1
|
Destrebecq V, Naeije G. Cognitive impairment in essential tremor assessed by the cerebellar cognitive affective syndrome scale. Front Neurol 2023; 14:1224478. [PMID: 37662041 PMCID: PMC10473101 DOI: 10.3389/fneur.2023.1224478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Background Essential tremor (ET) is a movement disorder characterized by cerebellar neurodegenerative changes. ET is also associated with non-motor symptoms including cognitive impairment. The neuropsychologic profile of a patient with ET could relate to cerebellar cognitive affective syndrome (CCAS). Objective This study aimed to assess the prevalence of cognitive impairment in patients with ET and identify whether the cognitive impairment in ET corresponds to a CCAS. Methods Cognitive functions were evaluated with the CCAS-Scale (CCAS-S) in 20 patients with ET and 20 controls matched for age, sex, and level of education. The results of the CCAS-S were compared between patients and controls. The underlying determinant of CCAS inpatients with ET was identified through the correlation between the results of the CCAS-S and age at onset of symptoms, disease duration, and the Essential Tremor Rating Assessment Scale (TETRAS). Results On a group level, ET patients performed significantly worse than matched controls. In total, 13 individuals with ET had a definite CCAS (CCAS-S failed items ≥ 3). ASO and TETRAS scores significantly correlated with CCAS-S performances in ET patients. Conclusion CCAS is highly prevalent in patients with ET which supports the cerebellar pathophysiology of associated cognitive impairment and supports a more systematic use of the CCAS-S to cognitively assessed patients with ET.
Collapse
Affiliation(s)
- Virginie Destrebecq
- Clinique Universitaire de Bruxelles (CUB) Hôpital Erasme, Department of Neurology, Université Libre de Bruxelles, Brussels, Belgium
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilles Naeije
- Clinique Universitaire de Bruxelles (CUB) Hôpital Erasme, Department of Neurology, Université Libre de Bruxelles, Brussels, Belgium
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Timmers ER, Klamer MR, Marapin RS, Lammertsma AA, de Jong BM, Dierckx RAJO, Tijssen MAJ. [ 18F]FDG PET in conditions associated with hyperkinetic movement disorders and ataxia: a systematic review. Eur J Nucl Med Mol Imaging 2023; 50:1954-1973. [PMID: 36702928 PMCID: PMC10199862 DOI: 10.1007/s00259-023-06110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE To give a comprehensive literature overview of alterations in regional cerebral glucose metabolism, measured using [18F]FDG PET, in conditions associated with hyperkinetic movement disorders and ataxia. In addition, correlations between glucose metabolism and clinical variables as well as the effect of treatment on glucose metabolism are discussed. METHODS A systematic literature search was performed according to PRISMA guidelines. Studies concerning tremors, tics, dystonia, ataxia, chorea, myoclonus, functional movement disorders, or mixed movement disorders due to autoimmune or metabolic aetiologies were eligible for inclusion. A PubMed search was performed up to November 2021. RESULTS Of 1240 studies retrieved in the original search, 104 articles were included. Most articles concerned patients with chorea (n = 27), followed by ataxia (n = 25), dystonia (n = 20), tremor (n = 8), metabolic disease (n = 7), myoclonus (n = 6), tics (n = 6), and autoimmune disorders (n = 5). No papers on functional movement disorders were included. Altered glucose metabolism was detected in various brain regions in all movement disorders, with dystonia-related hypermetabolism of the lentiform nuclei and both hyper- and hypometabolism of the cerebellum; pronounced cerebellar hypometabolism in ataxia; and striatal hypometabolism in chorea (dominated by Huntington disease). Correlations between clinical characteristics and glucose metabolism were often described. [18F]FDG PET-showed normalization of metabolic alterations after treatment in tremors, ataxia, and chorea. CONCLUSION In all conditions with hyperkinetic movement disorders, hypo- or hypermetabolism was found in multiple, partly overlapping brain regions, and clinical characteristics often correlated with glucose metabolism. For some movement disorders, [18F]FDG PET metabolic changes reflected the effect of treatment.
Collapse
Affiliation(s)
- Elze R Timmers
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marrit R Klamer
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Ramesh S Marapin
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands.
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
3
|
Pasquini J, Ceravolo R. The Molecular Neuroimaging of Tremor. Curr Neurol Neurosci Rep 2021; 21:74. [PMID: 34817737 PMCID: PMC8613162 DOI: 10.1007/s11910-021-01157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 11/28/2022]
Abstract
Purpose of Review Tremor is a hyperkinetic movement disorder most commonly encountered in essential tremor (ET) and Parkinson’s disease (PD). The purpose of this review is to summarize molecular neuroimaging studies with major implications on pathophysiological and clinical features of tremor. Recent Findings Oscillatory brain activity responsible for tremor manifestation is thought to originate in a cerebello-thalamo-cortical network. Molecular neuroimaging has helped clarify metabolic aspects and neurotransmitter influences on the main tremor network. In ET, recent positron emission tomography (PET) studies are built on previous knowledge and highlighted the possibility of investigating metabolic brain changes after treatments, in the attempt to establish therapeutic biomarkers. In PD, molecular neuroimaging has advanced the knowledge of non-dopaminergic determinants of tremor, providing insights into serotonergic and noradrenergic contributions. Summary Recent advances have greatly extended the knowledge of tremor pathophysiology and it is now necessary to translate such knowledge in more efficacious treatments for this symptom.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy. .,Clinical Ageing Research Unit, Newcastle University, Campus for Ageing & Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK.
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|
4
|
Holtbernd F, Shah NJ. Imaging the Pathophysiology of Essential Tremor-A Systematic Review. Front Neurol 2021; 12:680254. [PMID: 34220687 PMCID: PMC8244929 DOI: 10.3389/fneur.2021.680254] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The pathophysiology underlying essential tremor (ET) still is poorly understood. Recent research suggests a pivotal role of the cerebellum in tremor genesis, and an ongoing controversy remains as to whether ET constitutes a neurodegenerative disorder. In addition, mounting evidence indicates that alterations in the gamma-aminobutyric acid neurotransmitter system are involved in ET pathophysiology. Here, we systematically review structural, functional, and metabolic neuroimaging studies and discuss current concepts of ET pathophysiology from an imaging perspective. Methods: We conducted a PubMed and Scopus search from 1966 up to December 2020, entering essential tremor in combination with any of the following search terms and their corresponding abbreviations: positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and gamma-aminobutyric acid (GABA). Results: Altered functional connectivity in the cerebellum and cerebello-thalamico-cortical circuitry is a prevalent finding in functional imaging studies. Reports from structural imaging studies are less consistent, and there is no clear evidence for cerebellar neurodegeneration. However, diffusion tensor imaging robustly points toward microstructural cerebellar changes. Radiotracer imaging suggests that the dopaminergic axis is largely preserved in ET. Similarly, measurements of nigral iron content and neuromelanin are unremarkable in most studies; this is in contrast to Parkinson's disease (PD). PET and MRS studies provide limited evidence for cerebellar and thalamic GABAergic dysfunction. Conclusions: There is robust evidence indicating that the cerebellum plays a key role within a multiple oscillator tremor network which underlies tremor genesis. However, whether cerebellar dysfunction relies on a neurodegenerative process remains unclear. Dopaminergic and iron imaging do not suggest a substantial overlap of ET with PD pathophysiology. There is limited evidence for alterations of the GABAergic neurotransmitter system in ET. The clinical, demographical, and genetic heterogeneity of ET translates into neuroimaging and likely explains the various inconsistencies reported.
Collapse
Affiliation(s)
- Florian Holtbernd
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Lan H, Suo X, Li W, Li N, Li J, Peng J, Lei D, Sweeney JA, Kemp GJ, Peng R, Gong Q. Abnormalities of intrinsic brain activity in essential tremor: A meta-analysis of resting-state functional imaging. Hum Brain Mapp 2021; 42:3156-3167. [PMID: 33769638 PMCID: PMC8193520 DOI: 10.1002/hbm.25425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroimaging studies using a variety of techniques have demonstrated abnormal patterns of spontaneous brain activity in patients with essential tremor (ET). However, the findings are variable and inconsistent, hindering understanding of underlying neuropathology. We conducted a meta‐analysis of whole‐brain resting‐state functional neuroimaging studies in ET compared to healthy controls (HC), using anisotropic effect‐size seed‐based d mapping, to identify the most consistent brain activity alterations and their relation to clinical features. After systematic literature search, we included 13 studies reporting 14 comparisons, describing 286 ET patients and 254 HC. Subgroup analyses were conducted considering medication status, head tremor status, and methodological factors. Brain activity in ET is altered not only in the cerebellum and cerebral motor cortex, but also in nonmotor cortical regions including prefrontal cortex and insula. Most of the results remained unchanged in subgroup analyses of patients with head tremor, medication‐naive patients, studies with statistical threshold correction, and the large subgroup of studies using functional magnetic resonance imaging. These findings not only show consistent and robust abnormalities in specific brain regions but also provide new information on the biology of patient heterogeneity, and thus help to elucidate the pathophysiology of ET.
Collapse
Affiliation(s)
- Huan Lan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junying Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiaxin Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Han Q, Hou Y, Shang H. A Voxel-Wise Meta-Analysis of Gray Matter Abnormalities in Essential Tremor. Front Neurol 2018; 9:495. [PMID: 29997568 PMCID: PMC6028592 DOI: 10.3389/fneur.2018.00495] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023] Open
Abstract
Objective: To identify the consistent gray matter (GM) volume changes from the whole brain voxel-based morphometry (VBM) studies on essential tremor (ET). Methods: The whole brain VBM studies comparing ET patients and healthy controls (HCs) were systematically searched in the PubMed, Embase and Web of Science from January 2000 to December 2017. Coordinates with significant differences in regional GM volume between ET patients and HCs were extracted from included studies and the meta-analysis was performed using effect size-based signed differential mapping (ES-SDM). Results: A total of 10 studies with 241 ET patients and 213 HCs were included in the meta-analysis. The consistent GM volume reduction was detected in the left precuneus extending to the left posterior cingulate gyrus. The subgroup meta-analysis which included studies performed on a 3.0 T scanner revealed significant GM volume increases in the bilateral frontal lobes, bilateral temporal lobes, left insula, left striatum and left pons, but obvious publication biases of these findings were detected through funnel plots and Egger's tests. Conclusions: The consistent result of our meta-analysis showed a structural damage in the left precuneus extending to the left posterior cingulate gyrus, which possibly played a role in the cognitive dysfunction and depression in ET patients. It might enhance our understanding of the pathophysiological mechanisms underlying ET.
Collapse
Affiliation(s)
- Qing Han
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Abstract
Essential tremor is a common neurological disease. The medical treatment of this affection currently involves the use of propranolol, primidone and other drugs. These drugs, however, are often not effective in reducing tremor and cause side effects in a large share of the patients treated. The treatment with intramuscular high-dose thiamine has led to a rapid, remarkable and persistent improvement of the symptoms in two patients with essential tremor. This result suggests the possibility that high doses of intramuscular thiamine may be an affordable alternative, highly effective and long-lasting medical treatment that has shown no relevant side effect.
Collapse
|
8
|
Belenky V, Stanzhevsky A, Klicenko O, Skoromets A. Brain positron emission tomography with 2- 18F-2-deoxi-D-glucose of patients with dystonia and essential tremor detects differences between these disorders. Neuroradiol J 2018; 31:60-68. [PMID: 28805131 PMCID: PMC5789996 DOI: 10.1177/1971400917719912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
We studied patients with dystonia (D) and essential tremor (ET) using positron emission tomography (PET) equipped with Cortex ID software. This allowed PET brain visualisation to be compared to scans of a control group by means of the z-score. The study revealed hypo-metabolism in both D and ET groups, and additionally revealed a difference between these two groups of patients in certain areas of the brain. These two nosological forms overlap in clinical features and are difficult to differentiate. The PET picture may help to provide a differential diagnosis in addition to the biochemical difference in dopamine exchange previously revealed by us in this group of patients.
Collapse
|
9
|
Abstract
Tremor is a phenomenon observed in a broad spectrum of diseases with different pathophysiologies. While patients with tremor may not complain in the clinic of symptoms of imbalance, gait difficulties, or falls, laboratory research studies using quantitative analysis of gait and posture and neurophysiologic techniques have demonstrated impaired gait and balance across a variety of tremor etiologies. These findings have been supported by careful epidemiologic studies assessing symptoms of imbalance. Imaging and neurophysiologic studies have identified cerebellar networks as important mediators of tremor, and therefore a likely common site of dysfunction to explain the phenomenologic overlap between impaired postural and gait control with tremor. Further understanding of these mechanisms and networks is of crucial importance in the development of new treatments, particularly surgical or minimally invasive lesional therapies.
Collapse
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Alessandro F Fois
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Pelzer EA, Nelles C, Pedrosa DJ, Eggers C, Burghaus L, Melzer C, Tittgemeyer M, Timmermann L. Structural differences in impaired verbal fluency in essential tremor patients compared to healthy controls. Brain Behav 2017; 7:e00722. [PMID: 28729930 PMCID: PMC5516598 DOI: 10.1002/brb3.722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 02/23/2017] [Accepted: 03/28/2017] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE We wanted to identify differences in grey and white matter in essential tremor patients compared to controls in the non-motor domain, using the example of impaired verbal fluency. BACKGROUND A disturbance of verbal fluency in essential tremor patients compared to healthy controls is behaviorally well described. METHODS Voxel-based morphometry and tract-based spatial statistics were used to analyze structural differences in grey and white matter in 19 essential tremor patients compared to 23 age- and gender-matched controls. RESULTS Several significant observations were made. (I) There was less grey matter in the predominantly right precuneus in the essential tremor group compared to controls [p < .001]. (II) In ET patients mean, axial, and radial diffusivity values broadly correlated with the tremor rating scale, pronounced in fronto-parietal regions [p < .05]. (III) In ET patients there was a significant decline in fractional anisotropy values in the corpus callosum in the correlation with verbal fluency results [p < .05]; by inclusion of the tremor rating scale as covariate of no interest this significance was however diminished to a tendency (p < .1). No significant results were found in these within-group correlations in grey matter analyses for ET patients (p > .05). CONCLUSION The present results indicate that non-motor symptoms such as verbal fluency (VBF) in ET have a structural substrate; their reproduction requires the integration of potential environmental plasticity effects, differentiation into individual clinical subtypes and a careful handling with methodological peculiarities of structural MR imaging.
Collapse
Affiliation(s)
- Esther A Pelzer
- Max Planck Institute for Metabolism Research Cologne Cologne Germany
| | - Christian Nelles
- Department of Neurology University Hospital Cologne Cologne Germany
| | - David J Pedrosa
- Department of Neurology University Hospital Cologne Cologne Germany
| | - Carsten Eggers
- Department of Neurology University Hospital Cologne Cologne Germany
| | - Lothar Burghaus
- Department of Neurology University Hospital Cologne Cologne Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research Cologne Cologne Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research Cologne Cologne Germany
| | - Lars Timmermann
- Department of Neurology University Hospital Cologne Cologne Germany
| |
Collapse
|
11
|
Nonmotor Symptoms in Essential Tremor and Other Tremor Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1373-1396. [PMID: 28805576 DOI: 10.1016/bs.irn.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tremor, like dystonia, is a term used at the phenomenological, syndromic, and aetiopathological level. Parkinsonian, essential, and dystonic tremor are the three most common tremor diagnoses encountered in clinical practice. Investigation of nonmotor symptoms in essential tremor and dystonic tremor syndromes is significantly hampered by the lack of clear clinical diagnostic criteria for these groups at a syndromic level, and the absence of biomarkers which allow definitive diagnosis at an aetiopathological level. Much work is needed in clarifying the motor features of these disorders in order to allow delineation of the nonmotor features of the most common tremor syndromes. With this limitation in mind, this chapter reviews what is known about nonmotor symptoms in these two tremor types. The final sections deal with nonmotor symptoms observed in patients with lesional tremor, thankfully a much more clearly defined albeit less common group of patients.
Collapse
|