1
|
Löffler MT, Akkaya Z, Bhattacharjee R, Link TM. Biomarkers of Cartilage Composition. Semin Musculoskelet Radiol 2024; 28:26-38. [PMID: 38330968 DOI: 10.1055/s-0043-1776429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) has significantly advanced the understanding of osteoarthritis (OA) because it enables visualization of noncalcified tissues. Cartilage is avascular and nurtured by diffusion, so it has a very low turnover and limited capabilities of repair. Consequently, prevention of structural and detection of premorphological damage is key in maintaining cartilage health. The integrity of cartilage composition and ultrastructure determines its mechanical properties but is not accessible to morphological imaging. Therefore, various techniques of compositional MRI with and without use of intravenous contrast medium have been developed. Spin-spin relaxation time (T2) and spin-lattice relaxation time constant in rotating frame (T1rho) mapping, the most studied cartilage biomarkers, were included in the recent standardization effort by the Quantitative Imaging Biomarkers Alliance (QIBA) that aims to make compositional MRI of cartilage clinically feasible and comparable. Additional techniques that are less frequently used include ultrashort echo time with T2*, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), glycosaminoglycan concentration by chemical exchange-dependent saturation transfer (gagCEST), sodium imaging, and diffusion-weighted MRI.
Collapse
Affiliation(s)
- Maximilian T Löffler
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Zehra Akkaya
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Department of Radiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Rupsa Bhattacharjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
2
|
Kamp B, Frenken M, Henke JM, Abrar DB, Nagel AM, Gast LV, Oeltzschner G, Wilms LM, Nebelung S, Antoch G, Wittsack HJ, Müller-Lutz A. Quantification of Sodium Relaxation Times and Concentrations as Surrogates of Proteoglycan Content of Patellar CARTILAGE at 3T MRI. Diagnostics (Basel) 2021; 11:diagnostics11122301. [PMID: 34943538 PMCID: PMC8700247 DOI: 10.3390/diagnostics11122301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Sodium MRI has the potential to depict cartilage health accurately, but synovial fluid can influence the estimation of sodium parameters of cartilage. Therefore, this study aimed to reduce the impact of synovial fluid to render the quantitative compositional analyses of cartilage tissue technically more robust. Two dedicated protocols were applied for determining sodium T1 and T2* relaxation times. For each protocol, data were acquired from 10 healthy volunteers and one patient with patellar cartilage damage. Data recorded with multiple repetition times for T1 measurement and multi-echo data acquired with an additional inversion recovery pulse for T2* measurement were analysed using biexponential models to differentiate longitudinal relaxation components of cartilage (T1,car) and synovial fluid (T1,syn), and short (T2s*) from long (T2l*) transversal relaxation components. Sodium relaxation times and concentration estimates in patellar cartilage were successfully determined: T1,car = 14.5 ± 0.7 ms; T1,syn = 37.9 ± 2.9 ms; c(T1-protocol) = 200 ± 48 mmol/L; T2s* = 0.4 ± 0.1 ms; T2l* = 12.6 ± 0.7 ms; c(T2*-protocol) = 215 ± 44 mmol/L for healthy volunteers. In conclusion, a robust determination of sodium relaxation times is possible at a clinical field strength of 3T to quantify sodium concentrations, which might be a valuable tool to determine cartilage health.
Collapse
Affiliation(s)
- Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
- Correspondence:
| | - Jan M. Henke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
- Clinic of Nuclear Medicine, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Daniel B. Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (A.M.N.); (L.V.G.)
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, D-69120 Heidelberg, Germany
| | - Lena V. Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (A.M.N.); (L.V.G.)
| | - Georg Oeltzschner
- Russell H. Morgan Department for Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA;
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205-2196, USA
| | - Lena M. Wilms
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| |
Collapse
|
3
|
Soellner ST, Welsch GH, Gelse K, Goldmann A, Kleyer A, Schett G, Pachowsky ML. gagCEST imaging at 3 T MRI in patients with articular cartilage lesions of the knee and intraoperative validation. Osteoarthritis Cartilage 2021; 29:1163-1172. [PMID: 33933584 DOI: 10.1016/j.joca.2021.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to compare glycosaminoglycan chemical exchange saturation transfer (gagCEST) of knee cartilage with intraoperative results for the assessment of early osteoarthritis (OA) and to define gagCEST values for the differentiation between healthy and degenerated cartilage. DESIGN Twenty-one patients with cartilage lesions or moderate OA were examined using 3 T Magnetic Resonance Imaging (MRI). In this prospective study, regions of interest (ROIs) were examined by a sagittal gagCEST analysis and a morphological high-resolution three-dimensional, fat-saturated proton-density space sequence. Cartilage lesions were identified arthroscopically, graded by the International Cartilage Repair Society (ICRS) score in 42 defined ROIs per patient and consecutively compared with mean gagCEST values using analysis of variance and Spearman's rank correlation test. Receiver operating characteristics (ROC) curves were applied to identify gagCEST threshold values to differentiate between the ICRS grades. RESULTS A total of 882 ROIs were examined and graduated in ICRS score 0 (67.3%), 1 (25.2%), 2 (6.2%) and the merged ICRS 3 and 4 (1.0%). gagCEST values decreased with increasing grade of cartilage damage with a negative correlation between gagCEST values and ICRS scores. A gagCEST value threshold of 3.55% was identified to differentiate between ICRS score 0 (normal) and all other grades. CONCLUSIONS gagCEST reflects the content of glycosaminoglycan and might provide a diagnostic tool for the detection of early knee-joint cartilage damage and for the non-invasive subtle differentiation between ICRS grades by MRI even at early stages in clinical practice.
Collapse
Affiliation(s)
- S T Soellner
- Department of Trauma and Orthopaedic Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - G H Welsch
- UKE Athleticum, and Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - K Gelse
- Klinikum Traunstein, Traunstein, Germany; Department of Trauma and Orthopaedic Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany; University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - A Goldmann
- OCE Orthopaedie Centrum Erlangen, Erlangen, Germany.
| | - A Kleyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - G Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - M L Pachowsky
- Department of Trauma and Orthopaedic Surgery and Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Watkins LE, Rubin EB, Mazzoli V, Uhlrich SD, Desai AD, Black M, Ho GK, Delp SL, Levenston ME, Beaupré GS, Gold GE, Kogan F. Rapid volumetric gagCEST imaging of knee articular cartilage at 3 T: evaluation of improved dynamic range and an osteoarthritic population. NMR IN BIOMEDICINE 2020; 33:e4310. [PMID: 32445515 PMCID: PMC7347437 DOI: 10.1002/nbm.4310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 05/22/2023]
Abstract
Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison with T2 and T1ρ measures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty-two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren-Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry and T2 and T1ρ relaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single-slice acquisitions (p = 0.015). The average scan-rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p = 0.655) or between healthy controls and OA subjects (p = 0.310). T2 and T1ρ relaxation times were elevated in OA subjects (p < 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = -0.181 and rho = -0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild-moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.
Collapse
Affiliation(s)
| | - Elka B Rubin
- Radiology, Stanford University, Stanford, California, USA
| | | | - Scott D Uhlrich
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Arjun D Desai
- Electrical Engineering, Stanford University, Stanford, California, USA
| | - Marianne Black
- Radiology, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Gabe K Ho
- Bioengineering, Stanford University, Stanford, California, USA
| | - Scott L Delp
- Bioengineering, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
- Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Marc E Levenston
- Bioengineering, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Gary S Beaupré
- Bioengineering, Stanford University, Stanford, California, USA
- Veteran Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Garry E Gold
- Bioengineering, Stanford University, Stanford, California, USA
- Radiology, Stanford University, Stanford, California, USA
- Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Feliks Kogan
- Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Detection of early cartilage degeneration in the tibiotalar joint using 3 T gagCEST imaging: a feasibility study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:249-260. [PMID: 32725359 PMCID: PMC8018923 DOI: 10.1007/s10334-020-00868-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To establish and optimize a stable 3 Tesla (T) glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging protocol for assessing the articular cartilage of the tibiotalar joint in healthy volunteers and patients after a sustained injury to the ankle. METHODS Using Bloch-McConnell simulations, we optimized the sequence protocol for a 3 T MRI scanner for maximum gagCEST effect size within a clinically feasible time frame of less than 07:30 min. This protocol was then used to analyze the gagCEST effect of the articular cartilage of the tibiotalar joint of 17 healthy volunteers and five patients with osteochondral lesions of the talus following ankle trauma. Reproducibility was tested with the intraclass correlation coefficient. RESULTS The mean magnetization transfer ratio asymmetry (MTRasym), i.e., the gagCEST effect size, was significantly lower in patients than in healthy volunteers (0.34 ± 1.9% vs. 1.49 ± 0.11%; p < 0.001 [linear mixed model]). Intra- and inter-rater reproducibility was excellent with an average measure intraclass correlation coefficient (ICC) of 0.97 and a single measure ICC of 0.91 (p < 0.01). DISCUSSION In this feasibility study, pre-morphological tibiotalar joint cartilage damage was quantitatively assessable on the basis of the optimized 3 T gagCEST imaging protocol that allowed stable quantification gagCEST effect sizes across a wide range of health and disease in clinically feasible acquisition times.
Collapse
|
6
|
Einarsson E, Peterson P, Önnerfjord P, Gottschalk M, Xu X, Knutsson L, Dahlberg LE, Struglics A, Svensson J. The role of cartilage glycosaminoglycan structure in gagCEST. NMR IN BIOMEDICINE 2020; 33:e4259. [PMID: 31999387 DOI: 10.1002/nbm.4259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Glycosaminoglycan (GAG) chemical exchange saturation transfer (gagCEST) is a potential method for cartilage quality assessment. The aim of this study was to investigate how the gagCEST effect depends on the types and molecular organization of GAG typically found in articular cartilage. gagCEST was performed on different concentrations of GAG in various forms: free chains of chondroitin sulfate (CS) of different types (-A and -C) and GAG bound to protein in aggregated and nonaggregated aggrecan extracted from calf articular cartilage. The measured magnetization transfer ratio asymmetry (MTRasym ) was compared with known GAG concentrations or GAG concentrations determined through biochemical analysis. The gagCEST effect was assessed through the linear regression coefficient with 95% confidence interval of MTRasym per GAG concentration. We observed a lower gagCEST effect in phantoms containing a mixture of CS-A and CS-C compared with phantoms containing mainly CS-A. The difference in response corresponds well to the difference in CS-A concentration. GAG bound in aggrecan from calf articular cartilage, where CS-A is assumed to be the major type of GAG, produed a similar gagCEST effect as that observed for free CS-A. The effect was also similar for aggregated (ie, bound to hyaluronic acid) and nonaggregated aggrecan. In conclusion, our results indicate that the aggrecan structure in itself does not impact the gagCEST effect, but that the effect is strongly dependent on GAG type. In phantoms, the current implementation of gagCEST is sensitive to CS-A while for CS-C, the main GAG component in mature human articular cartilage, the sensitivity is limited. This difference in gagCEST sensitivity between GAG types detected in phantoms is a strong motivation to also explore the possibility of a similar effect in vivo.
Collapse
Affiliation(s)
- Emma Einarsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Radiation Physics, Department of Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Leif E Dahlberg
- Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - André Struglics
- Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Hesper T, Bittersohl B, Schleich C, Hosalkar H, Krauspe R, Krekel P, Zilkens C. Automatic Cartilage Segmentation for Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Hip Joint Cartilage: A Feasibility Study. Cartilage 2020; 11:32-37. [PMID: 29926743 PMCID: PMC6921955 DOI: 10.1177/1947603518783481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Automatic segmentation for biochemical cartilage evaluation holds promise for an efficient and reader-independent analysis. This pilot study aims to investigate the feasibility and to compare delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) hip joint assessment with manual segmentation of acetabular and femoral head cartilage and dGEMRIC hip joint assessment using automatic surface and volume processing software at 3 Tesla. DESIGN Three-dimensional (3D) dGEMRIC data sets of 6 patients with hip-related pathology were assessed (1) manually including multiplanar image reformatting and regions of interest (ROI) analysis and (2) automated by using a combined surface and volume processing software. For both techniques, T1Gd values were obtained in acetabular and femoral head cartilage at 7 regions (anterior, anterior-superior, superior-anterior, superior, superior-posterior, posterior-superior, and posterior) in central and peripheral portions. Correlation between both techniques was calculated utilizing Spearman's rank correlation coefficient. RESULTS A high correlation between both techniques was observed for acetabular (ρ = 0.897; P < 0.001) and femoral head (ρ = 0.894; P < 0.001) cartilage in all analyzed regions of the hip joint (ρ between 0.755 and 0.955; P < 0.001). CONCLUSIONS Automatic cartilage segmentation with dGEMRIC assessment for hip joint cartilage evaluation seems feasible providing high to excellent correlation with manually performed ROI analysis. This technique is feasible for an objective, reader-independant and reliable assessment of biochemical cartilage status.
Collapse
Affiliation(s)
- Tobias Hesper
- Department of Orthopedics, Medical
Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics, Medical
Faculty, University of Düsseldorf, Düsseldorf, Germany,Bernd Bittersohl, Department of Orthopedics,
Heinrich-Heine University, Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Christoph Schleich
- Department of Diagnostic and
Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf,
Germany
| | - Harish Hosalkar
- Paradise Valley Hospital, San Diego, CA,
USA,Tri-city Medical Center, San Diego, CA,
USA
| | - Rüdiger Krauspe
- Department of Orthopedics, Medical
Faculty, University of Düsseldorf, Düsseldorf, Germany
| | | | - Christoph Zilkens
- Department of Orthopedics, Medical
Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Han Z, Liu G. Sugar-based biopolymers as novel imaging agents for molecular magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1551. [PMID: 30666829 DOI: 10.1002/wnan.1551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Sugar-based biopolymers have been recognized as attractive materials to develop macromolecule- and nanoparticle-based cancer imaging and therapy. However, traditional biopolymer-based imaging approaches rely on the use of synthetic or isotopic labeling, and because of it, clinical translation often is hindered. Recently, a novel magnetic resonance imaging (MRI) technology, chemical exchange saturation transfer (CEST), has emerged, which allows the exploitation of sugar-based biopolymers as MRI agents by their hydroxyl protons-rich nature. In the study, we reviewed recent studies on the topic of CEST MRI detection of sugar-based biopolymers. The CEST MRI property of each biopolymer was briefly introduced, followed by the pre-clinical and clinical applications. The findings of these preliminary studies imply the enormous potential of CEST detectable sugar-based biopolymers in developing highly sensitive and translatable molecular imaging agents and constructing image-guided biopolymer-based drug delivery systems. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
9
|
Peterson P, Olsson E, Svensson J. T
2
relaxation time bias in gagCEST at 3T and 7T: comparison of saturation schemes. Magn Reson Med 2018; 81:1044-1051. [DOI: 10.1002/mrm.27465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/08/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Pernilla Peterson
- Medical Radiation Physics, Malmö, Department of Translational Medicine Lund University Sweden
- Radiation Physics Skåne University Hospital Malmö Sweden
| | - Emma Olsson
- Medical Radiation Physics, Malmö, Department of Translational Medicine Lund University Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Malmö, Department of Translational Medicine Lund University Sweden
- Medical Imaging and Physiology Skåne University Hospital Lund Sweden
| |
Collapse
|
10
|
MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthritis Cartilage 2018; 26:1140-1152. [PMID: 29550400 DOI: 10.1016/j.joca.2017.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/16/2017] [Accepted: 11/14/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess reliability and discriminative validity of cartilage compositional magnetic resonance imaging (MRI) in knee osteoarthritis (OA). DESIGN The study was carried out per PRISMA recommendations. We searched MEDLINE and EMBASE (1974 - present) for eligible studies. We performed qualitative synthesis of reliability data. Where data from at least two discrimination studies were available, we estimated pooled standardized mean difference (SMD) between subjects with and without OA. Discrimination analyses compared controls and subjects with mild OA (Kellgren-Lawrence (KL) grade 1-2), severe OA (KL grade 3-4) and OA not otherwise specified (NOS) where not possible to stratify. We assessed quality of the evidence using Quality Appraisal of Diagnostic Reliability (QAREL) and Quality Assessment of Diagnostic Accuracy (QUADAS-2) tools. RESULTS Fifty-eight studies were included in the reliability analysis and 26 studies were included in the discrimination analysis, with data from a total of 2,007 knees. Intra-observer, inter-observer and test-retest reliability of compositional techniques were excellent with most intraclass correlation coefficients >0.8 and coefficients of variation <10%. T1rho and T2 relaxometry were significant discriminators between subjects with mild OA and controls, and between subjects with OA (NOS) and controls (P < 0.001). T1rho showed best discrimination for mild OA (SMD [95% CI] = 0.73 [0.40 to 1.06], P < 0.001) and OA (NOS) (0.60 [0.41 to 0.80], P < 0.001). Quality of evidence was moderate for both parts of the review. CONCLUSIONS Cartilage compositional MRI techniques are reliable and, in the case of T1rho and T2 relaxometry, can discriminate between subjects with OA and controls.
Collapse
Affiliation(s)
- J W MacKay
- Department of Radiology, University of Cambridge, Cambridge, UK.
| | - S B L Low
- Department of Radiology, Norfolk & Norwich University Hospital, Norwich, UK.
| | - T O Smith
- School of Health Sciences, University of East Anglia, Norwich, UK.
| | - A P Toms
- Department of Radiology, Norfolk & Norwich University Hospital, Norwich, UK.
| | - A W McCaskie
- Division of Trauma & Orthopaedics, Department of Surgery, University of Cambridge, Cambridge UK.
| | - F J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Nelson BB, Kawcak CE, Barrett MF, McIlwraith CW, Grinstaff MW, Goodrich LR. Recent advances in articular cartilage evaluation using computed tomography and magnetic resonance imaging. Equine Vet J 2018; 50:564-579. [DOI: 10.1111/evj.12808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- B. B. Nelson
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - C. E. Kawcak
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. F. Barrett
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
- Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins Colorado USA
| | - C. W. McIlwraith
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| | - M. W. Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine Boston University Boston Massachusetts USA
| | - L. R. Goodrich
- Gail Holmes Equine Orthopaedic Research Center Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins Colorado USA
| |
Collapse
|
12
|
Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol 2018; 28:2874-2881. [PMID: 29383528 PMCID: PMC5986839 DOI: 10.1007/s00330-017-5277-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/04/2022]
Abstract
Objectives The purpose was to implement a fast 3D glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) sequence at 7 T, test stability and reproducibility in cartilage in the knee in healthy volunteers, and evaluate clinical applicability in cartilage repair patients. Methods Experiments were carried out on a 7-T scanner using a volume transmit coil and a 32-channel receiver wrap-around knee coil. The 3D gagCEST measurement had an acquisition time of 7 min. Signal stability and reproducibility of the GAG effect were assessed in eight healthy volunteers. Clinical applicability of the method was demonstrated in five patients before cartilage repair surgery. Results Coefficient of variation of the gagCEST signal was 1.9%. The reproducibility of the GAG effect measurements was good in the medial condyle (ICC = 0.87) and excellent in the lateral condyle (ICC = 0.97). GAG effect measurements in healthy cartilage ranged from 2.6%-12.4% compared with 1.3%-5.1% in damaged cartilage. Difference in GAG measurement between healthy cartilage and damaged cartilage was significant (p < 0.05). Conclusions A fast 3D gagCEST sequence was applied at 7 T for use in cartilage in the knee, acquired within a clinically feasible scan time of 7 min. We demonstrated that the method has high stability, reproducibility and clinical applicability. Key Points • gagCEST measurements are stable and reproducible • A non-invasive GAG measurement with gagCEST can be acquired in 7 min • gagCEST is able to discriminate between healthy and damaged cartilage Electronic supplementary material The online version of this article (10.1007/s00330-017-5277-y) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Hesper T, Schleich C, Buchwald A, Hosalkar HS, Antoch G, Krauspe R, Zilkens C, Bittersohl B. T2* Mapping of the Hip in Asymptomatic Volunteers with Normal Cartilage Morphology: An Analysis of Regional and Age-Dependent Distribution. Cartilage 2018; 9:30-37. [PMID: 28466651 PMCID: PMC5724674 DOI: 10.1177/1947603516684591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To assess age-dependent and regional differences in T2* relaxation measurements in hip joint cartilage of asymptomatic volunteers at 3 T. Design Three age cohorts (cohort 1: age 20-30 years, 15 individuals; cohort 2: age 30-40 years, 17 individuals; cohort 3: age 40-50 years, 15 individuals) were enrolled. T2* values were obtained in the central and peripheral cartilage of the acetabulum and the femoral head in 7 regions (anterior to superior and posterior). Results T2* did not differ among age cohorts in acetabular cartilage (cohort 1: 24.65 ± 6.56 ms, cohort 2: 24.70 ± 4.83 ms, cohort 3: 25.81 ± 5.10 ms, P = 0.10) and femoral head cartilage (cohort 1: 27.08 ± 8.24 ms, cohort 2: 25.90 ± 7.82 ms, cohort 3: 26.50 ± 5.61 ms, P = 0.34). Analysis of the regional T2* distribution pattern indicates increased T2* values in the anterior, anterior-superior, superior-anterior, and the posterior-superior aspects of acetabular and femoral head cartilage. For acetabular cartilage, higher values were observed in the central region (25.90 ± 4.80 ms vs. 24.21 ± 4.05 ms, P < 0.0001) whereas femoral head cartilage did not reveal such differences (26.62 ± 5.74 ms vs. 26.37 ± 5.89 ms, P = 0.44). Conclusions The T2* analysis of presumably healthy hip joint cartilage does not seem to be stratified according to age in this population. Regional T2* variation throughout hip joint cartilage is apparent in this modality.
Collapse
Affiliation(s)
- Tobias Hesper
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christoph Schleich
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Alexander Buchwald
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Harish S. Hosalkar
- Paradise Valley Hospital, National City, CA, USA,Tri-city Medical Center, San Diego, CA, USA
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Rüdiger Krauspe
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany,Bernd Bittersohl, Department of Orthopedics, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Hesper T, Bulat E, Bixby S, Akhondi-Asl A, Afacan O, Miller P, Bowen G, Warfield S, Kim YJ. Both 3-T dGEMRIC and Acetabular-Femoral T2 Difference May Detect Cartilage Damage at the Chondrolabral Junction. Clin Orthop Relat Res 2017; 475:1058-1065. [PMID: 27807678 PMCID: PMC5339137 DOI: 10.1007/s11999-016-5136-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In addition to case reports of gadolinium-related toxicities, there are increasing theoretical concerns about the use of gadolinium for MR imaging. As a result, there is increasing interest in noncontrast imaging techniques for biochemical cartilage assessment. Among them, T2 mapping holds promise because of its simplicity, but its biophysical interpretation has been controversial. QUESTIONS/PURPOSES We sought to determine whether (1) 3-T delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping are both capable of detecting cartilage damage at the chondrolabral junction in patients with femoroacetabular impingement (FAI); and (2) whether there is a correlation between these two techniques for acetabular and femoral head cartilage assessment. METHODS Thirty-one patients with hip-related symptoms resulting from FAI underwent a preoperative 3-T MRI of their hip that included dGEMRIC and T2 mapping (symptomatic group, 16 women, 15 men; mean age, 27 ± 8 years). Ten volunteers with no symptoms according to the WOMAC served as a control (asymptomatic group, seven women, three men; mean age, 28 ± 3 years). After morphologic cartilage assessment, acetabular and femoral head cartilages were graded according to the modified Outerbridge grading criteria. In the midsagittal plane, single-observer analyses of precontrast T1 values (volunteers), the dGEMRIC index (T1Gd, patients), and T2 mapping values (everyone) were compared in acetabular and corresponding femoral head cartilage at the chondrolabral junction of each hip by region-of-interest analysis. RESULTS In the symptomatic group, T1Gd and T2 values were lower in the acetabular cartilage compared with corresponding femoral head cartilage (T1Gd: 515 ± 165 ms versus 650 ± 191 ms, p < 0.001; T2: 39 ± 8 ms versus 46 ± 10 ms, p < 0.001). In contrast, the asymptomatic group demonstrated no differences in T1 and T2 values for the acetabular and femoral cartilages with the numbers available (T1: 861 ± 130 ms versus 860 ± 182 ms, p = 0.98; T2: 43 ± 7 ms versus 42 ± 6 ms, p = 0.73). No correlation with the numbers available was noted between the modified Outerbridge grade and T1, T1Gd, or T2 as well as between T2 and either T1 or T1Gd. CONCLUSIONS Without the need for contrast media application, T2 mapping may be a viable alternative to dGEMRIC when assessing hip cartilage at the chondrolabral junction. However, acquisition-related phenomena as well as regional variations in the microstructure of hip cartilage necessitate an internal femoral head cartilage control when interpreting these results. LEVEL OF EVIDENCE Level IV, diagnostic study.
Collapse
Affiliation(s)
- Tobias Hesper
- grid.2515.30000000403788438Department of Orthopedic Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Evgeny Bulat
- grid.2515.30000000403788438Department of Orthopedic Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Sarah Bixby
- grid.2515.30000000403788438Department of Radiology, Boston Children’s Hospital, Boston, MA USA
| | - Alireza Akhondi-Asl
- grid.2515.30000000403788438Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Onur Afacan
- grid.2515.30000000403788438Department of Radiology, Boston Children’s Hospital, Boston, MA USA
| | - Patricia Miller
- grid.2515.30000000403788438Department of Orthopedic Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Garrett Bowen
- grid.2515.30000000403788438Department of Orthopedic Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Simon Warfield
- grid.2515.30000000403788438Department of Radiology, Boston Children’s Hospital, Boston, MA USA
| | - Young-Jo Kim
- grid.2515.30000000403788438Department of Orthopedic Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
15
|
Opacic T, Paefgen V, Lammers T, Kiessling F. Status and trends in the development of clinical diagnostic agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Tatjana Opacic
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Vera Paefgen
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
- Department of Pharmaceutics; Utrecht University; Utrecht The Netherlands
- Department of Targeted Therapeutics; University of Twente; Enschede The Netherlands
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| |
Collapse
|