level of SIRT1 and the degree of mitochondria-lysosome fusion, and transmission electron microscopy was used to observe mitochondrial damage and autophagosome levels. Results In in vivo and in vitro experiments, we found that SIRT1 expression increased after SAH, and neurological deficits, brain edema, and blood-brain barrier damage after SAH were aggravated. Inhibiting SIRT1 further aggravates the aforementioned damage. In addition, EX-527 can also inhibit the level of mitophagy and aggravate neuroinflammation after SAH. Conclusion Our results indicated that SIRT1 promotes mitophagy and alleviates neuroinflammation after SAH.
Collapse
Affiliation(s)
- Gen Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), Chuzhou, Anhui Province, People’s Republic of China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), Chuzhou, Anhui Province, People’s Republic of China
| |
Collapse
|
6
|
Pugazenthi S, Norris AJ, Lauzier DC, Lele AV, Huguenard A, Dhar R, Zipfel GJ, Athiraman U. Conditioning-based therapeutics for aneurysmal subarachnoid hemorrhage - A critical review. J Cereb Blood Flow Metab 2024; 44:317-332. [PMID: 38017387 PMCID: PMC10870969 DOI: 10.1177/0271678x231218908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) carries significant mortality and morbidity, with nearly half of SAH survivors having major cognitive dysfunction that impairs their functional status, emotional health, and quality of life. Apart from the initial hemorrhage severity, secondary brain injury due to early brain injury and delayed cerebral ischemia plays a leading role in patient outcome after SAH. While many strategies to combat secondary brain injury have been developed in preclinical studies and tested in late phase clinical trials, only one (nimodipine) has proven efficacious for improving long-term functional outcome. The causes of these failures are likely multitude, but include use of therapies targeting only one element of what has proven to be multifactorial brain injury process. Conditioning is a therapeutic strategy that leverages endogenous protective mechanisms to exert powerful and remarkably pleiotropic protective effects against injury to all major cell types of the CNS. The aim of this article is to review the current body of evidence for the use of conditioning agents in SAH, summarize the underlying neuroprotective mechanisms, and identify gaps in the current literature to guide future investigation with the long-term goal of identifying a conditioning-based therapeutic that significantly improves functional and cognitive outcomes for SAH patients.
Collapse
Affiliation(s)
- Sangami Pugazenthi
- Department of Neurological Surgery, Washington University, St. Louis MO, USA
| | - Aaron J Norris
- Department of Anesthesiology, Washington University, St. Louis MO, USA
| | - David C Lauzier
- Department of Neurological Surgery, University of California, Los Angeles, CA, USA
| | - Abhijit V Lele
- Department of Anesthesiology, University of Washington, Seattle, WA, USA
| | - Anna Huguenard
- Department of Neurological Surgery, Washington University, St. Louis MO, USA
| | - Rajat Dhar
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Gregory J Zipfel
- Departments of Neurological Surgery and Neurology, Washington University, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology and Neurological Surgery, Washington University, St. Louis, MO, USA
| |
Collapse
|
7
|
Xia D, Yuan J, Wu D, Dai H, Zhuang Z. Salvianolic acid B ameliorates neuroinflammation and neuronal injury via blocking NLRP3 inflammasome and promoting SIRT1 in experimental subarachnoid hemorrhage. Front Immunol 2023; 14:1159958. [PMID: 37564636 PMCID: PMC10410262 DOI: 10.3389/fimmu.2023.1159958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated immuno-inflammatory response plays a critical role in exacerbating early brain injury (EBI) after subarachnoid hemorrhage (SAH). Salvianolic acid B (SalB) has previously been shown to suppress neuroinflammatory responses in many disorders. Meanwhile, a previous study has demonstrated that SalB mitigated oxidative damage and neuronal degeneration in a prechiasmatic injection model of SAH. However, the therapeutic potential of SalB on immuno-inflammatory responses after SAH remains unclear. In the present study, we explored the therapeutic effects of SalB on neuroinflammatory responses in an endovascular perforation SAH model. We observed that SalB ameliorated SAH-induced functional deficits. Additionally, SalB significantly mitigated microglial activation, pro-inflammatory cytokines release, and neuronal injury. Mechanistically, SalB inhibited NLRP3 inflammasome activation and increased sirtuin 1 (SIRT1) expression after SAH. Administration of EX527, an inhibitor of SIRT1, abrogated the anti-inflammatory effects of SalB against SAH and further induced NLRP3 inflammasome activation. In contrast, MCC950, a potent and selective NLRP3 inflammasome inhibitor, reversed the detrimental effects of SIRT1 inhibition by EX527 on EBI. These results indicated that SalB effectively repressed neuroinflammatory responses and neuronal damage after SAH. The action of SalB appeared to be mediated by blocking NLRP3 inflammasome and promoting SIRT1 signaling.
Collapse
Affiliation(s)
- Dayong Xia
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Jinlong Yuan
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Degang Wu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Haibin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Chu D, Li X, Qu X, Diwan D, Warner DS, Zipfel GJ, Sheng H. SIRT1 Activation Promotes Long-Term Functional Recovery After Subarachnoid Hemorrhage in Rats. Neurocrit Care 2023; 38:622-632. [PMID: 36224490 PMCID: PMC11531602 DOI: 10.1007/s12028-022-01614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND An increase in sirtuin 1 (SIRT1) reportedly attenuates early brain injury, delayed cerebral ischemia, and short-term neurologic deficits in rodent models of subarachnoid hemorrhage (SAH). This study investigates the effect of resveratrol, a SIRT1 activator, on long-term functional recovery in a clinically relevant rat model of SAH. METHODS Thirty male Wistar rats were subjected to fresh arterial blood injection into the prechiasmatic space and randomized to receive 7 days of intraperitoneal resveratrol (20 mg/kg) or vehicle injections. Body weight and rotarod performance were measured on days 0, 3, 7, and 34 post SAH. The neurologic score was assessed 7 and 34 days post SAH. Morris water maze performance was evaluated 29-33 days post SAH. Brain SIRT1 activity and CA1 neuronal survival were also assessed. RESULTS Blood pressure rapidly increased in all SAH rats, and no between-group differences in blood pressure, blood gases, or glucose were detected. SAH induced weight loss during the first 7 days, which gradually recovered in both groups. Neurologic score and rotarod performance were significantly improved after resveratrol treatment at 34 days post SAH (p = 0.01 and 0.04, respectively). Latency to find the Morris water maze hidden platform was shortened (p = 0.02). In the resveratrol group, more CA1 neurons survived following SAH (p = 0.1). An increase in brain SIRT1 activity was confirmed in the resveratrol group (p < 0.05). CONCLUSIONS Treatment with resveratrol for 1 week significantly improved the neurologic score, rotarod performance, and latency to find the Morris water maze hidden platform 34 days post SAH. These findings indicate that SIRT1 activation warrants further investigation as a mechanistic target for SAH therapy.
Collapse
Affiliation(s)
- Dongmei Chu
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Pediatrics, The Fifth Central Hospital of Tianjin, Tanggu District, Tianjin, China
| | - Xuan Li
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xingguang Qu
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Intensive Care Unit, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Warner
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
White BR, Chan C, Adepoju T, Shinohara RT, Vandekar S. Controlling the familywise error rate in widefield optical neuroimaging of functional connectivity in mice. NEUROPHOTONICS 2023; 10:015004. [PMID: 36756004 PMCID: PMC9896098 DOI: 10.1117/1.nph.10.1.015004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Significance Statistical inference in functional neuroimaging is complicated by the multiple testing problem and spatial autocorrelation. Common methods in functional magnetic resonance imaging to control the familywise error rate (FWER) include random field theory (RFT) and permutation testing. The ability of these methods to control the FWER in optical neuroimaging has not been evaluated. Aim We attempt to control the FWER in optical intrinsic signal imaging resting-state functional connectivity using both RFT and permutation inference at a nominal value of 0.05. The FWER was derived using a mass empirical analysis of real data in which the null is known to be true. Approach Data from normal mice were repeatedly divided into two groups, and differences between functional connectivity maps were calculated with pixel-wise t -tests. As the null hypothesis was always true, all positives were false positives. Results Gaussian RFT resulted in a higher than expected FWER with either cluster-based (0.15) or pixel-based (0.62) methods. t -distribution RFT could achieve FWERs of 0.05 (cluster-based or pixel-based). Permutation inference always controlled the FWER. Conclusions RFT can lead to highly inflated FWERs. Although t -distribution RFT can be accurate, it is sensitive to statistical assumptions. Permutation inference is robust to statistical errors and accurately controls the FWER.
Collapse
Affiliation(s)
- Brian R. White
- University of Pennsylvania, Children’s Hospital of Philadelphia, Perelman School of Medicine, Division of Cardiology, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Claudia Chan
- University of Pennsylvania, Children’s Hospital of Philadelphia, Perelman School of Medicine, Division of Cardiology, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Temilola Adepoju
- University of Pennsylvania, Children’s Hospital of Philadelphia, Perelman School of Medicine, Division of Cardiology, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Russell T. Shinohara
- University of Pennsylvania, Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Center for Biomedical Image Computing and Analysis, Department of Radiology, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania, United States
| | - Simon Vandekar
- Vanderbilt University, Department of Biostatistics, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Pterostilbene Attenuates Subarachnoid Hemorrhage-Induced Brain Injury through the SIRT1-Dependent Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3550204. [PMID: 36506933 PMCID: PMC9729048 DOI: 10.1155/2022/3550204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Neuroinflammatory injury, oxidative insults, and neuronal apoptosis are major causes of poor outcomes after subarachnoid hemorrhage (SAH). Pterostilbene (PTE), an analog of resveratrol, has been verified as a potent sirtuin 1 (SIRT1) activator. However, the beneficial actions of PTE on SAH-induced brain injury and whether PTE regulates SIRT1 signaling after SAH remain unknown. We first evaluated the dose-response influence of PTE on early brain impairment after SAH. In addition, EX527 was administered to suppress SIRT1 signaling. The results revealed that PTE significantly attenuated microglia activation, oxidative insults, neuronal damage, and early neurological deterioration. Mechanistically, PTE effectively enhanced SIRT1 expression and promoted nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation in nuclei. Furthermore, EX527 pretreatment distinctly repressed PTE-induced SIRT1 and Nrf2 activation and deteriorated these beneficial outcomes. In all, our study provides the evidence that PTE protects against SAH insults by activating SIRT1-dependent Nrf2 signaling pathway. PTE might be a therapeutic alternative for SAH.
Collapse
|
11
|
Tan J, Song R, Luo S, Fu W, Ma Y, Zheng L, He Z. Efficacy of Resveratrol in Experimental Subarachnoid Hemorrhage Animal Models: A Stratified Meta-Analysis. Front Pharmacol 2022; 13:905208. [PMID: 35847035 PMCID: PMC9277348 DOI: 10.3389/fphar.2022.905208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a serious neurosurgical emergency with extremely high morbidity and mortality rates. Resveratrol (RES), a natural polyphenolic phytoalexin, is broadly presented in a wide variety of plants. Previous research had reasonably revealed its neuroprotective effects on experimental SAH animal models to some extent. But the results were more controversial. Therefore, we conducted a meta-analysis to evaluate the evidence on the effectiveness of RES in improving outcomes in SAH animal models. Methods: A systematic literature review was conducted in PubMed, EMBASE, and Web of Science databases to incorporate experimental control studies on the efficacy of RES on SAH models into our research. The standardized mean difference (SMD) was used to compare the brain water content (BWC) and neurological score (NS) between the treatment and control groups. Results: Overall, 16 articles published from 2014 to 2022 met the inclusion criteria. The meta-analysis of BWC showed a significant difference in favor of RES treatment (SMD: -1.026; 95% CI: -1.380, -0.672; p = 0.000) with significant heterogeneity (Q = 84.97; I2 = 60.0%; p = 0.000). Further stratified analysis was performed for methodological differences, especially dosage, time of treatments, and time-point of outcome assessment. The meta-analysis of NS showed a significant difference in favor of RES treatment (SMD: 1.342; 95% CI: 1.089, 1.595; p = 0.000) with low heterogeneity (Q = 25.58; I2 = 17.9%; p = 0.223). Conclusion: Generally, RES treatment showed an improvement in both pathological and behavioral outcomes in SAH animal models. The results of this study may provide a reference for preclinical and clinical studies in the future to some extent, with great significance for human health.
Collapse
Affiliation(s)
- Jiahe Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyue Luo
- Clinical Medicine, The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinrui Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian Zheng
- Department of Neurosurgery, The Fifth People's Hospital of Chongqing Municipality, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|