1
|
Han H, Guo W, Ren H, Hao H, Lin X, Tian M, Xin J, Zhao P. Predictors of lung cancer subtypes and lymph node status in non-small-cell lung cancer: intravoxel incoherent motion parameters and extracellular volume fraction. Insights Imaging 2024; 15:168. [PMID: 38971908 PMCID: PMC11227484 DOI: 10.1186/s13244-024-01758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/22/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE To determine the performance of intravoxel incoherent motion (IVIM) parameters and the extracellular volume fraction (ECV) in distinguishing between different subtypes of lung cancer and predicting lymph node metastasis (LNM) status in patients with non-small-cell lung cancer (NSCLC). METHODS One hundred sixteen patients with lung cancer were prospectively recruited. IVIM, native, and postcontrast T1 mapping examinations were performed, and the T1 values were measured to calculate the ECV. The differences in IVIM parameters and ECV were compared between NSCLC and small-cell lung cancer (SCLC), adenocarcinoma (Adeno-Ca) and squamous cell carcinoma (SCC), and NSCLC without and with LNM. The assessment of each parameter's diagnostic performance was based on the area under the receiver operating characteristic curve (AUC). RESULTS The apparent diffusion coefficient (ADC), true diffusion coefficient (D), and ECV values in SCLC were considerably lower compared with NSCLC (all p < 0.001, AUC > 0.887). The D value in SCC was substantially lower compared with Adeno-Ca (p < 0.001, AUC = 0.735). The perfusion fraction (f) and ECV values in LNM patients were markedly higher compared with those without LNM patients (p < 0.01, < 0.001, AUC > 0.708). CONCLUSION IVIM parameters and ECV can serve as non-invasive biomarkers for assisting in the pathological classification and LNM status assessment of lung cancer patients. CRITICAL RELEVANCE STATEMENT IVIM parameters and ECV demonstrated remarkable potential in distinguishing pulmonary carcinoma subtypes and predicting LNM status in NSCLC. KEY POINTS Lung cancer is prevalent and differentiating subtype and invasiveness determine the treatment course. True diffusion coefficient and ECV showed promise for subtyping and determining lymph node status. These parameters could serve as non-invasive biomarkers to help determine personalized treatment strategies.
Collapse
Affiliation(s)
- Huizhi Han
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenxiu Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hong Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huiting Hao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiangtao Lin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mimi Tian
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaxiang Xin
- MR Research Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Peng Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Lei Q, Liu L, Li J, Yu K, Yin Y, Wang J, Su S, Song Y, Jiang G. Value of turbo spin echo-based diffusion-weighted imaging in the differential diagnosis of benign and malignant solitary pulmonary lesions. Sci Rep 2024; 14:9965. [PMID: 38693152 PMCID: PMC11063132 DOI: 10.1038/s41598-024-60423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
To quantitatively assess the diagnostic efficacy of multiple parameters derived from multi-b-value diffusion-weighted imaging (DWI) using turbo spin echo (TSE)-based acquisition techniques in patients with solitary pulmonary lesions (SPLs). A total of 105 patients with SPLs underwent lung DWI using single-shot TSE-based acquisition techniques and multiple b values. The apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM) parameters, and lesion-to-spinal cord signal intensity ratio (LSR), were analyzed to compare the benign and malignant groups using the Mann-Whitney U test and receiver operating characteristic analysis. The Dstar values observed in lung cancer were slightly lower than those observed in pulmonary benign lesions (28.164 ± 31.950 versus 32.917 ± 34.184; Z = -2.239, p = 0.025). The LSR values were significantly higher in lung cancer than in benign lesions (1.137 ± 0.581 versus 0.614 ± 0.442; Z = - 4.522, p < 0.001). Additionally, the ADC800, ADCtotal, and D values were all significantly lower in lung cancer than in the benign lesions (Z = - 5.054, -5.370, and -6.047, respectively, all p < 0.001), whereas the f values did not exhibit any statistically significant difference between the two groups. D had the highest area under the curve (AUC = 0.887), followed by ADCtotal (AUC = 0.844), ADC800 (AUC = 0.824), and LSR (AUC = 0.789). The LSR, ADC800, ADCtotal, and D values did not differ statistically significantly in diagnostic effectiveness. Lung DWI using TSE is feasible for differentiating SPLs. The LSR method, conventional DWI, and IVIM have comparable diagnostic efficacy for assessing SPLs.
Collapse
Affiliation(s)
- Qiang Lei
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Shiliugang Road, Haizhu District, Guangzhou, 510317, People's Republic of China
| | - Lishan Liu
- Department of Radiology, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, 510799, People's Republic of China
| | - Jianneng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Shiliugang Road, Haizhu District, Guangzhou, 510317, People's Republic of China
| | - Kanghui Yu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Shiliugang Road, Haizhu District, Guangzhou, 510317, People's Republic of China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Shiliugang Road, Haizhu District, Guangzhou, 510317, People's Republic of China
| | - Jurong Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Shiliugang Road, Haizhu District, Guangzhou, 510317, People's Republic of China
| | - Sulian Su
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xianyue Road, Huli District, Xiamen, 361000, People's Republic of China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., 399 Haiyang West Road, Pudong New Area, Shanghai, 200126, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Shiliugang Road, Haizhu District, Guangzhou, 510317, People's Republic of China.
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xianyue Road, Huli District, Xiamen, 361000, People's Republic of China.
| |
Collapse
|
3
|
Shankar S, Kumar Y, Chauhan D, Tiwari P, Sharma N, Chandra R, Kumar S. Nanodot Zirconium Trisulfide based Highly Efficient Biosensor for Early Diagnosis of Lung Cancer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Li J, Wu B, Huang Z, Zhao Y, Zhao S, Guo S, Xu S, Wang X, Tian T, Wang Z, Zhou J. Whole-lesion histogram analysis of multiple diffusion metrics for differentiating lung cancer from inflammatory lesions. Front Oncol 2023; 12:1082454. [PMID: 36741699 PMCID: PMC9890049 DOI: 10.3389/fonc.2022.1082454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Background Whole-lesion histogram analysis can provide comprehensive assessment of tissues by calculating additional quantitative metrics such as skewness and kurtosis; however, few studies have evaluated its value in the differential diagnosis of lung lesions. Purpose To compare the diagnostic performance of conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and diffusion kurtosis imaging (DKI) in differentiating lung cancer from focal inflammatory lesions, based on whole-lesion volume histogram analysis. Methods Fifty-nine patients with solitary pulmonary lesions underwent multiple b-values DWIs, which were then postprocessed using mono-exponential, bi-exponential and DKI models. Histogram parameters of the apparent diffusion coefficient (ADC), true diffusivity (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f), apparent diffusional kurtosis (Kapp) and kurtosis-corrected diffusion coefficient (Dapp) were calculated and compared between the lung cancer and inflammatory lesion groups. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic performance. Results The ADCmean, ADCmedian, D mean and D median values of lung cancer were significantly lower than those of inflammatory lesions, while the ADCskewness, Kapp mean, Kapp median, Kapp SD, Kapp kurtosis and Dapp skewness values of lung cancer were significantly higher than those of inflammatory lesions (all p < 0.05). ADCskewness (p = 0.019) and D median (p = 0.031) were identified as independent predictors of lung cancer. D median showed the best performance for differentiating lung cancer from inflammatory lesions, with an area under the ROC curve of 0.777. Using a D median of 1.091 × 10-3 mm2/s as the optimal cut-off value, the sensitivity, specificity, positive predictive value and negative predictive value were 69.23%, 85.00%, 90.00% and 58.62%, respectively. Conclusions Whole-lesion histogram analysis of DWI, IVIM and DKI parameters is a promising approach for differentiating lung cancer from inflammatory lesions, and D median shows the best performance in the differential diagnosis of solitary pulmonary lesions.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhun Huang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yixiang Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Sen Zhao
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shuaikang Guo
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shufei Xu
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiaolei Wang
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Tiantian Tian
- Department of Radiology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhixue Wang
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China,*Correspondence: Zhixue Wang, ; Jun Zhou,
| | - Jun Zhou
- Interventional Diagnostic and Therapeutic Center, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Zhixue Wang, ; Jun Zhou,
| |
Collapse
|
5
|
Chen L, Li Y. Electrochemical Biosensors for Tumor Biomarkers Detection. ELECTROCHEMICAL BIOSENSORS FOR WHOLE BLOOD ANALYSIS 2023:197-216. [DOI: 10.1007/978-981-99-5644-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Chen Y, Han Q, Huang Z, Lyu M, Ai Z, Liang Y, Yan H, Wang M, Xiang Z. Value of IVIM in Differential Diagnoses between Benign and Malignant Solitary Lung Nodules and Masses: A Meta-analysis. Front Surg 2022; 9:817443. [PMID: 36017515 PMCID: PMC9396547 DOI: 10.3389/fsurg.2022.817443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aims to evaluate the accuracy of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in distinguishing malignant and benign solitary pulmonary nodules and masses. Methods Studies investigating the diagnostic accuracy of IVIM-DWI in lung lesions published through December 2020 were searched. The standardized mean differences (SMDs) of the apparent diffusion coefficient (ADC), tissue diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f) were calculated. The sensitivity, specificity, area under the curve (AUC), publication bias, and heterogeneity were then summarized, and the source of heterogeneity and the reliability of combined results were explored by meta-regression and sensitivity analysis. Results A total of 16 studies including 714 malignant and 355 benign lesions were included. Significantly lower ADC, D, and f values were found in malignant pulmonary lesions compared to those in benign lesions. The D value showed the best diagnostic performance (sensitivity = 0.90, specificity = 0.71, AUC = 0.91), followed by ADC (sensitivity = 0.84, specificity = 0.75, AUC = 0.88), f (sensitivity = 0.70, specificity = 0.62, AUC = 0.71), and D* (sensitivity = 0.67, specificity = 0.61, AUC = 0.67). There was an inconspicuous publication bias in ADC, D, D* and f values, moderate heterogeneity in ADC, and high heterogeneity in D, D*, and f values. Subgroup analysis suggested that both ADC and D values had a significant higher sensitivity in “nodules or masses” than that in “nodules.” Conclusions The parameters derived from IVIM-DWI, especially the D value, could further improve the differential diagnosis between malignant and benign solitary pulmonary nodules and masses. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/#myprospero, identifier: CRD42021226664
Collapse
Affiliation(s)
- Yirong Chen
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Qijia Han
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zhiwei Huang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Mo Lyu
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhu Ai
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuying Liang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Haowen Yan
- Department of Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Mengzhu Wang
- Department of MR Scientific Marketing, Siemens Healthineers, Guangzhou, China
| | - Zhiming Xiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
- Correspondence: Zhiming Xiang
| |
Collapse
|
7
|
Volumetric analysis of intravoxel incoherent motion diffusion-weighted imaging in preoperative assessment of non-small cell lung cancer. Jpn J Radiol 2022; 40:903-913. [PMID: 35507139 DOI: 10.1007/s11604-022-01279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the potential of intravoxel incoherent motion (IVIM) and apparent diffusion coefficient (ADC) in the prediction of tumor grade, lymph node metastasis and pleural invasion of non-small cell lung cancer (NSCLC) before surgery. MATERIALS AND METHODS 65 patients diagnosed with NSCLC by surgery were enrolled. IVIM-DWI (10 b-values, 0-1000 s/mm2) was performed before surgery. The mean and minimum ADC (ADCmean, ADCmin) and IVIM parameters D, D* and f were independently measured and calculated by 2 radiologists by drawing regions of interest (ROIs) including the solid component of the whole tumor. Intraclass correlation coefficients (ICCs) were analysed. Spearman analysis was used to determine the correlation between IVIM parameters and tumor differentiation. Independent sample t-tests (normal distribution) or Mann-Whitney U tests (non-normal distribution) were used to compare the differences between the parameters in moderately-well and poorly differentiated groups, with and without lymph node metastasis and pleural invasion groups. Receiver operating characteristic (ROC) curves were generated. RESULTS The ADCmean, ADCmin, D and f values were negatively correlated with the pathological grades of tumor (P < 0.05). The ADCmean and D values of patients with poor differentiation and lymph node metastasis were significantly lower than that of patients with moderately-well differentiation and without lymph node metastasis (P < 0.001-0.012). The D value was significantly lower and f value was significantly higher among patients with pleural invasion than those without (P = 0.033 and < 0.001). ROC analysis showed that the area under the ROC curve (AUC) was larger for D in predicting the degree of differentiation (0.832) and lymph node metastasis (0.806), and higher for f in predicting pleural invasion (0.832). CONCLUSIONS IVIM is useful for predicting the tumor differentiation, lymph node metastasis and pleural invasion in NSCLC patients before surgery.
Collapse
|
8
|
Smith HJ. The history of magnetic resonance imaging and its reflections in Acta Radiologica. Acta Radiol 2021; 62:1481-1498. [PMID: 34657480 DOI: 10.1177/02841851211050857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first reports in Acta Radiologica on magnetic resonance imaging (MRI) were published in 1984, four years after the first commercial MR scanners became available. For the first two years, all MR papers originated from the USA. Nordic contributions started in 1986, and until 2020, authors from 44 different countries have published MR papers in Acta Radiologica. Papers on MRI have constituted, on average, 30%-40% of all published original articles in Acta Radiologica, with a high of 49% in 2019. The MR papers published since 1984 document tremendous progress in several areas such as magnet and coil design, motion compensation techniques, faster image acquisitions, new image contrast, contrast-enhanced MRI, functional MRI, and image analysis. In this historical review, all of these aspects of MRI are discussed and related to Acta Radiologica papers.
Collapse
Affiliation(s)
- Hans-Jørgen Smith
- Department of Radiology and Nuclear Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Fang T, Meng N, Feng P, Huang Z, Li Z, Fu F, Yuan J, Yang Y, Liu H, Roberts N, Wang M. A Comparative Study of Amide Proton Transfer Weighted Imaging and Intravoxel Incoherent Motion MRI Techniques Versus (18) F-FDG PET to Distinguish Solitary Pulmonary Lesions and Their Subtypes. J Magn Reson Imaging 2021; 55:1376-1390. [PMID: 34723413 DOI: 10.1002/jmri.27977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Amide proton transfer weighted imaging (APTw), intravoxel incoherent motion (IVIM), and positron emission tomography (PET) imaging all have the potential to characterize solitary pulmonary lesions (SPLs). PURPOSE To compare APTw and IVIM with PET imaging for distinguishing between benign and malignant SPLs and their subtypes. STUDY TYPE Prospective. POPULATION Ninety-five patients, 78 with malignant SPLs (including 48 with adenocarcinoma [AC] and 17 with squamous cell carcinoma [SCC]), and 17 with benign SPLs. FIELD STRENGTH/SEQUENCE Fast spin-echo (FSE) T2WI, FSE APTw and echo-planar imaging IVIM, MR-base attenuation correction (MRAC), and PET imaging on a 3-T whole-body PET/MR system. ASSESSMENT The magnetization transfer ratio asymmetry (MTRasym) at 3.5 ppm, diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), and the maximum standardized uptake value (SUVmax) were analyzed. STATISTICAL TESTS Individual sample t-test, Delong test, Pearson's correlation analysis, and area under the receiver operating characteristic curve (AUC). P < 0.05 indicated statistical significance. RESULTS The MTRasym and SUVmax were significantly higher, and D was significantly lower in the malignant group (3.3 ± 2.6 [%], 7.8 ± 5, and 1.2 ± 0.3 [×10-3 mm2 /second]) compared to the benign group (-0.3 ± 1.6 [%], 3.1 ± 3.8, and 1.6 ± 0.3 [×10-3 mm2 /second]). The MTRasym and D were significantly lower, and SUVmax was significantly higher in the SCC group (0.8 ± 1.0 [%], 1.0 ± 0.2 [×10-3 mm2 /second] than in the AC group (4.1 ± 2.6 [%], 1.3 ± 0.3 [×10-3 mm2 /second], 6.7 ± 4.6). Besides, the combination (AUC = 0.964) of these three methods showed higher diagnostic efficacy than any individual method (AUC = 0.917, 0.851, 0.82, respectively) in identifying malignant and benign SPLs. However, APTw showed better diagnostic efficacy than the combination of three methods or PET imaging alone in distinguishing SCC and AC groups (AUC = 0.934, 0.781, 0.725, respectively). DATA CONCLUSION APTw, IVIM, and PET imaging are all effective methods to distinguish benign and malignant SPLs and their subtypes. APTw is potentially more capable than PET imaging of distinguishing lung SCC from AC. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ting Fang
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China.,Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Meng
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China.,Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Pengyang Feng
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Henan University People's Hospital, Zhengzhou, China
| | - Zhun Huang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Henan University People's Hospital, Zhengzhou, China
| | - Ziqiang Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Xinxiang Medical University, Xinxiang, China
| | - Fangfang Fu
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianmin Yuan
- Central Research Institute, UIH Group, Shanghai, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Hui Liu
- UIH America, Inc, Houston, Texas, USA
| | - Neil Roberts
- Clinical Research Imaging Centre, School of Clinical Sciences and Community Health, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Henan University People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
10
|
Yan Q, Yi Y, Shen J, Shan F, Zhang Z, Yang G, Shi Y. Preliminary study of 3 T-MRI native T1-mapping radiomics in differential diagnosis of non-calcified solid pulmonary nodules/masses. Cancer Cell Int 2021; 21:539. [PMID: 34663307 PMCID: PMC8522214 DOI: 10.1186/s12935-021-02195-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cumulative CT radiation damage was positively correlated with increased tumor risks. Although it has recently been known that non-radiation MRI is alternative for pulmonary imaging. There is little known about the value of MRI T1-mapping in the diagnosis of pulmonary nodules. This article aimed to investigate the value of native T1-mapping-based radiomics features in differential diagnosis of pulmonary lesions. Methods 73 patients underwent 3 T-MRI examination in this prospective study. The 99 pulmonary lesions on native T1-mapping images were segmented twice by one radiologist at indicated time points utilizing the in-house semi-automated software, followed by extraction of radiomics features. The inter-class correlation coefficient (ICC) was used for analyzing intra-observer’s agreement. Dimensionality reduction and feature selection were performed via univariate analysis, and least absolute shrinkage and selection operator (LASSO) analysis. Then, the binary logical regression (LR), support vector machine (SVM) and decision tree classifiers with the input of optimal features were selected for differentiating malignant from benign lesions. The receiver operative characteristics (ROC) curve, area under the curve (AUC), sensitivity, specificity and accuracy were calculated. Z-test was used to compare differences among AUCs. Results 107 features were obtained, of them, 19.5% (n = 21) had relatively good reliability (ICC ≥ 0.6). The remained 5 features (3 GLCM, 1 GLSZM and 1 shape features) by dimensionality reduction were useful. The AUC of LR was 0.82(95%CI: 0.67–0.98), with sensitivity, specificity and accuracy of 70%, 85% and 80%. The AUC of SVM was 0.82(95%CI: 0.67–0.98), with sensitivity, specificity and accuracy of 70, 85 and 80%. The AUC of decision tree was 0.69(95%CI: 0.49–0.87), with sensitivity, specificity and accuracy of 50, 85 and 73.3%. Conclusions The LR and SVM models using native T1-mapping-based radiomics features can differentiate pulmonary malignant from benign lesions, especially for uncertain nodules requiring long-term follow-ups.
Collapse
Affiliation(s)
- Qinqin Yan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yinqiao Yi
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jie Shen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhiyong Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China.
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
11
|
Abdolalizadeh A, Ostadrahimi H, Ohadi MAD, Saneei SA, Bayani Ershadi AS. White matter microstructural associates of apathy-avolition in schizophrenia. J Psychiatr Res 2021; 142:110-116. [PMID: 34332375 DOI: 10.1016/j.jpsychires.2021.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Apathy is present at the onset in nearly half the patients with schizophrenia. Current therapies lack the efficiency to improve apathy in patients. The presence of apathy is also associated with poorer outcomes. Despite its clinical importance, the underlying mechanism of apathy in schizophrenia is unclear, but it seems frontostriatal connections play a role. In this study, we investigated whole-brain white matter microstructural properties associated with the severity of apathy-avolition in schizophrenia. We included 80 schizophrenia patients (60 Male, 20 Female) from the Mind Clinical Imaging Consortium database and associated Apathy-Avolition score of "Scale for Assessment of Negative Symptoms" with fiber integrity measures derived from diffusion-weighted imaging using Tract-Based Spatial Statistics (TBSS). We also did tractography on eight tracts, including bilateral superior longitudinal fasciculus, uncinate fasciculus, cingulum, genu and splenium of the corpus callosum. Age, gender, years of education, chlorpromazine equivalent cumulative dose, and acquisition site were inserted as covariates. We showed a widespread association between lower fiber integrity (by measures of increased mean diffusivity and decreased fractional anisotropy) and increased apathy-avolition in TBSS, which we also validated in tractography. Moreover, mean diffusivity, and not fractional anisotropy, was associated with apathy independent of disease severity. In conclusion, we propose diffuse white-matter pathology, within the corpus callosum, limbic system, and the frontostriatal circuit is involved in apathy-avolition in schizophrenia. Also, we suggest that diffuse neuroinflammatory processes may play a part in apathy-avolition, independent of disease severity.
Collapse
Affiliation(s)
- AmirHussein Abdolalizadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Ostadrahimi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Dabbagh Ohadi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed AmirHussein Saneei
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sasan Bayani Ershadi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Yuan Z, Niu XM, Liu XM, Fu HC, Xue TJ, Koo CW, Okuda K, Yao F, Ye XD. Use of diffusion-weighted magnetic resonance imaging (DW-MRI) to predict early response to anti-tumor therapy in advanced non-small cell lung cancer (NSCLC): a comparison of intravoxel incoherent motion-derived parameters and apparent diffusion coefficient. Transl Lung Cancer Res 2021; 10:3671-3681. [PMID: 34584865 PMCID: PMC8435389 DOI: 10.21037/tlcr-21-610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Background The intravoxel incoherent motion (IVIM) method of magnetic resonance imaging (MRI) analysis can provide information regarding many physiological and pathological processes. This study aimed to investigate whether IVIM-derived parameters and the apparent diffusion coefficient (ADC) can act as imaging biomarkers for predicting non-small cell lung cancer (NSCLC) response to anti-tumor therapy and compare their performances. Methods This prospective study included 45 patients with NSCLC treated with chemotherapy (29 men and 16 women, mean age 57.9±9.7 years). Diffusion-weighted imaging was performed with 13 b-values before and 2–4 weeks after treatment. The IVIM parameter pseudo-diffusion coefficient (D*), perfusion fraction (f), diffusion coefficient (D), and ADC from a mono-exponential model were obtained. Responses 2 months after chemotherapy were assessed. The diagnostic performance was evaluated, and optimal cut-off values were determined by receiver operating characteristic (ROC) curve analysis, and the differences of progression-free survival (PFS) in groups of responders and non-responders were tested by Cox regression and Kaplan-Meier survival analyses. Results Of 45 patients, 30 (66.7%) were categorized as responders, and 15 as non-responders. Differences in the diffusion coefficient D and ADC between responders and non-responders were statistically significant (all P<0.05). Conversely, differences in f and D* between responders and non-responders were both not statistically significance (all P>0.05). The ROC analyses showed the change in D value (ΔD) was the best predictor of early response to anti-tumor therapy [area under the ROC curve (AUC), 0.764]. The Cox-regression model showed that all ADC and D parameters were independent predictors of PFS, with a range of reduction in risk from 56.2% to 82.7%, and ΔD criteria responders had the highest reduction (82.7%). Conclusions ADC and D derived from IVIM are potentially useful for the prediction of NSCLC treatment response to anti-tumor therapy. Although ΔD is best at predicting response to treatment, ΔADC measurement may simplify manual efforts and reduce the workload.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiao-Min Niu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Mei Liu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Chao Fu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting-Jia Xue
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chi Wan Koo
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Dan Ye
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhu Q, Ren C, Xu JJ, Li MJ, Yuan HS, Wang XH. Whole-lesion histogram analysis of mono-exponential and bi-exponential diffusion-weighted imaging in differentiating lung cancer from benign pulmonary lesions using 3 T MRI. Clin Radiol 2021; 76:846-853. [PMID: 34376284 DOI: 10.1016/j.crad.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
AIM To investigate whether whole-lesion histogram analysis of apparent diffusion coefficient (ADC) values derived from mono-exponential and bi-exponential diffusion-weighted imaging (DWI) can differentiate lung cancer from benign pulmonary lesions. MATERIALS AND METHODS Thirty-two patients with lung cancer and 17 patients with benign pulmonary lesions were included retrospectively. All patients underwent DWI before surgery or biopsy. ADC histogram parameters, including mean, percentile values (10th and 90th), kurtosis, and skewness, were calculated independently by two radiologists. The histogram parameters were compared between patients with lung cancer and benign lesions. Receiver operating characteristic curves were constructed to evaluate the diagnostic performance. RESULTS The ADCMean, ADC10th, DMean, D10th were significantly lower in lung cancer (1.187 ± 0.144 × 10-3; 0.440 ± 0.062 × 10-3; 1.068 ± 0.108 × 10-3; and 0.422 ± 0.049 × 10-3 mm/s) compared to benign lesions (1.418 ± 0.274 × 10-3; 0.555 ± 0.113 × 10-3; 1.216 ± 0.149 × 10-3; and 0.490 ± 0.044 × 10-3 mm/s; p<0.05). The ADCSkewness and DSkewness were significantly different between lung cancer (2.35 ± 0.72; 2.58 ± 1.14) and benign lesions (1.85 ± 0.54; 1.59 ± 1.47; p<0.05). D10th was robust in differentiating lung cancer from benign lesions. Using 0.453 × 10-3 mm/s as the optimal threshold, the sensitivity, specificity, and accuracy of D10th were 78.12%, 82.35%, and 79.6%, respectively. CONCLUSION Whole-lesion histogram analysis of ADC values derived by mono-exponential and bi-exponential DWI using 3 T magnetic resonance imaging helps distinguish lung cancer from benign pulmonary lesions.
Collapse
Affiliation(s)
- Q Zhu
- Department of Radiology, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China
| | - C Ren
- Department of Radiology, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China
| | - J-J Xu
- Department of Radiology, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China
| | - M-J Li
- Department of Radiology, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China
| | - H-S Yuan
- Department of Radiology, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China
| | - X-H Wang
- Department of Radiology, Peking University Third Hospital, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
14
|
Accuracy of quantitative diffusion-weighted imaging for differentiating benign and malignant pancreatic lesions: a systematic review and meta-analysis. Eur Radiol 2021; 31:7746-7759. [PMID: 33847811 DOI: 10.1007/s00330-021-07880-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND A variety of imaging techniques can be used to evaluate diffusion characteristics to differentiate malignant and benign pancreatic lesions. The diagnostic performance of diffusion parameters has not been systematic assessed. PURPOSE We aimed to investigate the diagnostic efficacy of quantitative diffusion-weighted imaging (DWI) for pancreatic lesions. METHODS A literature search was conducted using the PubMed, Embase, and Cochrane Library databases for studies from inception to March 30, 2020, which involves the quantitative diagnostic performance of diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM) in the pancreas. Studies were reviewed according to inclusion and exclusion criteria. The quality of articles was evaluated by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUATAS-2). A bivariate random-effects model was used to evaluate pooled sensitivities and specificities. Univariable meta-regression analysis was used to test the effects of factors that contributed to the heterogeneity. RESULTS A total of 31 studies involving 1558 patients were ultimately eligible for data extraction. The lowest heterogeneity was found in specificity of perfusion fraction (f) with the I2 value was 17.97% and Cochran p value was 0.28. However, high heterogeneities were found for the other parameters (all I2 > 50%). There was no publication bias found in funnel plot (p = 0.30) for the apparent diffusion coefficient (ADC) parameter. The pooled sensitivities for ADC, f, pure diffusion coefficient (D), and pseudo diffusivity coefficient (D*) were 83%, 81%, 76%, and 84%, respectively. The pooled specificities for ADC, f, D, and D* were 87%, 83%, 69%, and 81% respectively. The areas under the curves for ADC, f, D, and D* were 0.92, 0.87, 0.79, and 0.87 respectively. CONCLUSION Quantitative DWI and IVIM have a good diagnostic performance for differentiating malignant and benign pancreatic lesions. KEY POINTS • IVIM has high sensitivity and specificity (84% and 83%, respectively) for differential diagnosis of pancreatic lesions, which is comparable to that of the ADC (83% and 87%, respectively). • The ADC has an excellent diagnostic performance for differentiating malignant from benign IPMNs (sensitivity, 0.83; specificity, 0.92); the f has the best diagnostic performance for differentiating pancreatic carcinoma from PNET (sensitivity, 0.85; specificity, 0.85). • For the ADC, using a maximal b value < 800 s/mm2 has a higher diagnostic accuracy than ≥ 800 s/mm2; performing in a high field strength (3.0 T) system has a higher diagnostic accuracy than a low field strength (1.5 T) for pancreatic lesions.
Collapse
|
15
|
Liang J, Li J, Li Z, Meng T, Chen J, Ma W, Chen S, Li X, Wu Y, He N. Differentiating the lung lesions using Intravoxel incoherent motion diffusion-weighted imaging: a meta-analysis. BMC Cancer 2020; 20:799. [PMID: 32831052 PMCID: PMC7446186 DOI: 10.1186/s12885-020-07308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background and objectives The diagnostic performance of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in the differential diagnosis of pulmonary tumors remained debatable among published studies. This study aimed to pool and summary the relevant results to provide more robust evidence in this issue using a meta-analysis method. Materials and methods The researches regarding the differential diagnosis of lung lesions using IVIM-DWI were systemically searched in Pubmed, Embase, Web of science and Wangfang database without time limitation. Review Manager 5.3 was used to calculate the standardized mean difference (SMD) and 95% confidence intervals of apparent diffusion coefficient (ADC), tissue diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f). Stata 12.0 was used to pool the sensitivity, specificity, and area under the curve (AUC), as well as publication bias and heterogeneity. Fagan’s nomogram was used to predict the post-test probabilities. Results Eleven studies with 481 malignant and 258 benign lung lesions were included. Most include studies showed a low to unclear risk of bias and low concerns regarding applicability. Lung cancer demonstrated a significant lower ADC (SMD = -1.17, P < 0.001), D (SMD = -1.02, P < 0.001) and f values (SMD = -0.43, P = 0.005) than benign lesions, except D* value (SMD = 0.01, P = 0.96). D value demonstrated the best diagnostic performance (sensitivity = 89%, specificity = 71%, AUC = 0.90) and highest post-test probability (57, 57, 43 and 43% for D, ADC, f and D* values) in the differential diagnosis of lung tumors, followed by ADC (sensitivity = 85%, specificity = 72%, AUC = 0.86), f (sensitivity = 71%, specificity = 61%, AUC = 0.71) and D* values (sensitivity = 70%, specificity = 60%, AUC = 0.66). Conclusion IVIM-DWI parameters show potentially strong diagnostic capabilities in the differential diagnosis of lung tumors based on the tumor cellularity and perfusion characteristics, and D value demonstrated better diagnostic performance compared to mono-exponential ADC.
Collapse
Affiliation(s)
- Jianye Liang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Jing Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Tiebao Meng
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Jieting Chen
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Weimei Ma
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Shen Chen
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Xie Li
- Department of Radiology, Maoming People's Hospital, Maoming, 525400, Guangdong, China.
| | - Yaopan Wu
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
| | - Ni He
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
16
|
Jiang J, Fu Y, Hu X, Cui L, Hong Q, Gu X, Yin J, Cai R, Xu G. The value of diffusion-weighted imaging based on monoexponential and biexponential models for the diagnosis of benign and malignant lung nodules and masses. Br J Radiol 2020; 93:20190400. [PMID: 32163295 PMCID: PMC10993207 DOI: 10.1259/bjr.20190400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The objective is to compare the efficacy of diffusion-weighted imaging (DWI) parameters of mean and minimum apparent diffusion coefficient (ADCmean and ADCmin) and intravoxel incoherent motion (IVIM) in the differentiation of benign and malignant lung nodules and masses. METHODS Lung lesions measured larger than 1.5 cm on CT were included between August 2015 and September 2018. DWI (10 b-values, 0-1000 s/mm2) scans were performed, and the data were post-processed to derive the ADCmean, ADCmin and IVIM parameters of true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f). An independent sample t-test or Mann-Whitney U test was used to compare benign and malignant parameters. Receiver operating characteristic curves were generated and a Z test was used. RESULTS 121 patients were finally enrolled, each with one lesion. Examined 121 lesions were malignant in 88 (72.7%) and benign in 33 (27.3%). The ADCmean of malignant pulmonary nodules was significantly lower than that of benign pulmonary nodules (t = 3.156, p = 0.006), whereas the other parameters revealed no significant differences (p = 0.162-0.690). Receiver operating characteristic curve analysis revealed that an ADCmean threshold value of 1.43 × 10-3 mm2/s yielded 88.57% sensitivity and 64.29% specificity. While for lung masses, the ADCmean, ADCmin, D and D* values in malignant pulmonary masses were significantly lower (P﹤0.001-0.011). Among them, the D value exhibited the best diagnostic performance when the threshold of D was 1.23 × 10-3mm2/s, which yielded a sensitivity of 90.57% and a specificity of 89.47% (Z = 2.230, 3.958, 2.877 and p = 0.026, ﹤0.001 and 0.004, respectively). CONCLUSION ADC is the most robust parameter to differentiate benign and malignant lung nodules, whereas D is the most robust parameter to differentiate benign and malignant lung masses. ADVANCES IN KNOWLEDGE This is the first study to compare all the quantitative parameters of DWI and IVIM mentioned in the literatures for assessing lung lesions; Second, we divided the lesions into lung nodules and lung masses with the size of 3 cm as the boundary.
Collapse
Affiliation(s)
- Jianqin Jiang
- Department of Radiology, Yancheng City No.1 People's
Hospital, Yancheng,
China
| | - Yigang Fu
- Department of Radiology, Yancheng City No.1 People's
Hospital, Yancheng,
China
| | - Xiaoyun Hu
- Department of Radiology, Wuxi People's Hospital,
Wuxi, China
| | - Lei Cui
- Department of Radiology, Second Affiliated Hospital of Nantong
University, Nantong,
China
| | - Qin Hong
- Department of Radiology, Yancheng City No.1 People's
Hospital, Yancheng,
China
| | - Xiaowen Gu
- Department of Radiology, Suzhou Municipal
Hospital, Suzhou,
China
| | - Jianbing Yin
- Department of Radiology, Second Affiliated Hospital of Nantong
University, Nantong,
China
| | - Rongfang Cai
- Department of Radiology, Second Affiliated Hospital of Nantong
University, Nantong,
China
| | - Gaofeng Xu
- Department of Radiology, Yancheng City No.1 People's
Hospital, Yancheng,
China
| |
Collapse
|
17
|
Doudou NR, Liu Y, Kampo S, Zhang K, Dai Y, Wang S. Optimization of intravoxel incoherent motion (IVIM): variability of parameters measurements using a reduced distribution of b values for breast tumors analysis. MAGMA (NEW YORK, N.Y.) 2020; 33:273-281. [PMID: 31571014 DOI: 10.1007/s10334-019-00779-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES This study aimed to examine the variability of intravoxel incoherent motion measurements acquired from reduced distributions of b values for breast tumors analysis. MATERIALS AND METHODS The investigations were carried out on twenty-four patients with diagnosed breast tumors. A conventional unenhanced MRI and various IVIM series preset with different distributions of b values (0-1000 s/mm2) were performed. We assessed the variability in Dslow, Dfast, and PF measurements for different distributions of 9 to 4 b values compared with the IVIM metrics for 10 b values using Wilcoxon-Signed rank test. The data was statistically significant at P < 0.05. RESULTS The results showed no significant variation in the estimations of IVIM parameters in patients. However, the measurements acquired with the combination of 5 b values Showed some variation in Dfast (P = 0.028) compared with 10 b values. The data showed high wCVs in the measurements acquired using the reduced set of 6 b values for Dslow and PF and with the combination of 7 b values for Dfast. There were inconsistencies noticed in the measurements acquired from malignant tumors using reduced distributions of b values (9 b values-4 b values). However, the set of 4 b values displayed the lowest wCVs for both benign and malignant datasets. We also observed unsystematic correlations among different combinations of b values in the categories of IVIM parameters. CONCLUSION There was no relevant variation in the parameters measurements irrespective of the number of b values used. Reduced distributions of b values may find use in estimations of IVIM parameters for breast lesions analysis.
Collapse
Affiliation(s)
- Natacha Raissa Doudou
- Department of Radiology, Dalian Medical University, Dalian, China
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yajie Liu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sylvanus Kampo
- Department of Anesthesiology, Dalian Medical University, Dalian, China
| | - Kai Zhang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Dai
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shaowu Wang
- Department of Radiology, Dalian Medical University, Dalian, China.
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
18
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Huang TX, Lu N, Lian SS, Li H, Yin SH, Geng ZJ, Xie CM. The primary lesion apparent diffusion coefficient is a prognostic factor for locoregionally advanced nasopharyngeal carcinoma: a retrospective study. BMC Cancer 2019; 19:470. [PMID: 31101029 PMCID: PMC6525458 DOI: 10.1186/s12885-019-5684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/08/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To explore prognostic value of the pre-treatment primary lesion apparent diffusion coefficient (ADC) in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). METHODS A total of 843 patients with newly diagnosed LA-NPC were enrolled from January 2011 to April 2014 and divided into two groups based on ADC values: the low-ADC group and high-ADC group. The 3-year local relapse-free survival (LRFS), distant metastasis free survival (DMFS), disease-free survival (DFS) and overall survival (OS) rates between two groups were compared using Kaplan-Meier curve, and Cox regression analyses were performed to test prognostic value of the pretreatment ADC in LA-NPC. RESULTS The cut-off value of the pretreatment ADC for predicting local relapse was 784.5 × 10- 6 mm2/s (AUC [area under curve] = 0.604; sensitivity = 0.640; specificity = 0.574), thus patients were divided into low-ADC (< 784.5 × 10- 6; n = 473) group and high-ADC (≥784.5 × 10- 6; n = 370) group. The low-ADC group had significantly higher 3-year LRFS rate and DFS rate than the high-ADC group (LRFS: 96.2% vs. 91.4%, P = 0.003; DFS: 81.4% vs. 73.0%, P = 0.0056). Multivariate analysis showed that the pretreatment ADC is an independent prognostic factor for LRFS (HR, 2.04; 95% CI, 1.13-3.66; P = 0.017) and DFS (HR, 1.41; 95% CI, 1.04-1.89; P = 0.024). CONCLUSIONS The pretreatment ADC of the primary lesion is an independent prognostic factor for LRFS and DFS in LA-NPC patients.
Collapse
Affiliation(s)
- Tao-Xiang Huang
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng Road East, 510060, Guangzhou, People's Republic of China.,Department of Radiology, the Third Affiliated Hospital, Sun Yat-sen University (SYSU), No 600, Tianhe Road, Guangzhou, Guangdong, 510630,, People's Republic of China
| | - Nian Lu
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng Road East, 510060, Guangzhou, People's Republic of China
| | - Shan-Shan Lian
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng Road East, 510060, Guangzhou, People's Republic of China
| | - Hui Li
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng Road East, 510060, Guangzhou, People's Republic of China
| | - Shao-Han Yin
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng Road East, 510060, Guangzhou, People's Republic of China
| | - Zhi-Jun Geng
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng Road East, 510060, Guangzhou, People's Republic of China
| | - Chuan-Miao Xie
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng Road East, 510060, Guangzhou, People's Republic of China.
| |
Collapse
|
20
|
Zhou S, Wang Y, Ai T, Huang L, Zhu T, Zhu W, Xia L. Diagnosis of solitary pulmonary lesions with intravoxel incoherent motion diffusion-weighted MRI and semi-quantitative dynamic contrast-enhanced MRI. Clin Radiol 2019; 74:409.e7-409.e16. [DOI: 10.1016/j.crad.2018.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/06/2018] [Indexed: 01/02/2023]
|
21
|
Albrecht J, Polenz D, Kühl AA, Rogasch JMM, Leder A, Sauer IM, Babos M, Mócsai G, Beindorff N, Steffen IG, Brenner W, Koziolek EJ. Diffusion-weighted magnetic resonance imaging using a preclinical 1 T PET/MRI in healthy and tumor-bearing rats. EJNMMI Res 2019; 9:21. [PMID: 30796555 PMCID: PMC6386759 DOI: 10.1186/s13550-019-0489-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hybrid positron emission tomography and magnetic resonance imaging (PET/MRI) scanners are increasingly used for both clinical and preclinical imaging. Especially functional MRI sequences such as diffusion-weighted imaging (DWI) are of great interest as they provide information on a molecular level, thus, can be used as surrogate biomarkers. Due to technical restrictions, MR sequences need to be adapted for each system to perform reliable imaging. There is, to our knowledge, no suitable DWI protocol for 1 Tesla PET/MRI scanners. We aimed to establish such DWI protocol with focus on the choice of b values, suitable for longitudinal monitoring of tumor characteristics in a rat liver tumor model. Material and methods DWI was first performed in 18 healthy rat livers using the scanner-dependent maximum of 4 b values (0, 100, 200, 300 s/mm2). Apparent diffusion coefficients (ADC) were calculated from different b value combinations and compared to the reference measurement with four b values. T2-weighted MRI and optimized DWI with best agreement between accuracy, scanning time, and system performance stability were used to monitor orthotopic hepatocellular carcinomas (HCC) in five rats of which three underwent additional 2-deoxy-2-(18F)fluoro-d-glucose(FDG)-PET imaging. ADCs were calculated for the tumor and the surrounding liver parenchyma and verified by histopathological analysis. Results Compared to the reference measurements, the combination b = 0, 200, 300 s/mm2 showed the highest correlation coefficient (rs = 0.92) and agreement while reducing the acquisition time. However, measurements with less than four b values yielded significantly higher ADCs (p < 0.001). When monitoring the HCC, an expected drop of the ADC was observed over time. These findings were paralleled by FDG-PET showing both an increase in tumor size and uptake heterogeneity. Interestingly, surrounding liver parenchyma also showed a change in ADC values revealing varying levels of inflammation by immunohistochemistry. Conclusion We established a respiratory-gated DWI protocol for a preclinical 1 T PET/MRI scanner allowing to monitor growth-related changes in ADC values of orthotopic HCC liver tumors. By monitoring the changes in tumor ADCs over time, different cellular stages were described. However, each study needs to adapt the protocol further according to their question to generate best possible results. Electronic supplementary material The online version of this article (10.1186/s13550-019-0489-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jakob Albrecht
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Dietrich Polenz
- Department of Surgery, Campus Charité Mitte, Luisenstraße 64, 10117, Berlin, Germany.,Department of Surgery, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin - Immunopathology for Experimental Models, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Core Unit, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Annekatrin Leder
- Department of Surgery, Campus Charité Mitte, Luisenstraße 64, 10117, Berlin, Germany.,Department of Surgery, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Campus Charité Mitte, Luisenstraße 64, 10117, Berlin, Germany.,Department of Surgery, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany
| | - Magor Babos
- Mediso Medical Imaging Systems, Laborc utca 3, Budapest, 1037, Hungary
| | - Gabor Mócsai
- Mediso Medical Imaging Systems, Laborc utca 3, Budapest, 1037, Hungary
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Südstraße 3, 13353, Berlin, Germany
| | - Ingo G Steffen
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Südstraße 3, 13353, Berlin, Germany
| | - Eva J Koziolek
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Meier-Schroers M, Homsi R, Schild HH, Thomas D. Lung cancer screening with MRI: characterization of nodules with different non-enhanced MRI sequences. Acta Radiol 2019; 60:168-176. [PMID: 29792040 DOI: 10.1177/0284185118778870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is increased interest in pulmonary magnetic resonance imaging (MRI) as a radiation-free alternative to computed tomography (CT) for lung cancer screening. PURPOSE To analyze MRI characteristics of pulmonary nodules with different non-enhanced sequences. MATERIAL AND METHODS Eighty-two participants of a lung cancer screening were included. MRI datasets of 32 individuals with 46 different nodules ≥ 6 mm were prospectively evaluated together with 50 controls by two readers. Acquired sequences were T2- short tau inversion recovery (STIR), T2, balanced steady-state free precession (bSSFP), 3D-T1, and diffusion-weighted imaging (DWI). Each sequence was randomly and separately viewed blinded to low-dose CT (LDCT). Size, shape, and contrast of nodules were evaluated on each sequence and then correlated with LDCT and histopathology. RESULTS All eight carcinomas were detected by T2-STIR, T2, and bSSFP, and 7/8 by 3D-T1. Contrast was significantly higher for malignant nodules on all sequences. The highest contrast ratio between malignant and benign nodules was provided by T2-STIR. Of eight carcinomas, seven showed restricted diffusion. Size measurement correlated significantly between MRI and LDCT. Sensitivity/specificity for nodules ≥ 6 mm was 85-89%/92-94% for T2-STIR, 80-87%/93-96% for T2, 65-70%/96-98% for bSSFP, and 63-67%/96-100% for 3D-T1. Seven of eight subsolid nodules were visible on T2-sequences with significantly lower lesion contrast compared to solid nodules. Two of eight subsolid nodules were detected by bSFFP, none by 3D-T1. All three calcified nodules were detected by 3D-T1, one by bSSFP, and none by T2-sequences. CONCLUSION Malignant as well as calcified and subsolid nodules seem to have distinctive characteristics on different MRI sequences. T2-imaging was most suitable for the detection of nodules ≥ 6 mm.
Collapse
Affiliation(s)
| | - Rami Homsi
- Department of Radiology, University of Bonn, Bonn, Germany
| | | | - Daniel Thomas
- Department of Radiology, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Basso Dias A, Zanon M, Altmayer S, Sartori Pacini G, Henz Concatto N, Watte G, Garcez A, Mohammed TL, Verma N, Medeiros T, Marchiori E, Irion K, Hochhegger B. Fluorine 18-FDG PET/CT and Diffusion-weighted MRI for Malignant versus Benign Pulmonary Lesions: A Meta-Analysis. Radiology 2018; 290:525-534. [PMID: 30480492 DOI: 10.1148/radiol.2018181159] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose To perform a meta-analysis of the literature to compare the diagnostic performance of fluorine 18 fluorodeoxyglucose PET/CT and diffusion-weighted (DW) MRI in the differentiation of malignant and benign pulmonary nodules and masses. Materials and Methods Published English-language studies on the diagnostic accuracy of PET/CT and/or DW MRI in the characterization of pulmonary lesions were searched in relevant databases through December 2017. The primary focus was on studies in which joint DW MRI and PET/CT were performed in the entire study population, to reduce interstudy heterogeneity. For DW MRI, lesion-to-spinal cord signal intensity ratio and apparent diffusion coefficient were evaluated; for PET/CT, maximum standard uptake value was evaluated. The pooled sensitivities, specificities, diagnostic odds ratios, and areas under the receiver operating characteristic curve (AUCs) for PET/CT and DW MRI were determined along with 95% confidence intervals (CIs). Results Thirty-seven studies met the inclusion criteria, with a total of 4224 participants and 4463 lesions (3090 malignant lesions [69.2%]). In the primary analysis of joint DW MRI and PET/CT studies (n = 6), DW MRI had a pooled sensitivity and specificity of 83% (95% CI: 75%, 89%) and 91% (95% CI: 80%, 96%), respectively, compared with 78% (95% CI: 70%, 84%) (P = .01 vs DW MRI) and 81% (95% CI: 72%, 88%) (P = .056 vs DW MRI) for PET/CT. DW MRI yielded an AUC of 0.93 (95% CI: 0.90, 0.95), versus 0.86 (95% CI: 0.83, 0.89) for PET/CT (P = .001). The diagnostic odds ratio of DW MRI (50 [95% CI: 19, 132]) was superior to that of PET/CT (15 [95% CI: 7, 32]) (P = .006). Conclusion The diagnostic performance of diffusion-weighted MRI is comparable or superior to that of fluorine 18 fluorodeoxyglucose PET/CT in the differentiation of malignant and benign pulmonary lesions. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Schiebler in this issue.
Collapse
Affiliation(s)
- Adriano Basso Dias
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Matheus Zanon
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Stephan Altmayer
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Gabriel Sartori Pacini
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Natália Henz Concatto
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Guilherme Watte
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Anderson Garcez
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Tan-Lucien Mohammed
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Nupur Verma
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Tássia Medeiros
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Edson Marchiori
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Klaus Irion
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| | - Bruno Hochhegger
- From the Medical Imaging Research Laboratory, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av Independência 75, Porto Alegre, Brazil 90020160 (A.B.D., M.Z., S.A., G.S.P., G.W., B.H.); Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil (A.B.D., M.Z., S.A., G.S.P., B.H.); Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil (N.H.C.); Post-graduate Program in Collective Health, University of Vale do Rio dos Sinos, São Leopoldo, Brazil (A.G.); Department of Radiology, College of Medicine, University of Florida, Gainesville, Fla (T.L.M., N.V.); Department of Radiology, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil (T.M., B.H.); Department of Radiology, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, Brazil (E.M.); and Department of Radiology, Central Manchester University Hospitals, NHS Foundation Trust-Trust Headquarters, Cobbett House, Manchester Royal Infirmary, Manchester, England (K.I.)
| |
Collapse
|
24
|
Qi LP, Chen KN, Zhou XJ, Tang L, Liu YL, Li XT, Wang J, Sun YS. Conventional MRI to detect the differences between mass-like tuberculosis and lung cancer. J Thorac Dis 2018; 10:5673-5684. [PMID: 30505475 DOI: 10.21037/jtd.2018.09.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The aim of this study was to investigate differences in the imaging features of mass-like tuberculosis and lung cancer on conventional MR sequences to improve the diagnostic ability for pulmonary masses. Methods Thirty patients with suspicious pulmonary lesions were enrolled and diagnosed with tuberculosis by pathology or comprehensive clinical diagnoses. Twenty-six cases of lung cancer were retrospectively analyzed. Transverse fat-suppressed T2-weighted (T2W) imaging and T1-weighted (T1W) imaging were obtained at 1.5 Tesla. The imaging characteristics of lesions on the T2W and T1W images were compared between the two groups. The imaging features of enlarged mediastinal lymph nodes on T2W images were studied and compared. Results On T2W images, there was a higher percentage of lesions containing hypointensity in the tuberculosis group (GTB) than in the lung cancer group (GLC) (P=0.004).The incidence of lesions demonstrating heterogeneous intensity was significantly greater in the GTB than in the GLC (70.0% vs. 7.7%, P=0.001). Approximately 92.3% of the lung cancer cases showed hyperintensity, a proportion substantially greater than that in the GTB (6.7%). On T1W images, more cases showed hyperintensity in the GTB than in the GLC (43.3% vs. 7.7%, P=0.003). The signal intensity ratios (SIRs) of the lesion to rhomboid muscle on T2W and T1W images were significantly different between the two groups. The mean intrasubject standard deviation (SD) of lesions in the GTB was markedly greater than that in the GLC on both T2W and T1W images. Benign mediastinal lymph nodes in the GTB showed a variety of signals on T2W images, whereas 80% of metastatic mediastinal lymph nodes displayed slight homogeneous hyperintensity, and this difference between the two groups was statistically significant. Conclusions Conventional MR sequences can reveal the essential differences between mass-like tuberculosis and lung cancer and may be helpful for discriminating pulmonary masses.
Collapse
Affiliation(s)
- Li-Ping Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ke-Neng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncosurgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaohong Joe Zhou
- Center for MR Research, and Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Lei Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yu-Liang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiao-Ting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Juan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ying-Shi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
25
|
Wan Q, Deng YS, Lei Q, Bao YY, Wang YZ, Zhou JX, Zou Q, Li XC. Differentiating between malignant and benign solid solitary pulmonary lesions: are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging? Eur Radiol 2018; 29:1607-1615. [PMID: 30255258 DOI: 10.1007/s00330-018-5714-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To quantitatively compare the diagnostic values of various diffusion parameters obtained from mono- and biexponential diffusion-weighted imaging (DWI) models and diffusion kurtosis imaging (DKI) in differentiating between benign and malignant solitary pulmonary lesions (SPLs). METHODS Multiple b-value DWIs and DKIs were performed in 89 patients with SPL by using a 3-T magnetic resonance (MR) imaging unit. The apparent diffusion coefficient (ADC) of various b-value sets, true diffusivity (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), apparent diffusional kurtosis (Kapp), and kurtosis-corrected diffusion coefficient (Dapp) were calculated and compared between the malignant and benign groups using a Mann-Whitney U test. Receiver-operating characteristic analysis was performed for all parameters. RESULT The ADC(0, 150) values of malignant tumors were lower than those of the benign group (p = 0.01). The ADC(0, 300), ADC(0, 500), ADC(0, 600), ADC(0, 800), ADC(0, 1000), ADCtotal, D, and Dapp of malignant tumors were significantly lower than those of benign lesions (all p < 0.001). D*, f, and Kapp showed no statistically significant differences between the two groups. ADCtotal showed the highest area under the curve (AUC = 0.862), followed by ADC(0, 800)(AUC = 0.844), ADC(0, 600)(AUC = 0.843), D(AUC = 0.834), ADC(0, 1000)(AUC = 0.834) and ADC(0, 500)(AUC = 0.824), Dapp(AUC = 0.796), and ADC(0, 300) (AUC = 0.773). However, the difference in diagnostic efficacy among these parameters was not statistically significant (p > 0.05). CONCLUSION Intravoxel incoherent motion (IVIM) and DKI-derived parameters have similar performance compared with conventional ADC in differentiating SPLs. KEY POINTS • Mono- and biexponential DWI and DKI are feasible for differentiating SPLs. • ADC (0, ≥500) has better performance than ADC (0, <500) in assessing SPLs. • IVIM and DKI have similar performance compared with conventional DWI in differentiating SPLs.
Collapse
Affiliation(s)
- Qi Wan
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China
| | - Ying-Shi Deng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China
| | - Qiang Lei
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China
| | - Ying-Ying Bao
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China
| | - Yu-Ze Wang
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China
| | - Jia-Xuan Zhou
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China
| | - Qiao Zou
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China
| | - Xin-Chun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151., Guangzhou, China.
| |
Collapse
|
26
|
Sun H, Liu K, Liu H, Ji Z, Yan Y, Jiang L, Zhou J. Comparison of bi-exponential and mono-exponential models of diffusion-weighted imaging for detecting active sacroiliitis in ankylosing spondylitis. Acta Radiol 2018; 59:468-477. [PMID: 28741366 DOI: 10.1177/0284185117722811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background There has been a growing need for a sensitive and effective imaging method for the differentiation of the activity of ankylosing spondylitis (AS). Purpose To compare the performances of intravoxel incoherent motion (IVIM)-derived parameters and the apparent diffusion coefficient (ADC) for distinguishing AS-activity. Material and Methods One hundred patients with AS were divided into active (n = 51) and non-active groups (n = 49) and 21 healthy volunteers were included as control. The ADC, diffusion coefficient ( D), pseudodiffusion coefficient ( D*), and perfusion fraction ( f) were calculated for all groups. Kruskal-Wallis tests and receiver operator characteristic (ROC) curve analysis were performed for all parameters. Results There was good reproducibility of ADC /D and relatively poor reproducibility of D*/f. ADC, D, and f were significantly higher in the active group than in the non-active and control groups (all P < 0.0001, respectively). D* was slightly but significant lower in the active group than in the non-active and control group ( P = 0.0064, 0.0215). There was no significant difference in any parameter between the non-active group and the control group (all P > 0.050). In the ROC analysis, ADC had the largest AUC for distinguishing between the active group and the non-active group (0.988) and between the active and control groups (0.990). Multivariate logistic regression analysis models showed no diagnostic improvement. Conclusion ADC provided better diagnostic performance than IVIM-derived parameters in differentiating AS activity. Therefore, a straightforward and effective mono-exponential model of diffusion-weighted imaging may be sufficient for differentiating AS activity in the clinic.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| | - Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| | - Hao Liu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| | - Zongfei Ji
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yan Yan
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| |
Collapse
|
27
|
Luo M, Zhang L, Jiang XH, Zhang WD. Intravoxel incoherent motion: application in differentiation of hepatocellular carcinoma and focal nodular hyperplasia. Diagn Interv Radiol 2018; 23:263-271. [PMID: 28703102 DOI: 10.5152/dir.2017.16595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE We aimed to explore whether intravoxel incoherent motion (IVIM)-related parameters of hepatocellular carcinoma (HCC) and focal nodular hyperplasia (FNH) demonstrate differences that could be used to differentiate and improve diagnostic efficiency. METHODS A total of 27 patients, including 22 with HCC and 5 with FNH, underwent liver 3.0 T magnetic resonance imaging for routine sequences. They were concurrently examined by IVIM diffusion-weighted imaging (DWI) scanning with 11 different b values (0-800 s/mm2). IVIM-derived parameters, such as pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), and apparent diffusion coefficient (ADCtotal), were quantified automatically by post-processing software and compared between HCC and FNH groups. A receiver operating characteristic (ROC) curve was then created to predict their diagnostic value. RESULTS D* was weak in terms of reproducibility among the other parameters. ADCtotal, D, and D* were significantly lower in the HCC group than in the FNH group, while f did not show a significant difference. ADCtotal and D had the largest area under the curve values (AUC; 0.915 and 0.897, respectively) and similarly high efficacy to differentiate the two conditions. CONCLUSION IVIM provides a new modality to differentiate the HCC and FNH. ADCtotal and D demonstrated outstanding and comparable diagnosing utility.
Collapse
Affiliation(s)
- Ma Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | | | | | | |
Collapse
|
28
|
Diagnostic Performance of DWI With Multiple Parameters for Assessment and Characterization of Pulmonary Lesions: A Meta-Analysis. AJR Am J Roentgenol 2018; 210:58-67. [PMID: 29091006 DOI: 10.2214/ajr.17.18257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Yuan M, Zhong Y, Zhang YD, Yu TF, Li H, Wu JF. Volumetric analysis of intravoxel incoherent motion imaging for assessment of solitary pulmonary lesions. Acta Radiol 2017; 58:1448-1456. [PMID: 28269992 DOI: 10.1177/0284185117698863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Differentiating between malignant and benign solitary pulmonary lesions (SPLs) is challenging. Purpose To determine diagnostic performance of intravoxel incoherent motion-based diffusion-weighted imaging (DW-IVIM) in distinguishing malignant from benign SPLs, using histogram analysis derived whole-tumor and single-section region of interest (ROI). Material and Methods This retrospective study received institutional review board approval. A total of 129 patients with diagnosed SPLs underwent DW-IVIM and apparent diffusion coefficient (ADC). ADC, slow diffusion coefficient (D), fast diffusion coefficient (D*), and perfusion fraction (f) were calculated separately by outlining whole-tumor and single-section ROI. Inter-observer reliability was assessed by inter-class correlation coefficient (ICC). ADC and DW-IVIM parameters were analyzed using independent-sample T-test. Receiver operating characteristic (ROC) analysis was constructed to determine diagnostic performance. Multiple logistic regression was performed to identify independent factors associated with malignant SPLs. Results There were 48 benign SPLs found in 35 patients and 94 patients with lung cancer (LC). ICC for whole-tumor ROI (range, 0.89-0.95) was higher than that for single-section ROI (range, 0.61-0.71). Mean ADC and D were significantly lower in the malignant group. ADC and D 10th showed significantly higher AUC values than did mean ADC and D. D showed significantly higher diagnostic accuracy in mean, 10th, and 25th percentiles than ADC values (all Ps < 0.05). D 10th was found to be an independent factor in discriminating LCs with an odds ratio of -1.217. Conclusion Volumetric analysis had higher reproducibility and diagnostic accuracy than did single-section. Further, compared to ADC, D value differentiated benign SPLs from LCs more accurately.
Collapse
Affiliation(s)
- Mei Yuan
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Zhong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Tong-Fu Yu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hai Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jiang-Fen Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| |
Collapse
|
30
|
Lung cancer screening with MRI: results of the first screening round. J Cancer Res Clin Oncol 2017; 144:117-125. [DOI: 10.1007/s00432-017-2521-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/16/2017] [Indexed: 12/19/2022]
|
31
|
Discrimination of Malignant versus Benign Mediastinal Lymph Nodes Using Diffusion MRI with an IVIM Model. Eur Radiol 2017; 28:1301-1309. [PMID: 28929210 DOI: 10.1007/s00330-017-5049-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the value of an intravoxel incoherent motion (IVIM) diffusion model for discriminating malignant versus benign mediastinal lymph nodes (MLN). METHODS Thirty-five subjects with enlarged MLN were scanned at 1.5 Tesla. Diffusion-weighted imaging was performed with eight b-values. IVIM parameters D, D*, and f, as well as apparent diffusion coefficient (ADC) from a mono-exponential model were obtained. 91 nodes (49 malignant and 42 benign) were analysed with pathologic (n=90) or radiologic (n=1) confirmations. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance. RESULTS The mean values of D, ADC, and f for the malignant group were significantly lower than those for the benign group (p<0.001), while D* showed no significant difference (p=0.281). In the ROC analysis, the combination of D and f produced the largest area under the curve (0.953) compared to ADC or other individual IVIM parameters, leading to the best specificity (92.9%) and diagnostic accuracy (90.1%). CONCLUSION This study demonstrates that the combination of IVIM parameters can improve differentiation between malignant and benign MLN as compared to using ADC alone. KEY POINTS • Diffusion MRI is useful for non-invasively discriminating malignant versus benign lymph nodes. • A mono-exponential model is not adequate to characterise diffusion process in lymph nodes. • IVIM model is advantageous over mono-exponential model for assessing lymph node malignancy. • Combination of IVIM parameters improves differentiation of malignant versus benign lymph nodes.
Collapse
|
32
|
Luo M, Zhang L, Jiang XH, Zhang WD. Intravoxel Incoherent Motion Diffusion-weighted Imaging: Evaluation of the Differentiation of Solid Hepatic Lesions. Transl Oncol 2017; 10:831-838. [PMID: 28866259 PMCID: PMC5595232 DOI: 10.1016/j.tranon.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate whether intravoxel incoherent motion (IVIM)-related parameters could be used to differentiate malignant from benign focal liver lesions (FLLs) and to improve diagnostic efficiency. METHODS Seventy-four patients with 75 lesions, including 51 malignant FLLs and 24 benign FLLs, underwent liver 3.0-T magnetic resonance imaging for routine examination sequences. IVIM diffusion-weighted imaging (DWI) with 11 b values (0-800s/mm2) was also acquired concurrently. Apparent diffusion coefficient (ADCtotal) and IVIM-derived parameters, such as the pure diffusion coefficient (D), the pseudodiffusion coefficient (D⁎), and the perfusion fraction (f), were calculated and compared between the two groups. A receiver operating characteristic curve analysis was performed to assess their diagnostic value. RESULTS ADCtotal, D, and f were significantly lower in the malignant group than in the benign group, whereas D⁎ did not show a statistical difference. D had a larger area under the curve value (0.968) and higher sensitivity (92.30%) for differentiation. CONCLUSION IVIM is a useful method to differentiate malignant and benign FLLs. The D value showed higher efficacy to detect hepatic solid lesions.
Collapse
Affiliation(s)
- Ma Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Ling Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Xin-Hua Jiang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Wei-Dong Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China.
| |
Collapse
|
33
|
Jiang J, Yin J, Cui L, Gu X, Cai R, Gong S, Xu Y, Ma H, Mao J. Lung Cancer: Short‐Term Reproducibility of Intravoxel Incoherent Motion Parameters and Apparent Diffusion Coefficient at 3T. J Magn Reson Imaging 2017; 47:1003-1012. [PMID: 28741732 DOI: 10.1002/jmri.25820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jianqin Jiang
- Department of RadiologySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
- Department of RadiologyYancheng City No.1 People's HospitalYancheng Jiangsu PR China
| | - Jianbin Yin
- Department of RadiologySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
| | - Lei Cui
- Department of RadiologySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
| | - Xiaowen Gu
- Department of RadiologySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
- Department of RadiologySuzhou Municipal HospitalSuzhou Jiangsu PR China
| | - Rongfang Cai
- Department of RadiologySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
| | - Shenchu Gong
- Department of RadiologySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
| | - Yiming Xu
- Department of Thoracic SurgerySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
| | - Hang Ma
- Department of RespiratorySecond Affiliated Hospital of Nantong UniversityNantong Jiangsu PR China
| | - Jian Mao
- Customer ServiceHealthcare Siemens China
| |
Collapse
|
34
|
Ciet P, Bertolo S, Ros M, Andrinopoulou ER, Tavano V, Lucca F, Feiweier T, Krestin GP, Tiddens HAWM, Morana G. Detection and monitoring of lung inflammation in cystic fibrosis during respiratory tract exacerbation using diffusion-weighted magnetic resonance imaging. Eur Respir J 2017; 50:50/1/1601437. [PMID: 28729470 DOI: 10.1183/13993003.01437-2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/10/2017] [Indexed: 01/15/2023]
Abstract
The aim was to investigate whether diffusion-weighted magnetic resonance imaging (DWI) detects and monitors inflammatory and lung function changes during respiratory tract exacerbations (RTE) treatment in patients with cystic fibrosis (CF).29 patients with RTE underwent DWI pre- and post-antibiotic treatment. A control group of 27 stable patients, matched for age and sex, underwent DWI with the same time gap as those undergoing RTE treatment. Clinical status and lung function were assessed at each DWI time point. The CF-MRI scoring system was used to assess structural lung changes in both CF groups.Significant reduction in the DWI score over the course of antibiotic treatment (p<0.0001) was observed in patients with RTE, but not in the control group. DWI score had a strong inverse correlation with clinical status (r=-0.504, p<0.0001) and lung function (r=-0.635, p<0.0001) in patients with RTE. Interestingly, there were persistent significant differences in the CF-MRI score between the RTE and control group at both baseline and follow-up (p<0.001), while the differences in DWI score were only observed at baseline (p<0.001).DWI is a promising imaging method for noninvasive detection of pulmonary inflammation during RTE, and may be used to monitor treatment efficacy of anti-inflammatory treatment.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Dept of Radiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Dept of Pediatrics, Respiratory Medicine and Allergology, Erasmus Medical Center, Rotterdam, the Netherlands.,Dept of Radiology, Ca'Foncello Regional Hospital, Treviso, Italy
| | - Silvia Bertolo
- Dept of Radiology, Ca'Foncello Regional Hospital, Treviso, Italy
| | - Mirco Ros
- Dept of Pediatrics, Ca'Foncello Regional Hospital, Treviso, Italy
| | | | - Valentina Tavano
- Dept of Radiology, Ca'Foncello Regional Hospital, Treviso, Italy
| | - Francesca Lucca
- Dept of Women's and Children's Health, University of Padova, Padova, Italy
| | | | - Gabriel P Krestin
- Dept of Radiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Harm A W M Tiddens
- Dept of Radiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Dept of Pediatrics, Respiratory Medicine and Allergology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Giovanni Morana
- Dept of Radiology, Ca'Foncello Regional Hospital, Treviso, Italy
| |
Collapse
|
35
|
Intravoxel Incoherent Motion Diffusion for Identification of Breast Malignant and Benign Tumors Using Chemometrics. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630864 PMCID: PMC5467388 DOI: 10.1155/2017/3845409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the paper is to identify the breast malignant and benign lesions using the features of apparent diffusion coefficient (ADC), perfusion fraction f, pseudodiffusion coefficient D⁎, and true diffusion coefficient D from intravoxel incoherent motion (IVIM). There are 69 malignant cases (including 9 early malignant cases) and 35 benign breast cases who underwent diffusion-weighted MRI at 3.0 T with 8 b-values (0~1000 s/mm2). ADC and IVIM parameters were determined in lesions. The early malignant cases are used as advanced malignant and benign tumors, respectively, so as to assess the effectiveness on the result. A predictive model was constructed using Support Vector Machine Binary Classification (SVMBC, also known Support Vector Machine Discriminant Analysis (SVMDA)) and Partial Least Squares Discriminant Analysis (PLSDA) and compared the difference between them both. The D value and ADC provide accurate identification of malignant lesions with b = 300, if early malignant tumor was considered as advanced malignant (cancer). The classification accuracy is 93.5% for cross-validation using SVMBC with ADC and tissue diffusivity only. The sensitivity and specificity are 100% and 87.0%, respectively, r2cv = 0.8163, and root mean square error of cross-validation (RMSECV) is 0.043. ADC and IVIM provide quantitative measurement of tissue diffusivity for cellularity and are helpful with the method of SVMBC, getting comprehensive and complementary information for differentiation between benign and malignant breast lesions.
Collapse
|
36
|
Jiao Y, Ren Y, Zheng X. [Quantitative Imaging Assessment of Tumor Response to Chemoradiation
in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017. [PMID: 28641699 PMCID: PMC5973359 DOI: 10.3779/j.issn.1009-3419.2017.06.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
精准医疗的实施要求及时准确地对治疗疗效进行评估,以便于治疗方案的调整和优化,从而进一步提高疗效,改善预后。以定量评估为基础的影像组学以其无创、直观和可重复的特点在临床疗效评估方面具有不可替代的作用。本文将综述定量影像学在肺癌放化疗疗效评估中的应用现状及其相关进展。
Collapse
Affiliation(s)
- Yuxin Jiao
- Department of Radiology Oncology;Department of Radiology, Fudan University Huadong Hospital, Shanghai 200040, China
| | - Yanping Ren
- Department of Radiology Oncology, Fudan University Huadong Hospital, Shanghai 200040, China
| | - Xiangpeng Zheng
- Department of Radiology Oncology;Zhang Guozhen Diagnosis and Treatment Center of Micronodular Lung Cancer (DTC-MLC), Fudan University Huadong Hospital, Shanghai 200040, China
| |
Collapse
|
37
|
Yuan M, Zhang YD, Pu XH, Zhong Y, Li H, Wu JF, Yu TF. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival. Eur Radiol 2017; 27:4857-4865. [DOI: 10.1007/s00330-017-4855-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 01/18/2023]
|
38
|
Intravoxel incoherent motion diffusion-weighted MR imaging in assessing and characterizing solitary pulmonary lesions. Sci Rep 2017; 7:43257. [PMID: 28225064 PMCID: PMC5320549 DOI: 10.1038/srep43257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
This study aimed to investigate the potential of intravoxel incoherent motion (IVIM) diffusion-weighted MR imaging in assessing solitary pulmonary lesions (SPLs). Sixty-two patients with pathologically confirmed SPLs, including 51 and 11 cases of malignant and benign lesions, respectively, were assessed. Diffusion weighted imaging (DWI) with 13 b values was used to derive apparent diffusion coefficient (ADC) and IVIM parameters, including true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f). Our results showed that, there was an excellent inter-observer agreement on the measurements of D and ADC between observers (inter-class correlation coefficient, ICC = 0.902 and 0.884, respectively). Meanwhile, f and D* showed good and substantial reproducibility (ICC = 0.787 and 0.623, respectively). D and ADC of malignant lesions were significantly lower than those of benign lesions (both P ≤ 0.001), while similar values were obtained in both groups for D* and f (both P > 0.05). In receiver operating characteristic (ROC) analysis, D showed the highest area under curve (AUC) for distinguishing malignant from benign lesions, followed by ADC. Accompanying signs of SPLs have specific features on IVIM maps. In conclusion, IVIM provides functional information in characterizing SPLs which is helpful to differential diagnosis. D and ADC have a significantly higher diagnostic value than f and D*.
Collapse
|
39
|
Terra GTC, Oliveira JXD, Hernandez A, Lourenço SV, Arita ES, Cortes ARG. Diffusion-weighted MRI for differentiation between sialadenitis and pleomorphic adenoma. Dentomaxillofac Radiol 2016; 46:20160257. [PMID: 27845594 DOI: 10.1259/dmfr.20160257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES The aim of this study was to compare apparent diffusion coefficient (ADC) values from diffusion-weighted MRI (DWI) among normal salivary glands, cases with sialadenitis and cases with pleomorphic adenoma of major salivary glands. METHODS 22 patients (totalling 44 major salivary glands) diagnosed with either unilateral sialadenitis (on either parotid or submandibular gland) or parotid gland pleomorphic adenoma were selected. Contralateral non-affected glands (normal) were also analyzed. DW images were achieved using a spin-echo pulse sequence with a 1.5-T MRI device. Mean ADC values were compared among the three groups analyzed (contralateral normal glands, sialadenitis and pleomorphic adenoma). RESULTS The mean ADC values were significantly higher in cases of parotid sialadenitis (p = 0.001), but not in cases of submandibular sialadenitis (p = 0.466), as compared with the contralateral non-affected glands. Cases of pleomorphic adenoma presented the highest ADC values of the study. In addition, one-way ANOVA test revealed a significant difference among the three groups of parotid glands analyzed. CONCLUSIONS Within the limitations of this study, the present results suggest that DWI allows for differentiation between parotid sialadenitis and pleomorphic adenoma.
Collapse
Affiliation(s)
- Guilherme T C Terra
- 1 Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Jefferson X D Oliveira
- 1 Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Adalsa Hernandez
- 2 Department of Oral Radiology, Clinica Felix Boada, Caracas, Venezuela
| | - Silvia V Lourenço
- 1 Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Emiko S Arita
- 1 Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Arthur R G Cortes
- 1 Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: Technique and applications. World J Radiol 2016; 8:785-798. [PMID: 27721941 PMCID: PMC5039674 DOI: 10.4329/wjr.v8.i9.785] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/11/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Diffusion weighted imaging (DWI) is a method of signal contrast generation based on the differences in Brownian motion. DWI is a method to evaluate the molecular function and micro-architecture of the human body. DWI signal contrast can be quantified by apparent diffusion coefficient maps and it acts as a tool for treatment response evaluation and assessment of disease progression. Ability to detect and quantify the anisotropy of diffusion leads to a new paradigm called diffusion tensor imaging (DTI). DTI is a tool for assessment of the organs with highly organised fibre structure. DWI forms an integral part of modern state-of-art magnetic resonance imaging and is indispensable in neuroimaging and oncology. DWI is a field that has been undergoing rapid technical evolution and its applications are increasing every day. This review article provides insights in to the evolution of DWI as a new imaging paradigm and provides a summary of current role of DWI in various disease processes.
Collapse
|
41
|
Yan C, Xu J, Xiong W, Wei Q, Feng R, Wu Y, Liu Q, Li C, Chan Q, Xu Y. Use of intravoxel incoherent motion diffusion-weighted MR imaging for assessment of treatment response to invasive fungal infection in the lung. Eur Radiol 2016; 27:212-221. [PMID: 27180185 DOI: 10.1007/s00330-016-4380-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 03/16/2016] [Accepted: 04/22/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The purpose of this study was to determine whether intravoxel incoherent motion (IVIM) -derived parameters and apparent diffusion coefficient (ADC) could act as imaging biomarkers for predicting antifungal treatment response. METHODS Forty-six consecutive patients (mean age, 33.9 ± 13.0 y) with newly diagnosed invasive fungal infection (IFI) in the lung according to EORTC/MSG criteria were prospectively enrolled. All patients underwent diffusion-weighted magnetic resonance (MR) imaging at 3.0 T using 11 b values (0-1000 sec/mm2). ADC, pseudodiffusion coffiecient D*, perfusion fraction f, and the diffusion coefficient D were compared between patients with favourable (n=32) and unfavourable response (n=14). RESULTS f values were significantly lower in the unfavourable response group (12.6%±4.4%) than in the favourable response group (30.2%±8.6%) (Z=4.989, P<0.001). However, the ADC, D, and D* were not significantly different between the two groups (P>0.05). Receiver operating characteristic curve analyses showed f to be a significant predictor for differentiation, with a sensitivity of 93.8% and a specificity of 92.9%. CONCLUSIONS IVIM-MRI is potentially useful in the prediction of antifungal treatment response to patients with IFI in the lung. Our results indicate that a low perfusion fraction f may be a noninvasive imaging biomarker for unfavourable response. KEY POINTS • Recognition of IFI indicating clinical outcome is important for treatment decision-making. • IVIM can reflect diffusion and perfusion information of IFI lesions separately. • Perfusion characteristics of IFI lesions could help differentiate treatment response. • An initial low f may predict unfavourable response in IFI.
Collapse
Affiliation(s)
- Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Wei Xiong
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qi Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Yuankui Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Caixia Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Queenie Chan
- Philips Healthcare, Science Park East Avenue, Hong Kong Science Park, New Territories, Hong Kong
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
42
|
Ciet P, Serra G, Andrinopoulou ER, Bertolo S, Ros M, Catalano C, Colagrande S, Tiddens HAWM, Morana G. Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging. Eur Radiol 2016; 26:3830-3839. [PMID: 26873494 DOI: 10.1007/s00330-016-4248-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To explore the feasibility of diffusion-weighted imaging (DWI) to assess inflammatory lung changes in patients with Cystic Fibrosis (CF) METHODS: CF patients referred for their annual check-up had spirometry, chest-CT and MRI on the same day. MRI was performed in a 1.5 T scanner with BLADE and EPI-DWI sequences (b = 0-600 s/mm2). End-inspiratory and end-expiratory scans were acquired in multi-row scanners. DWI was scored with an established semi-quantitative scoring system. DWI score was correlated to CT sub-scores for bronchiectasis (CF-CTBE), mucus (CF-CTmucus), total score (CF-CTtotal-score), FEV1, and BMI. T-test was used to assess differences between patients with and without DWI-hotspots. RESULTS Thirty-three CF patients were enrolled (mean 21 years, range 6-51, 19 female). 4 % (SD 2.6, range 1.5-12.9) of total CF-CT alterations presented DWI-hotspots. DWI-hotspots coincided with mucus plugging (60 %), consolidation (30 %) and bronchiectasis (10 %). DWItotal-score correlated (all p < 0.0001) positively to CF-CTBE (r = 0.757), CF-CTmucus (r = 0.759) and CF-CTtotal-score (r = 0.79); and negatively to FEV1 (r = 0.688). FEV1 was significantly higher (p < 0.0001) in patients without DWI-hotspots. CONCLUSIONS DWI-hotspots strongly correlated with radiological and clinical parameters of lung disease severity. Future validation studies are needed to establish the exact nature of DWI-hotspots in CF patients. KEY POINTS • DWI hotspots only partly overlapped structural abnormalities on morphological imaging • DWI strongly correlated with radiological and clinical indicators of CF-disease severity • Patients with more DWI hotspots had lower lung function values • Mucus score best predicted the presence of DWI-hotspots with restricted diffusion.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Paediatrics, Respiratory Medicine and Allergology, Erasmus Medical Center - Sophia Children's Hospital, P.O. Box 2060, Wytemaweg 80, Rotterdam, 3000 CB, Zuid-Holland, Netherlands.,Department of Radiology, Ca' Foncello - General Hospital, Piazzale Ospedale, 1, 31100, Treviso, Italy
| | - Goffredo Serra
- Department of Radiology, University of Rome "Sapienza", Rome, Italy
| | | | - Silvia Bertolo
- Department of Radiology, Ca' Foncello - General Hospital, Piazzale Ospedale, 1, 31100, Treviso, Italy
| | - Mirco Ros
- Department of Pediatrics, Ca' Foncello Hospital, Treviso, Italy
| | - Carlo Catalano
- Department of Radiology, University of Rome "Sapienza", Rome, Italy
| | - Stefano Colagrande
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi., Largo Brambilla 3, Florence, 50134, Italy
| | - Harm A W M Tiddens
- Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Paediatrics, Respiratory Medicine and Allergology, Erasmus Medical Center - Sophia Children's Hospital, P.O. Box 2060, Wytemaweg 80, Rotterdam, 3000 CB, Zuid-Holland, Netherlands
| | - Giovanni Morana
- Department of Radiology, Ca' Foncello - General Hospital, Piazzale Ospedale, 1, 31100, Treviso, Italy.
| |
Collapse
|