1
|
Mukherjee S, Bhaduri S, Harwood R, Murray P, Wilm B, Bearon R, Poptani H. Multiparametric MRI based assessment of kidney injury in a mouse model of ischemia reperfusion injury. Sci Rep 2024; 14:19922. [PMID: 39198525 PMCID: PMC11358484 DOI: 10.1038/s41598-024-70401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Kidney diseases pose a global healthcare burden, with millions requiring renal replacement therapy. Ischemia/reperfusion injury (IRI) is a common pathology of acute kidney injury, causing hypoxia and subsequent inflammation-induced kidney damage. Accurate detection of acute kidney injury due to IRI is crucial for timely intervention. We used longitudinal, multi-parametric magnetic resonance imaging (MRI) employing arterial spin labelling (ASL), diffusion weighted imaging (DWI), and dynamic contrast enhanced (DCE)-MRI to assess IRI induced changes in both the injured and healthy contralateral kidney, in a unilateral IRI mouse model (n = 9). Multi-parametric MRI demonstrated significant differences in kidney volume (p = 0.001), blood flow (p = 0.002), filtration coefficient (p = 0.038), glomerular filtration rate (p = 0.005) and apparent diffusion coefficient (p = 0.048) between the injured kidney and contralateral kidney on day 1 post-IRI surgery. Identification of the injured kidney using principal component analysis including most of the imaging parameters demonstrated an area under the curve (AUC) of 0.97. These results point to the utility of multi-parametric MRI in early detection of IRI-induced kidney damage suggesting that the combination of various MRI parameters may be suitable for monitoring the extent of injury in this model.
Collapse
Affiliation(s)
- Soham Mukherjee
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sourav Bhaduri
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Institute for Advancing Intelligence (IAI), TCG CREST, Kolkata, India
| | - Rachel Harwood
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Bearon
- Department of Mathematical Science, University of Liverpool, Liverpool, UK
- Department of Mathematics, Kings College, London, UK
| | - Harish Poptani
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| |
Collapse
|
2
|
Zhao S, Ding Y, Gan L, Yang P, Xie Y, Hu Y, Chen J, Wang X, Huang Z, Zhou B. Evaluation of split renal dysfunction using radiomics based on magnetic resonance diffusion-weighted imaging. Med Phys 2024; 51:5226-5235. [PMID: 38801337 DOI: 10.1002/mp.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Accurate and noninvasive assessment of split renal dysfunction is crucial, while there is lack of corresponding method clinically. PURPOSE To investigate the feasibility of using diffusion-weighted imaging (DWI)-based radiomics models to evaluate split renal dysfunction. METHODS We enrolled patients with impaired and normal renal function undergoing renal DWI examination. Glomerular filtration rate (GFR, mL/min) was measured using 99mTc-DTPA scintigraphy, which is reference standard of GFR measurement. The kidneys were classified into normal (GFR ≥40), mildly impaired (20≤ GFR < 40), moderately impaired (10≤ GFR < 20), and severely impaired (GFR < 10) renal function groups. Optimized subsets of radiomics features were selected from renal DWI images and radiomics scores (Rad-score) calculated to discriminate groups with different renal function. The radiomics model (Rad-score based) was developed in a training cohort and validated in a test cohort. Evaluations were conducted on the discrimination, calibration, and clinical application of the method. RESULTS The final analysis included 330 kidneys. Logistic regression was used to develop three radiomics models, model A, B, and C, which were used to distinguish normal from impaired, mild from moderate, and moderate from severe renal function, respectively. The area under the curve of the three models were 0.822, 0.704, and 0.887 in the training cohort and 0.843, 0.717, and 0.897 in the test cohort, respectively, indicating efficient discrimination performance. CONCLUSIONS DWI-based radiomics models have potential for evaluating split renal dysfunction and discriminating between normal and impaired renal function groups and their subgroups.
Collapse
Affiliation(s)
- Shengchao Zhao
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yi Ding
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Gan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pei Yang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanliang Xie
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Hu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
3
|
Diffusion-Weighted MRI in the Genitourinary System. J Clin Med 2022; 11:jcm11071921. [PMID: 35407528 PMCID: PMC9000195 DOI: 10.3390/jcm11071921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Diffusion weighted imaging (DWI) constitutes a major functional parameter performed in Magnetic Resonance Imaging (MRI). The DW sequence is performed by acquiring a set of native images described by their b-values, each b-value representing the strength of the diffusion MR gradients specific to that sequence. By fitting the data with models describing the motion of water in tissue, an apparent diffusion coefficient (ADC) map is built and allows the assessment of water mobility inside the tissue. The high cellularity of tumors restricts the water diffusion and decreases the value of ADC within tumors, which makes them appear hypointense on ADC maps. The role of this sequence now largely exceeds its first clinical apparitions in neuroimaging, whereby the method helped diagnose the early phases of cerebral ischemic stroke. The applications extend to whole-body imaging for both neoplastic and non-neoplastic diseases. This review emphasizes the integration of DWI in the genitourinary system imaging by outlining the sequence's usage in female pelvis, prostate, bladder, penis, testis and kidney MRI. In gynecologic imaging, DWI is an essential sequence for the characterization of cervix tumors and endometrial carcinomas, as well as to differentiate between leiomyosarcoma and benign leiomyoma of the uterus. In ovarian epithelial neoplasms, DWI provides key information for the characterization of solid components in heterogeneous complex ovarian masses. In prostate imaging, DWI became an essential part of multi-parametric Magnetic Resonance Imaging (mpMRI) to detect prostate cancer. The Prostate Imaging-Reporting and Data System (PI-RADS) scoring the probability of significant prostate tumors has significantly contributed to this success. Its contribution has established mpMRI as a mandatory examination for the planning of prostate biopsies and radical prostatectomy. Following a similar approach, DWI was included in multiparametric protocols for the bladder and the testis. In renal imaging, DWI is not able to robustly differentiate between malignant and benign renal tumors but may be helpful to characterize tumor subtypes, including clear-cell and non-clear-cell renal carcinomas or low-fat angiomyolipomas. One of the most promising developments of renal DWI is the estimation of renal fibrosis in chronic kidney disease (CKD) patients. In conclusion, DWI constitutes a major advancement in genitourinary imaging with a central role in decision algorithms in the female pelvis and prostate cancer, now allowing promising applications in renal imaging or in the bladder and testicular mpMRI.
Collapse
|
4
|
Liang P, Chen Y, Li S, Xu C, Yuan G, Hu D, Kamel I, Zhang Y, Li Z. Noninvasive assessment of kidney dysfunction in children by using blood oxygenation level-dependent MRI and intravoxel incoherent motion diffusion-weighted imaging. Insights Imaging 2021; 12:146. [PMID: 34674043 PMCID: PMC8531182 DOI: 10.1186/s13244-021-01091-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives To explore whether multiparametric approach including blood oxygenation level-dependent MRI (BOLD-MRI) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can be applied in the assessment of renal function in children with chronic kidney disease (CKD). Materials and methods This prospective study included 74 children (CKD stage 1–3, 51; CKD stage 4–5, 12; healthy volunteers, 11) for renal MRI examinations including coronal T2WI, axial T1WI and T2WI, BOLD-MRI, and DWI sequences. We measured the renal cortex and medulla T2*, ADC, Dt, Dp, and fp values on BOLD and DWI images. Appropriate statistical methods were applied for comparing MRI-derived parameters among the three groups and calculating the correlation coefficients between MRI-derived parameters and clinical data. Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of MRI-derived parameters. Results There were significant differences in cortex T2*, ADC, Dt, fp and medulla T2*, ADC, Dt among the three groups. Cortex T2*, ADC, Dt, fp and medulla T2*, ADC, Dt had a trend: CKD stage 4–5 < CKD stage 1–3 < healthy volunteers. Cortex and medulla T2*, ADC, Dt were significantly correlated with eGFR, serum creatinine (Scr), cystatin C. In addition, cortex T2* and eGFR showed the highest correlation coefficient (r = 0.824, p < 0.001). Cortex Dt and medulla T2* were optimal parameters for differentiating healthy volunteers and CKD stage 1–3 or CKD stage 4–5 and CKD stage 1–3, respectively. Conclusions BOLD-MRI and IVIM-DWI might be used as a feasible method for noninvasive assessment of renal function in children with CKD.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yaxian Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - ShiChao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Ihab Kamel
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 601 N Caroline St, JHOC 4240, Baltimore, MD, 21287, USA
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Lee SK, Lee J, Jang S, Lee E, Jeon CY, Lim KS, Jin YB, Choi J. Renal Diffusion-Weighted Imaging in Healthy Dogs: Reproducibility, Test-Retest Repeatability, and Selection of the Optimal b-value Combination. Front Vet Sci 2021; 8:641971. [PMID: 34277748 PMCID: PMC8282824 DOI: 10.3389/fvets.2021.641971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Diffusion-weighted imaging (DWI) magnetic resonance imaging can evaluate alterations in the microstructure of the kidney. The purpose of this study was to assess the apparent diffusion coefficient (ADC) and the intravoxel incoherent motion model (IVIM) parameters of a normal kidney in healthy dogs, to evaluate the effect of b-value combinations on the ADC value, and the reproducibility and test-retest repeatability in monoexponential and IVIM analysis. In this experimental study, the ADC, pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f p) were measured from both kidneys in nine healthy beagles using nine b-values (b = 0, 50, 70, 100, 150, 200, 500, 800, and 1,000 s/mm2) twice with a 1-week interval between measurements. Interobserver and intraobserver reproducibility, and test-retest repeatability of the measurements were calculated. ADC values were measured using 10 different b-value combinations consisting of three b-values each, and were compared to the ADC obtained from nine b-values. All the ADC, D, D*, and f p values measured from the renal cortex, medulla, and the entire kidney had excellent interobserver and intraobserver reproducibility, and test-retest repeatability. The ADC obtained from a b-value combination of 0, 100, and 800 s/mm2 had the highest intraclass correlation coefficient with the ADC from nine b-values. The results of this study indicated that DWI MRI using multiple b-values is feasible for the measurement of ADC and IVIM parameters with high reproducibility and repeatability in the kidneys of healthy dogs. A combination of b = 0, 100, and 800 s/mm2 can be used for ADC measurements when multiple b-values are not available in dogs.
Collapse
Affiliation(s)
- Sang-Kwon Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Juryeoung Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Seolyn Jang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Eunji Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Kyung-Seoub Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jihye Choi
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Mao W, Ding Y, Ding X, Fu C, Zeng M, Zhou J. Diffusion kurtosis imaging for the assessment of renal fibrosis of chronic kidney disease: A preliminary study. Magn Reson Imaging 2021; 80:113-120. [PMID: 33971241 DOI: 10.1016/j.mri.2021.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the potential of diffusion kurtosis imaging (DKI) for the assessment of renal fibrosis in chronic kidney disease (CKD), using histopathology as the reference standard. METHODS Eighty-nine CKD patients and twenty healthy volunteers were recruited in this study. DKI was performed in all participants and all CKD patients received renal biopsy. The values of mean diffusivity (MD) and mean kurtosis (MK) in the renal cortex and medulla were compared between CKD patients and healthy volunteers. The Spearman correlation coefficient was calculated to assess the relationship between MD, MK values and the estimated glomerular filtration rate (eGFR), serum creatinine (SCr), 24 h urinary protein (24 h-UPRO), histopathological fibrosis score. RESULTS The medullary MD values were significantly lower than cortex, while the cortical MK values were significantly lower than medulla for all participants. Renal parenchymal MD values were significantly lower in the CKD patients than healthy controls, whereas MK values were significantly higher in the CKD patients than healthy controls. In the CKD patients, the significantly negative correlation was observed between the renal parenchymal MD values and the 24 h-UPRO, SCr, histopathological fibrosis score, as well as between the renal parenchymal MK values and the eGFR, while the significantly positive correlation was found between the renal parenchymal MD values and the eGFR, as well as between the renal parenchymal MK values and the 24 h-UPRO, SCr, histopathological fibrosis score. CONCLUSION DKI shows great potential in the noninvasive assessment of renal fibrosis in CKD.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Yuqin Ding
- Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, People's Republic of China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai 200032, People's Republic of China.
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai 200032, People's Republic of China; Department of Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
7
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
8
|
Renal Diffusion-Weighted Imaging (DWI) for Apparent Diffusion Coefficient (ADC), Intravoxel Incoherent Motion (IVIM), and Diffusion Tensor Imaging (DTI): Basic Concepts. Methods Mol Biol 2021; 2216:187-204. [PMID: 33476001 PMCID: PMC9703200 DOI: 10.1007/978-1-0716-0978-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The specialized function of the kidney is reflected in its unique structure, characterized by juxtaposition of disorganized and ordered elements, including renal glomerula, capillaries, and tubules. The key role of the kidney in blood filtration, and changes in filtration rate and blood flow associated with pathological conditions, make it possible to investigate kidney function using the motion of water molecules in renal tissue. Diffusion-weighted imaging (DWI) is a versatile modality that sensitizes observable signal to water motion, and can inform on the complexity of the tissue microstructure. Several DWI acquisition strategies are available, as are different analysis strategies, and models that attempt to capture not only simple diffusion effects, but also perfusion, compartmentalization, and anisotropy. This chapter introduces the basic concepts of DWI alongside common acquisition schemes and models, and gives an overview of specific DWI applications for animal models of renal disease.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
|
9
|
Liang P, Xu C, Tripathi P, Li J, Li A, Hu D, Kamel I, Li Z. One-stop assessment of renal function and renal artery in hypertensive patients with suspected renal dysfunction: non-enhanced MRI using spatial labeling with multiple inversion pulses. Eur Radiol 2020; 31:94-103. [PMID: 32749582 DOI: 10.1007/s00330-020-07088-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To assess whether spatial labeling with multiple inversion pulses (SLEEK) sequence can be employed as a one-stop assessment method for evaluating renal function and displaying renal artery in hypertensive patients with suspected renal dysfunction. METHODS A total of 78 patients with suspected hypertensive renal damage were enrolled in this retrospective study. All patients underwent MRI examinations, and both SLEEK and DWI sequences were performed simultaneously. According to estimated glomerular filtration rate (eGFR), patients were divided into three groups (Group 1, eGFR> 90; Group 2, eGFR = 60-90; Group 3, eGFR< 60). Twenty-two of these patients also underwent CT angiography (CTA) examination. Comparison between CTA, DWI, and eGFR was performed to assess the value of SLEEK in evaluating renal function and displaying renal artery. RESULTS The performance of SLEEK to display renal artery was highly consistent with the results of CTA (kappa = 0.713). The corticomedullary contrast ratio positively correlated with eGFR (p = 0.004, r = 0.322) and was significantly higher in SLEEK images than in DWI images in all three groups (p < 0.001). There was no significant difference in corticomedullary contrast ratio in SLEEK images between Group 1 and Group 2 (p = 0.285). However, the minimal renal cortical thickness, which significantly correlated with eGFR (p < 0.001, r = 0.866), was significantly different between Group 1 and Group 2 (p < 0.001). ROC analysis showed good diagnostic performance when differentiating patients with eGFR> 60 from those with eGFR< 60. CONCLUSIONS The SLEEK sequence could evaluate simultaneously renal function through corticomedullary differentiation and renal arteries, enabling one-stop assessment in hypertensive patients with suspected renal dysfunction. KEY POINTS • Spatial labeling with multiple inversion pulses (SLEEK) improves renal corticomedullary differentiation in hypertensive patients with renal dysfunction compared with DWI. • SLEEK clearly displays renal artery in hypertensive patients with renal dysfunction. • SLEEK could be utilized as a one-stop assessment method for evaluating renal function and renal artery in hypertensive patients.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pratik Tripathi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anqin Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ihab Kamel
- Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Sułkowska K, Palczewski P, Furmańczyk-Zawiska A, Perkowska-Ptasińska A, Wójcik D, Szeszkowski W, Durlik M, Gołębiowski M, Małkowski P. Diffusion Weighted Magnetic Resonance Imaging in the Assessment of Renal Function and Parenchymal Changes in Chronic Kidney Disease: A Preliminary Study. Ann Transplant 2020; 25:e920232. [PMID: 32123153 PMCID: PMC7069451 DOI: 10.12659/aot.920232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to evaluate the feasibility of using intravoxel incoherent motion (IVIM) imaging for noninvasive assessment of pathologic changes in chronic kidney disease (CKD). Material/Methods Thirty-four patients with CKD and 20 healthy volunteers were examined on a 1.5 T magnetic resonance imaging (MRI) unit. The examination consisted of morphologic sequences and diffusion-weighted echo-planar sequence with 10 b values. Diffusion parameters were calculated with the use of mono- (apparent diffusion coefficient, ADC) and bi-exponential model: pure diffusion coefficient (D) and perfusion fraction (Fp). Blood samples to assess the serum creatinine level were taken immediately before examination. Ultrasound guided biopsies were performed in less than 30 days from MRI and were scored by an experienced nephropathologist. Parametrical unpaired t-test and ROC curve analysis were used to investigate differences in diffusion parameters in relation to estimated glomerular filtration rate (eGFR). Pearson’s correlation coefficients were calculated to assess relationship between diffusion parameters and laboratory and histopathological markers of renal damage. P-value <0.05 indicated statistical significance. Results Both ADC and D correlated positively with eGFR (respective r 0.74 and 0.72), however D showed a more significant correlation with histopathology: while D correlated negatively with parameters reflecting chronic glomerular (r −0.48) and tubulo-interstitial changes (r −0.47), ADC correlated only with interstitial infiltrations (r −0.44). Flow-related diffusion parameters showed high standard deviation. Conclusions IVIM imaging is sensitive to functional and morphologic changes in CKD. The separation of influence of Fp from true diffusion improves the assessment of chronic changes in renal parenchyma.
Collapse
Affiliation(s)
- Katarzyna Sułkowska
- Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Palczewski
- Department of Clinical Radiologyy, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Furmańczyk-Zawiska
- Department of Transplantation Medicine and Nephrology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Perkowska-Ptasińska
- Department of Transplantation Medicine and Nephrology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Damian Wójcik
- Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Magdalena Durlik
- Department of Transplantation Medicine and Nephrology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Marek Gołębiowski
- Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Małkowski
- Department of Surgical and Transplantation Nursing and Extracorporeal Therapies, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Bane O, Hectors SJ, Gordic S, Kennedy P, Wagner M, Weiss A, Khaim R, Yi Z, Zhang W, Delaney V, Salem F, He C, Menon MC, Lewis S, Taouli B. Multiparametric magnetic resonance imaging shows promising results to assess renal transplant dysfunction with fibrosis. Kidney Int 2019; 97:414-420. [PMID: 31874802 DOI: 10.1016/j.kint.2019.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022]
Abstract
Here we assessed the diagnostic value of a quantitative multiparametric magnetic resonance imaging (mpMRI) protocol for evaluation of renal allograft dysfunction with fibrosis. Twenty-seven renal transplant patients, including 15 with stable functional allografts (eGFR mean 71.5 ml/min/1.73m2), and 12 with chronic dysfunction/established fibrosis (eGFR mean 30.1 ml/min/1.73m2), were enrolled in this prospective single-center study. Sixteen of the patients had renal biopsy (mean 150 days) before the MRI. All patients underwent mpMRI at 1.5T including intravoxel-incoherent motion diffusion-weighted imaging, diffusion tensor imaging, blood oxygen level dependent (BOLD R2*) and T1 quantification. True diffusion D, pseudodiffusion D*, perfusion fraction PF, apparent diffusion coefficient (ADC), fractional anisotropy (FA), R2* and T1 were calculated for cortex and medulla. ΔT1 was calculated as (100x(T1 Cortex-T1 Medulla)/T1 Cortex). Test-retest repeatability and inter-observer reproducibility were assessed in four and ten patients, respectively. mpMRI parameters had substantial test-retest and interobserver repeatability (coefficient of variation under 15%), except for medullary PF and D* (coefficient of variation over 25%). Cortical ADC, D, medullary ADC and ΔT1 were all significantly decreased, while cortical T1 was significantly elevated in fibrotic allografts. Cortical T1 showed positive correlation to the Banff fibrosis and tubular atrophy scores. The combination of ΔT1 and cortical ADC had excellent cross-validated diagnostic performance for detection of chronic dysfunction with fibrosis. Cortical ADC and T1 had good performance for predicting eGFR decline at 18 months (4 or more ml/min/1.73m2/year). Thus, the combination of cortical ADC and T1 measurements shows promising results for the non-invasive assessment of renal allograft histology and outcomes.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefanie J Hectors
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Sonja Gordic
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Radiology, University Hospital Zürich, Zürich, Switzerland
| | - Paul Kennedy
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathilde Wagner
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amanda Weiss
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rafael Khaim
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzi Yi
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Veronica Delaney
- Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cijiang He
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C Menon
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
12
|
Zhang Q, Yu Z, Zeng S, Liang L, Xu Y, Zhang Z, Tang H, Jiao W, Xue W, Wang W, Zhang X, Jiang T, Hu X. Use of intravoxel incoherent motion imaging to monitor a rat kidney chronic allograft damage model. BMC Nephrol 2019; 20:364. [PMID: 31601196 PMCID: PMC6785891 DOI: 10.1186/s12882-019-1545-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic allograft damage (CAD) is the leading cause of long-term graft dysfunction. A noninvasive method that can diagnose CAD early and monitor its development is needed. METHODS Kidneys from Fisher rats were transplanted into Lewis rats to establish a CAD model (n = 20). The control group underwent syngeneic kidney transplantation (n = 20). The serum creatinine of the rats was monitored. At 4, 12, and 20 weeks after modeling, a magnetic resonance imaging (MRI) examination was performed. The apparent diffusion coefficient (ADC), pseudo diffusion coefficient (D*), true diffusion coefficient (D) and perfusion fraction (f) of the two groups were analyzed. Chronic allograft damage index (CADI) scoring was used to evaluate the transplanted kidney specimens. Immunohistochemistry was used to detect the expression of fibrosis markers in the transplanted kidney tissues and to analyze their correlations with all MRI parameters. RESULTS The transplanted kidneys in the experimental group developed CAD changes before the appearance of elevated creatinine. The MRI parameters in the experimental group [ADC (1.460 ± 0.109 VS 2.095 ± 0.319, P < 0.001), D (1.435 ± 0.102 VS 1.969 ± 0.305, P < 0.001), and f (26.532 ± 2.136 VS 32.255 ± 4.013, P < 0.001)] decreased, and D* (20.950 ± 2.273 VS 21.415 ± 1.598, P = 0.131) was not significantly different from those in the control group. ADC, D and f were negatively correlated with the CADI and the α-SMA and vimentin expression levels. CONCLUSION Intravoxel incoherent motion (IVIM) imaging could detect CAD earlier than creatinine and reflect the degree of fibrosis in grafts quantitatively.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Zexing Yu
- Department of Ultrasonography, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Song Zeng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Lu Liang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Zijian Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Hao Tang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Wenjiao Jiao
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Wenrui Xue
- Department of Urology, Beijing YouAn Hospital, Capital Medical University, NO.8 Youanmenwai Xitoutiao, Beijing, 100069, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China.
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China.
| |
Collapse
|
13
|
Correlation Between Apparent Diffusion Coefficient Values of the Renal Parenchyma and Estimated Glomerular Filtration Rates on 3-T Diffusion-Weighted Echo-Planar Magnetic Resonance Imaging. J Comput Assist Tomogr 2019; 43:780-785. [PMID: 31268879 DOI: 10.1097/rct.0000000000000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To evaluate the relationship between the apparent diffusion coefficient (ADC) values of renal parenchyma and estimated glomerular filtration rates (eGFR). METHODS Data on 216 patients examined by 3-T magnetic resonance imaging for various reasons were retrospectively collected. RESULTS There was a significant linear correlation between the ADC values and eGFRs (r = 0.254, P < 0.001). The ADC values in patients with an eGFR of less than 60 mL/min per 1.73 m were significantly lower than those with an eGFR of 60 mL/min per 1.73 m or greater. The mean ADC value of patients with grouped stage 2 disease was significantly higher than those with grouped stage 3 of chronic kidney disease (P < 0.01). CONCLUSIONS The ADC value of renal parenchyma may be a promising marker for the determination of patients with normal to mild reduction in renal function (eGFR ≥60 mL/min per 1.73 m) versus those with a moderate to severe reduction in renal function (eGFR <60 mL/min per 1.73 m).
Collapse
|
14
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
15
|
Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallée JP. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33:ii29-ii40. [PMID: 30137580 PMCID: PMC6106641 DOI: 10.1093/ndt/gfy163] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive method sensitive to local water motion in the tissue. As a tool to probe the microstructure, including the presence and potentially the degree of renal fibrosis, DWI has the potential to become an effective imaging biomarker. The aim of this review is to discuss the current status of renal DWI in diffuse renal diseases. DWI biomarkers can be classified in the following three main categories: (i) the apparent diffusion coefficient-an overall measure of water diffusion and microcirculation in the tissue; (ii) true diffusion, pseudodiffusion and flowing fraction-providing separate information on diffusion and perfusion or tubular flow; and (iii) fractional anisotropy-measuring the microstructural orientation. An overview of human studies applying renal DWI in diffuse pathologies is given, demonstrating not only the feasibility and intra-study reproducibility of DWI but also highlighting the need for standardization of methods, additional validation and qualification. The current and future role of renal DWI in clinical practice is reviewed, emphasizing its potential as a surrogate and monitoring biomarker for interstitial fibrosis in chronic kidney disease, as well as a surrogate biomarker for the inflammation in acute kidney diseases that may impact patient selection for renal biopsy in acute graft rejection. As part of the international COST (European Cooperation in Science and Technology) action PARENCHIMA (Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease), aimed at eliminating the barriers to the clinical use of functional renal magnetic resonance imaging, this article provides practical recommendations for future design of clinical studies and the use of renal DWI in clinical practice.
Collapse
Affiliation(s)
- Anna Caroli
- Medical Imaging Unit, Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Moritz Schneider
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Iris Friedli
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Sophie De Seigneux
- Service and Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Physiology and Metabolism, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Peter Boor
- Institute of Pathology and Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Latha Gullapudi
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Isma Kazmi
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Iosif A Mendichovszky
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK
| | | | - Nicholas M Selby
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Harriet C Thoeny
- Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland
| | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Paul Vallée
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Sun H, Liu K, Liu H, Ji Z, Yan Y, Jiang L, Zhou J. Comparison of bi-exponential and mono-exponential models of diffusion-weighted imaging for detecting active sacroiliitis in ankylosing spondylitis. Acta Radiol 2018; 59:468-477. [PMID: 28741366 DOI: 10.1177/0284185117722811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background There has been a growing need for a sensitive and effective imaging method for the differentiation of the activity of ankylosing spondylitis (AS). Purpose To compare the performances of intravoxel incoherent motion (IVIM)-derived parameters and the apparent diffusion coefficient (ADC) for distinguishing AS-activity. Material and Methods One hundred patients with AS were divided into active (n = 51) and non-active groups (n = 49) and 21 healthy volunteers were included as control. The ADC, diffusion coefficient ( D), pseudodiffusion coefficient ( D*), and perfusion fraction ( f) were calculated for all groups. Kruskal-Wallis tests and receiver operator characteristic (ROC) curve analysis were performed for all parameters. Results There was good reproducibility of ADC /D and relatively poor reproducibility of D*/f. ADC, D, and f were significantly higher in the active group than in the non-active and control groups (all P < 0.0001, respectively). D* was slightly but significant lower in the active group than in the non-active and control group ( P = 0.0064, 0.0215). There was no significant difference in any parameter between the non-active group and the control group (all P > 0.050). In the ROC analysis, ADC had the largest AUC for distinguishing between the active group and the non-active group (0.988) and between the active and control groups (0.990). Multivariate logistic regression analysis models showed no diagnostic improvement. Conclusion ADC provided better diagnostic performance than IVIM-derived parameters in differentiating AS activity. Therefore, a straightforward and effective mono-exponential model of diffusion-weighted imaging may be sufficient for differentiating AS activity in the clinic.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| | - Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| | - Hao Liu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| | - Zongfei Ji
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yan Yan
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Department of Medical Imaging, Shanghai Medical School of Fudan University, Shanghai, PR China
| |
Collapse
|
17
|
Mao W, Zhou J, Zeng M, Ding Y, Qu L, Chen C, Ding X, Wang Y, Fu C, Gu F. Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: A preliminary study. Magn Reson Imaging 2017; 47:118-124. [PMID: 29217491 DOI: 10.1016/j.mri.2017.12.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 12/04/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the potential of Intravoxel incoherent motion diffusion-weighted imaging(IVIM-DWI) for the assessment of renal fibrosis in chronic kidney disease (CKD), using histopathology as a reference standard. METHODS Eighty-five CKD patients and twenty healthy volunteers were recruited in this study. IVIM-DWI was performed in all of the participants, and all of the CKD patients underwent renal biopsy. The mean values of the true diffusion coefficient (D), pseudo diffusion coefficient (D*) and perfusion fraction (f) in the renal cortex and medulla were compared between the CKD patients and healthy volunteers. The Spearman correlation coefficient was calculated to assess the relationship between the D, D*,f values and the estimated glomerular filtration rate (eGFR), serum creatinine level (SCr), 24h urinary protein level (24h-UPRO), histopathological fibrosis scores. RESULTS The D, D* and f values were significantly lower in medulla than in the cortex for all of the participants. All of the IVIM parameters were significantly lower in the CKD patients than in the healthy controls. In the CKD patients, a significant negative correlation was found between the renal parenchymal D, D*,f values and the 24h-UPRO, as well as between the renal parenchymal D, f values and the SCr. There was a significant positive correlation between all of the IVIM parameters and the eGFR. All of the IVIM parameters exhibited a significant negative correlation with the histopathological fibrosis score. CONCLUSION IVIM-DWI shows great potential in the noninvasive assessment of renal fibrosis in CKD.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Yuqin Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Lijie Qu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China.
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China.
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen 518057, People's Republic of China.
| | - Feng Gu
- Department of Radiology, Nantong Second People's Hospital, Nantong 226000, People's Republic of China.
| |
Collapse
|
18
|
Mao W, Zhou J, Zeng M, Ding Y, Qu L, Chen C, Ding X, Wang Y, Fu C. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging. J Magn Reson Imaging 2017; 47:1251-1259. [PMID: 28940646 DOI: 10.1002/jmri.25861] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Because chronic kidney disease (CKD) is a worldwide problem, accurate pathological and functional evaluation is required for planning treatment and follow-up. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can assess both capillary perfusion and tissue diffusion and may be helpful in evaluating renal function and pathology. PURPOSE To evaluate functional and pathological alterations in CKD by applying IVIM-DWI. STUDY TYPE Prospective study. SUBJECTS In all, 72 CKD patients who required renal biopsy and 20 healthy volunteers. FIELD STRENGTH 1.5T. ASSESSMENT All subjects underwent IVIM-DWI of the kidneys, and image analysis was performed by two radiologists. The mean values of true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) were acquired from renal parenchyma. Correlation between IVIM-DWI parameters and estimated glomerular filtration rate (eGFR), as well as pathological damage, were assessed. STATISTICAL TESTS One-way analysis of variance (ANOVA), paired sample t-test and Spearman correlation analysis. RESULTS The paired sample t-test revealed that IVIM-DWI parameters were significantly lower in medulla than cortex for both patients and controls (P < 0.01). Regardless of whether eGFR was reduced, ANOVA revealed that f values of renal parenchyma were significantly lower in patients than controls (P < 0.05). Spearman correlation analysis revealed that there were positive correlations between eGFR and D (cortex, r = 0.466, P < 0.001; medulla, r = 0.491, P < 0.001), and between eGFR and f (cortex, r = 0.713, P < 0.001; medulla, r = 0.512, P < 0.001). Negative correlations were found between f and glomerular injury (cortex, r = -0.773, P < 0.001; medulla, r = -0.629, P < 0.001), and between f and tubulointerstitial lesion (cortex, r = -0.728, P < 0.001; medulla, r = -0.547, P < 0.001). DATA CONCLUSION IVIM-DWI might be feasible for noninvasive evaluation of renal function and pathology of CKD, especially in detection of renal insufficiency at an early stage. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1251-1259.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Yuqin Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Lijie Qu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, P.R. China
| |
Collapse
|
19
|
Friedli I, Crowe LA, de Perrot T, Berchtold L, Martin PY, de Seigneux S, Vallée JP. Comparison of readout-segmented and conventional single-shot for echo-planar diffusion-weighted imaging in the assessment of kidney interstitial fibrosis. J Magn Reson Imaging 2017; 46:1631-1640. [DOI: 10.1002/jmri.25687] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Iris Friedli
- Division of Radiology, Geneva University Hospitals; University of Geneva, Faculty of Medicine; Geneva Switzerland
| | - Lindsey Alexandra Crowe
- Division of Radiology, Geneva University Hospitals; University of Geneva, Faculty of Medicine; Geneva Switzerland
| | - Thomas de Perrot
- Division of Radiology, Geneva University Hospitals; University of Geneva, Faculty of Medicine; Geneva Switzerland
| | - Lena Berchtold
- Division of Nephrology, Geneva University Hospitals; University of Geneva, Faculty of Medicine; Geneva Switzerland
| | - Pierre-Yves Martin
- Division of Nephrology, Geneva University Hospitals; University of Geneva, Faculty of Medicine; Geneva Switzerland
| | - Sophie de Seigneux
- Division of Nephrology, Geneva University Hospitals; University of Geneva, Faculty of Medicine; Geneva Switzerland
| | - Jean-Paul Vallée
- Division of Radiology, Geneva University Hospitals; University of Geneva, Faculty of Medicine; Geneva Switzerland
| |
Collapse
|