1
|
Fujimoto Y, Fujino J, Matsuyoshi D, Jitoku D, Kobayashi N, Qian C, Okuzumi S, Tei S, Tamura T, Ueno T, Yamada M, Takahashi H. Neural responses to gaming content on social media in young adults. Behav Brain Res 2024; 467:115004. [PMID: 38631660 DOI: 10.1016/j.bbr.2024.115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Excessive gaming can impair both mental and physical health, drawing widespread public and clinical attention, especially among young generations. People are now more exposed to gaming-related content on social media than before, and this exposure may have a significant impact on their behavior. However, the neural mechanisms underlying this effect remain unexplored. Using functional magnetic resonance imaging (fMRI), this study aimed to investigate the neural activity induced by gaming-related content on social media among young adults casually playing online games. While being assessed by fMRI, the participants watched gaming-related videos and neutral (nongaming) videos on social media. The gaming-related cues significantly activated several brain areas, including the medial prefrontal cortex, posterior cingulate cortex, hippocampus, thalamus, superior/middle temporal gyrus, precuneus and occipital regions, compared with the neutral cues. Additionally, the participants' gaming desire levels positively correlated with a gaming-related cue-induced activation in the left orbitofrontal cortex and the right superior temporal gyrus. These findings extend previous studies on gaming cues and provide useful information to elucidate the effects of gaming-related content on social media in young adults. Continued research using real-world gaming cues may help improve our understanding of promoting gaming habits and provide support to individuals vulnerable to gaming addiction.
Collapse
Affiliation(s)
- Yuka Fujimoto
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
| | - Daisuke Matsuyoshi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Daisuke Jitoku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nanase Kobayashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chenyu Qian
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoko Okuzumi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shisei Tei
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan; Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute of Applied Brain Sciences, Waseda University, Saitama, Japan; School of Human and Social Sciences, Tokyo International University, Saitama, Japan
| | - Takehiro Tamura
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Yan H, Shlobin NA, Jung Y, Zhang KK, Warsi N, Kulkarni AV, Ibrahim GM. Nucleus accumbens: a systematic review of neural circuitry and clinical studies in healthy and pathological states. J Neurosurg 2023; 138:337-346. [PMID: 35901682 DOI: 10.3171/2022.5.jns212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The nucleus accumbens (NAcc) of the ventral striatum is critically involved in goal- and reward-based behavior. Structural and functional abnormalities of the NAcc or its associated neural systems are involved in neurological and psychiatric disorders. Studies of neural circuitry have shed light on the subtleties of the structural and functional derangements of the NAcc across various diseases. In this systematic review, the authors sought to identify human studies involving the NAcc and provide a synthesis of the literature on the known circuity of the NAcc in healthy and diseased states, as well as the clinical outcomes following neuromodulation. METHODS A systematic review was conducted using the PubMed, Embase, and Scopus databases. Neuroimaging studies that reported on neural circuitry related to the human NAcc with sample sizes greater than 5 patients were included. Demographic data, aim, design and duration, participants, and clinical and neurocircuitry details and outcomes of the studies were extracted. RESULTS Of 3591 resultant articles, 123 were included. The NAcc and its corticolimbic connections to other brain regions, such as the prefrontal cortex, are largely involved in reward and pain processes, with distinct functional circuitry between the shell and core in healthy patients. There is heterogeneity between clinical studies with regard to the NAcc indirect targeting coordinates, methods for postoperative confirmation, and blinded trial design. Neuromodulation studies provided promising clinical results in the context of addiction and substance misuse, obsessive-compulsive disorder, and mood disorders. The most common complications were impaired memory or concentration, and a notable serious complication was hypomania. CONCLUSIONS The functional diversity of the NAcc highlights the importance of studying the NAcc in healthy and pathological states. The results of this review suggest that NAcc neuromodulation has been attempted in the management of diverse psychiatric indications. There is promising, emerging evidence that the NAcc may be an effective target for specific reward- or pain-based pathologies with a reasonable risk profile.
Collapse
Affiliation(s)
- Han Yan
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada.,4McMaster Medical School, Hamilton, Ontario, Canada
| | - Nathan A Shlobin
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Kristina K Zhang
- 5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Nebras Warsi
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Abhaya V Kulkarni
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
| | - George M Ibrahim
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
4
|
Li Y, Cheng P, Liang L, Dong H, Liu H, Shen W, Zhou W. Abnormal resting-state functional connectome in methamphetamine-dependent patients and its application in machine-learning-based classification. Front Neurosci 2022; 16:1014539. [DOI: 10.3389/fnins.2022.1014539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Brain resting-state functional connectivity (rsFC) has been widely analyzed in substance use disorders (SUDs), including methamphetamine (MA) dependence. Most of these studies utilized Pearson correlation analysis to assess rsFC, which cannot determine whether two brain regions are connected by direct or indirect pathways. Moreover, few studies have reported the application of rsFC-based graph theory in MA dependence. We evaluated alterations in Tikhonov regularization-based rsFC and rsFC-based topological attributes in 46 MA-dependent patients, as well as the correlations between topological attributes and clinical variables. Moreover, the topological attributes selected by least absolute shrinkage and selection operator (LASSO) were used to construct a support vector machine (SVM)-based classifier for MA dependence. The MA group presented a subnetwork with increased rsFC, indicating overactivation of the reward circuit that makes patients very sensitive to drug-related visual cues, and a subnetwork with decreased rsFC suggesting aberrant synchronized spontaneous activity in subregions within the orbitofrontal cortex (OFC) system. The MA group demonstrated a significantly decreased area under the curve (AUC) for the clustering coefficient (Cp) (Pperm < 0.001), shortest path length (Lp) (Pperm = 0.007), modularity (Pperm = 0.006), and small-worldness (σ, Pperm = 0.004), as well as an increased AUC for global efficiency (E.glob) (Pperm = 0.009), network strength (Sp) (Pperm = 0.009), and small-worldness (ω, Pperm < 0.001), implying a shift toward random networks. MA-related increased nodal efficiency (E.nodal) and altered betweenness centrality were also discovered in several brain regions. The AUC for ω was significantly positively associated with psychiatric symptoms. An SVM classifier trained by 36 features selected by LASSO from all topological attributes achieved excellent performance, cross-validated prediction area under the receiver operating characteristics curve, accuracy, sensitivity, specificity, and kappa of 99.03 ± 1.79, 94.00 ± 5.78, 93.46 ± 8.82, 94.52 ± 8.11, and 87.99 ± 11.57%, respectively (Pperm < 0.001), indicating that rsFC-based topological attributes can provide promising features for constructing a high-efficacy classifier for MA dependence.
Collapse
|
5
|
Zhou Y, Tang J, Sun Y, Yang WFZ, Ma Y, Wu Q, Chen S, Wang Q, Hao Y, Wang Y, Li M, Liu T, Liao Y. A brainnetome atlas-based methamphetamine dependence identification using neighborhood component analysis and machine learning on functional MRI data. Front Cell Neurosci 2022; 16:958437. [PMID: 36238830 PMCID: PMC9550874 DOI: 10.3389/fncel.2022.958437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Addiction to methamphetamine (MA) is a major public health concern. Developing a predictive model that can classify and characterize the brain-based biomarkers predicting MA addicts may directly lead to improved treatment outcomes. In the current study, we applied the support vector machine (SVM)-based classification method to resting-state functional magnetic resonance imaging (rs-fMRI) data obtained from individuals with methamphetamine use disorder (MUD) and healthy controls (HCs) to identify brain-based features predictive of MUD. Brain connectivity analyses were conducted for 36 individuals with MUD as well as 37 HCs based on the brainnetome atlas, and the neighborhood component analysis was applied for feature selection. Eighteen most relevant features were screened out and fed into the SVM to classify the data. The classifier was able to differentiate individuals with MUD from HCs with a high prediction accuracy, sensitivity, specificity, and AUC of 88.00, 86.84, 89.19, and 0.94, respectively. The top six discriminative features associated with changes in the functional activity of key nodes in the default mode network (DMN), all the remaining discriminative features are related to the thalamic connections within the cortico-striato-thalamo-cortical (CSTC) loop. In addition, the functional connectivity (FC) between the bilateral inferior parietal lobule (IPL) and right cingulate gyrus (CG) was significantly correlated with the duration of methamphetamine use. The results of this study not only indicated that MUD-related FC alterations were predictive of group membership, but also suggested that machine learning techniques could be used for the identification of MUD-related imaging biomarkers.
Collapse
Affiliation(s)
- Yanan Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, China
| | - Jingsong Tang
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunkai Sun
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, United States
| | - Yuejiao Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiuxia Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shubao Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuzhu Hao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunfei Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manyun Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tieqiao Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Tieqiao Liu
| | - Yanhui Liao
- Department of Psychiatry, School of Medicine, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Yanhui Liao
| |
Collapse
|
6
|
Groman SM, Thompson SL, Lee D, Taylor JR. Reinforcement learning detuned in addiction: integrative and translational approaches. Trends Neurosci 2022; 45:96-105. [PMID: 34920884 PMCID: PMC8770604 DOI: 10.1016/j.tins.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Neuroscience, University of Minnesota,Department of Psychiatry, Yale University,Correspondence to be directed to: Stephanie Groman, 321 Church Street SE, 4-125 Jackson Hall Minneapolis MN 55455,
| | | | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, The Solomon H Snyder Department of Neuroscience, Department of Psychological and Brain Sciences, Kavli Neuroscience Discovery Institute, Johns Hopkins University
| | - Jane R. Taylor
- Department of Psychiatry, Yale University,Department of Neuroscience, Yale University,Department of Psychology, Yale University
| |
Collapse
|
7
|
Zhang J, Chen S, Jiang Q, Dong H, Zhao Z, Du X, Dong GH. Disturbed craving regulation to gaming cues in internet gaming disorder: Implications for uncontrolled gaming behaviors. J Psychiatr Res 2021; 140:250-259. [PMID: 34119910 DOI: 10.1016/j.jpsychires.2021.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/03/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ability to control craving for games is very important to abstain from Internet gaming disorder (IGD) and abundant clinical evidence has suggested that craving dysregulation is the essential pathogenesis for IGD. However, the neural mechanism underlying this feature remains unclear. METHODS Subjective evaluation and fMRI data from 44 participants (IGD participants: 21; recreational Internet game users (RGUs): 23) were collected while they were performing a regulation of craving task. We analyzed and compared their brain features while they regulated cravings to gaming stimuli. RESULTS Compared to RGUs, IGD participants showed enhanced brain activation in the right anterior cingulate cortex, posterior cingulate cortex (PCC), orbitofrontal cortex and middle temporal gyrus and in the left dorsolateral prefrontal cortex and thalamus during the regulation of craving task. Generalized psychophysiological interaction (gPPI) analysis revealed that IGD participants showed decreased functional connectivity between the right PCC and right inferior parietal lobule compared to that in RGU participants. CONCLUSIONS The results suggested that deficits of craving regulation in IGD participant were associated with the imbalanced coordination between the reward network and the executive network. Enhanced game-seeking motivation and disturbed executive control are responsible for craving dysregulation in IGD participants. These findings suggest a biological mechanism for IGD that may help in finding potential interventions.
Collapse
Affiliation(s)
- Jialin Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; State Key Laboratory of Cognitive Neuroscience and Learning, Bejing Normal University, Beijing, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Qing Jiang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Haohao Dong
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Zhen Zhao
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Dong G, Wang L, Du X, Potenza MN. Gender-related differences in neural responses to gaming cues before and after gaming: implications for gender-specific vulnerabilities to Internet gaming disorder. Soc Cogn Affect Neurosci 2019; 13:1203-1214. [PMID: 30272247 PMCID: PMC6234325 DOI: 10.1093/scan/nsy084] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Backgrounds More males than females play video games and develop problems with gaming. However, little is known regarding how males and females who game on the Internet may differ with respect to neural responses to gaming cues. Methods Behavioral and functional magnetic resonance imaging (fMRI) data were recorded from 40 female and 68 male Internet gamers. This study included three components including participation in a pre-gaming cue-craving task, 30 min of online gaming and a post-gaming cue-elicited-craving task. Group differences were examined at pre-gaming, post-gaming and post- vs pre-gaming times. Correlations between brain responses and behavioral performance were calculated. Results Gaming-related cues elicited higher cravings in male vs female subjects. Prior to gaming, males demonstrated greater activations in the striatum, orbitofrontal cortex (OFC), inferior frontal cortex and bilateral declive. Following gaming, male subjects demonstrated greater activations in the medial frontal gyrus and bilateral middle temporal gyri. In a post–pre comparison, male subjects demonstrated greater thalamic activation than did female subjects. Conclusions Short-term gaming elicited in males vs females more craving-related activations to gaming cues. These results suggest neural mechanisms for why males may be more vulnerable than females in developing Internet gaming disorder.
Collapse
Affiliation(s)
- Guangheng Dong
- School of Psychology, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Lingxiao Wang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Marc N Potenza
- Department of Psychiatry, Department of Neuroscience, Child Study Center, and National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
9
|
Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ. The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0028. [PMID: 29352027 DOI: 10.1098/rstb.2017.0028] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Impairments in response inhibition and salience attribution (iRISA) have been proposed to underlie the clinical symptoms of drug addiction as mediated by cortico-striatal-thalamo-cortical networks. The bulk of evidence supporting the iRISA model comes from neuroimaging research that has focused on cortical and striatal influences with less emphasis on the role of the thalamus. Here, we highlight the importance of the thalamus in drug addiction, focusing on animal literature findings on thalamic nuclei in the context of drug-seeking, structural and functional changes of the thalamus as measured by imaging studies in human drug addiction, particularly during drug cue and non-drug reward processing, and response inhibition tasks. Findings from the animal literature suggest that the paraventricular nucleus of the thalamus, the lateral habenula and the mediodorsal nucleus may be involved in the reinstatement, extinction and expression of drug-seeking behaviours. In support of the iRISA model, the human addiction imaging literature demonstrates enhanced thalamus activation when reacting to drug cues and reduced thalamus activation during response inhibition. This pattern of response was further associated with the severity of, and relapse in, drug addiction. Future animal studies could widen their field of focus by investigating the specific role(s) of different thalamic nuclei in different phases of the addiction cycle. Similarly, future human imaging studies should aim to specifically delineate the structure and function of different thalamic nuclei, for example, through the application of advanced imaging protocols at higher magnetic fields (7 Tesla).This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Anna S Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Suzanne N Haber
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester, Rochester, NY, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Lower Fractional Anisotropy in the Gray Matter of Amygdala-Hippocampus-Nucleus Accumbens Circuit in Methamphetamine Users: an In Vivo Diffusion Tensor Imaging Study. Neurotox Res 2017; 33:801-811. [PMID: 29038922 DOI: 10.1007/s12640-017-9828-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
The basolateral amygdala (BLA), hippocampal ventral subiculum, and nucleus accumbens (NAc) comprise the amygdala-hippocampus-NAc (AHN) circuit, which is implicated in drug seeking and reward. The goal of this study was to evaluate microstructural changes and relevant clinical features of the AHN circuit gray matter (GM) in methamphetamine (MA) users using diffusion tensor imaging (DTI). Thirty MA users and 30 age-matched normal volunteers underwent 3-T MR imaging to obtain structural T1-weighted images and DTI data. Freesurfer software was used to automatically segment the NAc and subiculum. A Jülich probability map was employed to parcellate the BLA. Fractional anisotropy (FA) and mean diffusivity (MD) maps were generated and non-linearly coregistered to structural space. DTI measures of the AHN circuit GM were compared between MA users and controls using repeated measures analysis of variance. Correlation analyses were performed between DTI measures and clinical characteristics. Anatomical correlations between the NAc and BLA/subiculum in both groups were assessed using correlation analyses. The MA group had significant lower FA in the bilateral BLA, subiculum, and NAc. Higher total MA dose corresponded with lower FA in all three structures. Hamilton Anxiety Rating Scale scores negatively correlated with the right subiculum FA. Lower left BLA FA was associated with higher thinking disorder and hostile-suspicion factor scores. Left BLA FA was significantly associated with bilateral NAc FA in MA users. Those findings provided neuroimaging evidence of MA-induced microstructural impairment in the AHN circuit GM. Enhanced anatomical correlations between the left BLA and bilateral NAc may be part of the mechanism of MA intake relapse and for development of psychosis.
Collapse
|