1
|
He L, Chen M, Li H, Shi X, Qiu Z, Xu X. Differentiation between high-grade gliomas and solitary brain metastases based on multidiffusion MRI model quantitative analysis. Front Oncol 2024; 14:1401748. [PMID: 39469636 PMCID: PMC11513521 DOI: 10.3389/fonc.2024.1401748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Background and purpose Differentiating high-grade gliomas (HGGs) from solitary brain metastases (SBMs) using conventional magnetic resonance imaging (MRI) remains challenging due to their similar imaging features. This study aimed to evaluate the diagnostic performance of advanced diffusion models, such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator magnetic resonance imaging (MAP-MRI), incomparison to traditional techniques like diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI) for distinguishing HGGs from SBMs. Methods In total, 17 patients with HGGs and 26 patients with SBMs were prospectively recruited based on the established inclusion and exclusion criteria. Structural MRI sequences and diffusion spectrum imaging (DSI) were utilized to assess quantitative parameter models, including NODDI, MAP-MRI, DWI, DTI, and DKI. Quantitative parameters were measured for both the tumor parenchymal area and the peritumoral edema area. The quantitative parameters of the two patient groups were compared using either the independent Student's t-test or the Mann-Whitney U test. The effectiveness of each model was evaluated using receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC). Finally, the DeLong test was employed to compare the diagnostic performance of each model through pairwise comparisons of ROC curves. Results Isotropic volume fraction (Viso) based on NODDI; mean squared displacement (MSD) and the return to plane probabilities (RTPP) based on MAP-MRI; radial diffusivity (RDk) and mean diffusivity (MDk) based on DKI; and axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) based on DTI of the peritumoral edema tumor were significantly different between HGGs and SBMs (p < 0.05). The optimal single discriminant parameters for each model are NODDI_Viso, MAP-MRI_MSD, DKI_MDk, and DTI_AD. Among these, the AUC of Viso (0.809) exceeds that of MSD (0.733), MDk (0.718), and AD (0.779). The combined model, which incorporates DTI_AD, DKI_RD, and NODDI_Viso, demonstrated superior diagnostic performance (0.897). Conclusions Advanced diffusion MRI quantitative parameters derived from NODDI, such as Viso, have the potential to enhance the differentiation between HGGs and SBMs. The integrated utilization of these models is anticipated to enhance diagnostic accuracy and refine MRI protocols for brain tumor assessment.
Collapse
Affiliation(s)
- Libing He
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meining Chen
- MRI Research Institute, Huaxi MR Research Center (HMRRC), Chengdu, Sichuan, China
| | - Hongjian Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiran Shi
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhiqiang Qiu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Würtemberger U, Rau A, Diebold M, Becker L, Hohenhaus M, Beck J, Reinacher PC, Erny D, Reisert M, Urbach H, Demerath T. Advanced diffusion MRI provides evidence for altered axonal microstructure and gradual peritumoral infiltration in GBM in comparison to brain metastases. Clin Neuroradiol 2024; 34:703-711. [PMID: 38683350 PMCID: PMC11339137 DOI: 10.1007/s00062-024-01416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE In contrast to peritumoral edema in metastases, GBM is histopathologically characterized by infiltrating tumor cells within the T2 signal alterations. We hypothesized that depending on the distance from the outline of the contrast-enhancing tumor we might reveal imaging evidence of gradual peritumoral infiltration in GBM and predominantly vasogenic edema around metastases. We thus investigated the gradual change of advanced diffusion metrics with the peritumoral zone in metastases and GBM. METHODS In 30 patients with GBM and 28 with brain metastases, peritumoral T2 hyperintensity was segmented in 33% partitions based on the total volume beginning at the enhancing tumor margin and divided into inner, middle and outer zones. Diffusion Tensor Imaging (DTI)-derived fractional anisotropy and mean diffusivity as well as Diffusion Microstructure Imaging (DMI)-based parameters Dax-intra, Dax-extra, V‑CSF and V-intra were employed to assess group-wise differences between inner and outer zones as well as within-group gradients between the inner and outer zones. RESULTS In metastases, fractional anisotropy and Dax-extra were significantly reduced in the inner zone compared to the outer zone (FA p = 0.01; Dax-extra p = 0.03). In GBM, we noted a reduced Dax-extra and significantly lower intraaxonal volume fraction (Dax-extra p = 0.008, V‑intra p = 0.006) accompanied by elevated axial intraaxonal diffusivity in the inner zone (p = 0.035). Between-group comparison of the outer to the inner zones revealed significantly higher gradients in metastases over GBM for FA (p = 0.04) as well as the axial diffusivity in the intra- (p = 0.02) and extraaxonal compartment (p < 0.001). CONCLUSION Our findings provide evidence of gradual alterations within the peritumoral zone of brain tumors. These are compatible with predominant (vasogenic) edema formation in metastases, whereas our findings in GBM are in line with an axonal destructive component in the immediate peritumoral area and evidence of tumor cell infiltration with accentuation in the tumor's vicinity.
Collapse
Affiliation(s)
- U Würtemberger
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
- Dept. of Neuroradiology, University Medical Center Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - A Rau
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Diebold
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - L Becker
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Hohenhaus
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - J Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - P C Reinacher
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, 52074, Aachen, Germany
| | - D Erny
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - M Reisert
- Department of Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - H Urbach
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - T Demerath
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
3
|
Su Y, Cheng R, Guo J, Zhang M, Wang J, Ji H, Wang C, Hao L, He Y, Xu C. Differentiation of glioma and solitary brain metastasis: a multi-parameter magnetic resonance imaging study using histogram analysis. BMC Cancer 2024; 24:805. [PMID: 38969990 PMCID: PMC11225204 DOI: 10.1186/s12885-024-12571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Differentiation of glioma and solitary brain metastasis (SBM), which requires biopsy or multi-disciplinary diagnosis, remains sophisticated clinically. Histogram analysis of MR diffusion or molecular imaging hasn't been fully investigated for the differentiation and may have the potential to improve it. METHODS A total of 65 patients with newly diagnosed glioma or metastases were enrolled. All patients underwent DWI, IVIM, and APTW, as well as the T1W, T2W, T2FLAIR, and contrast-enhanced T1W imaging. The histogram features of apparent diffusion coefficient (ADC) from DWI, slow diffusion coefficient (Dslow), perfusion fraction (frac), fast diffusion coefficient (Dfast) from IVIM, and MTRasym@3.5ppm from APTWI were extracted from the tumor parenchyma and compared between glioma and SBM. Parameters with significant differences were analyzed with the logistics regression and receiver operator curves to explore the optimal model and compare the differentiation performance. RESULTS Higher ADCkurtosis (P = 0.022), frackurtosis (P<0.001),and fracskewness (P<0.001) were found for glioma, while higher (MTRasym@3.5ppm)10 (P = 0.045), frac10 (P<0.001),frac90 (P = 0.001), fracmean (P<0.001), and fracentropy (P<0.001) were observed for SBM. frackurtosis (OR = 0.431, 95%CI 0.256-0.723, P = 0.002) was independent factor for SBM differentiation. The model combining (MTRasym@3.5ppm)10, frac10, and frackurtosis showed an AUC of 0.857 (sensitivity: 0.857, specificity: 0.750), while the model combined with frac10 and frackurtosis had an AUC of 0.824 (sensitivity: 0.952, specificity: 0.591). There was no statistically significant difference between AUCs from the two models. (Z = -1.14, P = 0.25). CONCLUSIONS The frac10 and frackurtosis in enhanced tumor region could be used to differentiate glioma and SBM and (MTRasym@3.5ppm)10 helps improving the differentiation specificity.
Collapse
Affiliation(s)
- Yifei Su
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | - Rui Cheng
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | | | | | - Junhao Wang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | - Hongming Ji
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030012, PR China.
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China.
| | - Chunhong Wang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | - Liangliang Hao
- The Radiology Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
| | - Yexin He
- The Radiology Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
| | - Cheng Xu
- The Radiology Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China.
| |
Collapse
|
4
|
Ge X, Ma Y, Huang X, Gan T, Ma W, Liu G, Xiong Y, Li M, Wang X, Zhang J. Distinguishment between high-grade gliomas and solitary brain metastases in peritumoural oedema: quantitative analysis using synthetic MRI at 3 T. Clin Radiol 2024; 79:e361-e368. [PMID: 38103981 DOI: 10.1016/j.crad.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/12/2023] [Accepted: 10/21/2023] [Indexed: 12/19/2023]
Abstract
AIM To investigate the efficacy of synthetic magnetic resonance imaging (MRI) in distinguishing high-grade gliomas (HGGs) from solitary brain metastases (SBMs) in peritumoural oedema. MATERIALS AND METHODS Thirty-five patients with HGGs and 25 patients with SBMs were recruited and scanned using synthetic MRI using a 3 T scanner. Two radiologists measured synthetic MRI-derived relaxation values independently (T1, T2, proton density [PD]) in the peritumoural oedema, which was used to generate quantitative metrics before (T1native, T2native, and PDnative) and after (T1post, T2post, and PDpost) contrast agent injection. Student's t-test or the Mann-Whitney U-test was performed to detect statistically significant differences in the aforementioned metrics in peritumoural oedema between HGGs and SBMs. The receiver operating characteristic (ROC) curves were plotted to evaluate the efficacy of each metric in distinguishing the two groups, and the areas under the curves (AUCs) were compared pairwise by performing the Delong test. RESULTS The mean T1native, T2native, and T1post values in the peritumoural oedema of HGGs were significantly lower compared with SBMs (all p<0.05). The T1post value had a higher AUC (0.843) in differentiating HGGs and SBMs than all other individual metrics (all p<0.05). The combined T1native, T2native, and T1post model had the best distinguishing performance with an AUC, sensitivity, and specificity of 0.987, 94.3%, and 100%, respectively. CONCLUSIONS Synthetic MRI may be a potential supplement to the preoperative diagnosis of HGGs and SBMs in clinical practice, as the synthetic MRI-derived tri-parametric model in the peritumoural oedema showed significantly improved diagnostic performance in distinguishing HGGs from SBMs.
Collapse
Affiliation(s)
- X Ge
- Second Clinical School, Lanzhou University, Lanzhou 70030, China; Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Y Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - X Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| | - T Gan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - W Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - G Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Y Xiong
- GE Healthcare, MR Research, Beijing 100004, China
| | - M Li
- GE Healthcare, MR Enhancement Application, Beijing 100004, China
| | - X Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750003, China.
| | - J Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China.
| |
Collapse
|
5
|
Gao E, Wang P, Bai J, Ma X, Gao Y, Qi J, Zhao K, Zhang H, Yan X, Yang G, Zhao G, Cheng J. Radiomics Analysis of Diffusion Kurtosis Imaging: Distinguishing Between Glioblastoma and Single Brain Metastasis. Acad Radiol 2024; 31:1036-1043. [PMID: 37690885 DOI: 10.1016/j.acra.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to assess the value of diffusion kurtosis imaging (DKI)-based radiomics models in differentiating glioblastoma (GB) from single brain metastasis (SBM) and compare their diagnostic performance with that of routine magnetic resonance imaging (MRI) models. MATERIALS AND METHODS A total of 110 patients who underwent DKI and were pathologically diagnosed with GB (n = 58) or SBM (n = 52) were enrolled in this study. Radiomics features were extracted from the manually delineated region of interest of the lesion. A training set for model development was constructed from the images of 88 random patients, and 22 patients were reserved for independent validation. Seven single-DKI-parametric models and a multi-DKI-parametric model were constructed using six classifiers, whereas four single-routine-sequence models (based on T2 weighted imaging, apparent diffusion coefficient, T2-dark-fluid, and contrast-enhanced T1 magnetization prepared rapid gradient echo) and a multisequence routine MRI model were constructed for comparison. Receiver operating characteristic curve analysis was conducted to assess the diagnostic performance. The areas under the curve (AUCs) of different models were compared using the DeLong test. RESULTS The AUCs of the single-DKI-parametric models ranged from 0.800 to 0.933 (mean kurtosis [MK] model). The multi-DKI-parametric model had a slightly higher AUC (0.958) than the MK model; however, the difference was not statistically significant (P = 0.688). In comparison, the AUCs of the routine MRI models ranged from 0.633 to 0.733 (multisequence routine MRI model). The AUC of the multi-DKI-parametric model was significantly higher than that of the multisequence routine MRI model (P = 0.042). CONCLUSION The multi-DKI-parametric radiomics model exhibited better performance than that of the single-DKI-parametric models and routine MRI models in distinguishing GB from SBM.
Collapse
Affiliation(s)
- Eryuan Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Peipei Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Jie Bai
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Yufei Gao
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China (Y.G.)
| | - Jinbo Qi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Kai Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers China, Shanghai, China (H.Z., X.Y.)
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthineers China, Shanghai, China (H.Z., X.Y.)
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China (G.Y.)
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.).
| |
Collapse
|
6
|
Patel KS, Yao J, Cho NS, Sanvito F, Tessema K, Alvarado A, Dudley L, Rodriguez F, Everson R, Cloughesy TF, Salamon N, Liau LM, Kornblum HI, Ellingson BM. pH-Weighted amine chemical exchange saturation transfer echo planar imaging visualizes infiltrating glioblastoma cells. Neuro Oncol 2024; 26:115-126. [PMID: 37591790 PMCID: PMC10768991 DOI: 10.1093/neuonc/noad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Given the invasive nature of glioblastoma, tumor cells exist beyond the contrast-enhancing (CE) region targeted during treatment. However, areas of non-enhancing (NE) tumors are difficult to visualize and delineate from edematous tissue. Amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) is a pH-sensitive molecular magnetic resonance imaging technique that was evaluated in its ability to identify infiltrating NE tumors and prognosticate survival. METHODS In this prospective study, CEST-EPI was obtained in 30 patients and areas with elevated CEST contrast ("CEST+" based on the asymmetry in magnetization transfer ratio: MTRasym at 3 ppm) within NE regions were quantitated. Median MTRasym at 3 ppm and volume of CEST + NE regions were correlated with progression-free survival (PFS). In 20 samples from 14 patients, image-guided biopsies of these areas were obtained to correlate MTRasym at 3 ppm to tumor and non-tumor cell burden using immunohistochemistry. RESULTS In 15 newly diagnosed and 15 recurrent glioblastoma, higher median MTRasym at 3ppm within CEST + NE regions (P = .007; P = .0326) and higher volumes of CEST + NE tumor (P = .020; P < .001) were associated with decreased PFS. CE recurrence occurred in areas of preoperative CEST + NE regions in 95.4% of patients. MTRasym at 3 ppm was correlated with presence of tumor, cell density, %Ki-67 positivity, and %CD31 positivity (P = .001; P < .001; P < .001; P = .001). CONCLUSIONS pH-weighted amine CEST-EPI allows for visualization of NE tumor, likely through surrounding acidification of the tumor microenvironment. The magnitude and volume of CEST + NE tumor correlates with tumor cell density, degree of proliferating or "active" tumor, and PFS.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Kaleab Tessema
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Alvaro Alvarado
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lindsey Dudley
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Fausto Rodriguez
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Richard Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Harley I Kornblum
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Benjamin M Ellingson
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Scola E, Del Vecchio G, Busto G, Bianchi A, Desideri I, Gadda D, Mancini S, Carlesi E, Moretti M, Desideri I, Muscas G, Della Puppa A, Fainardi E. Conventional and Advanced Magnetic Resonance Imaging Assessment of Non-Enhancing Peritumoral Area in Brain Tumor. Cancers (Basel) 2023; 15:cancers15112992. [PMID: 37296953 DOI: 10.3390/cancers15112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The non-enhancing peritumoral area (NEPA) is defined as the hyperintense region in T2-weighted and fluid-attenuated inversion recovery (FLAIR) images surrounding a brain tumor. The NEPA corresponds to different pathological processes, including vasogenic edema and infiltrative edema. The analysis of the NEPA with conventional and advanced magnetic resonance imaging (MRI) was proposed in the differential diagnosis of solid brain tumors, showing higher accuracy than MRI evaluation of the enhancing part of the tumor. In particular, MRI assessment of the NEPA was demonstrated to be a promising tool for distinguishing high-grade gliomas from primary lymphoma and brain metastases. Additionally, the MRI characteristics of the NEPA were found to correlate with prognosis and treatment response. The purpose of this narrative review was to describe MRI features of the NEPA obtained with conventional and advanced MRI techniques to better understand their potential in identifying the different characteristics of high-grade gliomas, primary lymphoma and brain metastases and in predicting clinical outcome and response to surgery and chemo-irradiation. Diffusion and perfusion techniques, such as diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), dynamic susceptibility contrast-enhanced (DSC) perfusion imaging, dynamic contrast-enhanced (DCE) perfusion imaging, arterial spin labeling (ASL), spectroscopy and amide proton transfer (APT), were the advanced MRI procedures we reviewed.
Collapse
Affiliation(s)
- Elisa Scola
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Guido Del Vecchio
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy
| | - Giorgio Busto
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Andrea Bianchi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Ilaria Desideri
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Davide Gadda
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Sara Mancini
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Edoardo Carlesi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Marco Moretti
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Isacco Desideri
- Radiation Oncology, Oncology Department, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Giovanni Muscas
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Alessandro Della Puppa
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50121 Florence, Italy
| |
Collapse
|
8
|
Wang F, Dong J, Zhang J, Zhao H, Wang N, Jin J, Yan X, Gao X, Liu H, Hu S. Rapid progression of subcutaneous glioblastoma: A case report and literature review. Front Oncol 2023; 13:935944. [PMID: 36761958 PMCID: PMC9905810 DOI: 10.3389/fonc.2023.935944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Extra-neural spread of glioblastoma (GBM) is extremely rare. We report a case of postoperative intracranial GBM spreading to the subcutaneous tissue via the channel of craniotomy defect in a 73-year-old woman. Radiological images and histopathology indicate that the tumor microenvironment of the subcutaneous tumor is clearly different from the intracranial tumor. We also model the invasion of GBM cells through the dura-skull defect in mouse. The retrospective analysis of GBM with scalp metastases suggests that craniectomy is a direct cause of subcutaneous metastasis in patients with GBM. Imaging examinations of other sites for systemic screening is also recommended to look for metastases outside the brain when GBM invades the scalp or metastasizes to it.
Collapse
Affiliation(s)
- Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiuwei Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Shaoshan Hu, ; Han Liu,
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Shaoshan Hu, ; Han Liu,
| |
Collapse
|
9
|
Radiomics can differentiate high-grade glioma from brain metastasis: a systematic review and meta-analysis. Eur Radiol 2022; 32:8039-8051. [PMID: 35587827 DOI: 10.1007/s00330-022-08828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE (1) To evaluate the diagnostic performance of radiomics in differentiating high-grade glioma from brain metastasis and how to improve the model. (2) To assess the methodological quality of radiomics studies and explore ways of embracing the clinical application of radiomics. METHODS Studies using radiomics to differentiate high-grade glioma from brain metastasis published by 26 July 2021 were systematically reviewed. Methodological quality and risk of bias were assessed using the Radiomics Quality Score (RQS) system and Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool, respectively. Pooled sensitivity and specificity of the radiomics model were also calculated. RESULTS Seventeen studies combining 1,717 patients were included in the systematic review, of which 10 studies without data leakage suspicion were employed for the quantitative statistical analysis. The average RQS was 5.13 (14.25% of total), with substantial or almost perfect inter-rater agreements. The inclusion of clinical features in the radiomics model was only reported in one study, as was the case for publicly available algorithm code. The pooled sensitivity and specificity were 84% (95% CI, 80-88%) and 84% (95% CI, 81-87%), respectively. The performances of feature extraction from the volume of interest (VOI) or (semi) automatic segmentation in the radiomics models were superior to those of protocols employing region of interest (ROI) or manual segmentation. CONCLUSION Radiomics can accurately differentiate high-grade glioma from brain metastasis. The adoption of standardized workflow to avoid potential data leakage as well as the integration of clinical features and radiomics are advised to consider in future studies. KEY POINTS • The pooled sensitivity and specificity of radiomics for differentiating high-grade gliomas from brain metastasis were 84% and 84%, respectively. • Avoiding potential data leakage by adopting an intensive and standardized workflow is essential to improve the quality and generalizability of the radiomics model. • The application of radiomics in combination with clinical features in differentiating high-grade gliomas from brain metastasis needs further validation.
Collapse
|
10
|
Wu WF, Shen CW, Lai KM, Chen YJ, Lin EC, Chen CC. The Application of DTCWT on MRI-Derived Radiomics for Differentiation of Glioblastoma and Solitary Brain Metastases. J Pers Med 2022; 12:jpm12081276. [PMID: 36013225 PMCID: PMC9409920 DOI: 10.3390/jpm12081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: While magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of patients with brain tumors, it may still be challenging to differentiate glioblastoma multiforme (GBM) from solitary brain metastasis (SBM) due to their similar imaging features. This study aimed to evaluate the features extracted of dual-tree complex wavelet transform (DTCWT) from routine MRI protocol for preoperative differentiation of glioblastoma (GBM) and solitary brain metastasis (SBM). Methods: A total of 51 patients were recruited, including 27 GBM and 24 SBM patients. Their contrast-enhanced T1-weighted images (CET1WIs), T2 fluid-attenuated inversion recovery (T2FLAIR) images, diffusion-weighted images (DWIs), and apparent diffusion coefficient (ADC) images were employed in this study. The statistical features of the pre-transformed images and the decomposed images of the wavelet transform and DTCWT were utilized to distinguish between GBM and SBM. Results: The support vector machine (SVM) showed that DTCWT images have a better accuracy (82.35%), sensitivity (77.78%), specificity (87.50%), and the area under the curve of the receiver operating characteristic curve (AUC) (89.20%) than the pre-transformed and conventional wavelet transform images. By incorporating DTCWT and pre-transformed images, the accuracy (86.27%), sensitivity (81.48%), specificity (91.67%), and AUC (93.06%) were further improved. Conclusions: Our studies suggest that the features extracted from the DTCWT images can potentially improve the differentiation between GBM and SBM.
Collapse
Affiliation(s)
- Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; (W.-F.W.); (K.-M.L.)
| | - Chia-Wei Shen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
| | - Kuan-Ming Lai
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; (W.-F.W.); (K.-M.L.)
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Yi-Jen Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
- Correspondence: (E.C.L.); (C.-C.C.); Tel.: +886-52-720-411 (ext. 66418) (E.C.L.); +886-52-765-041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (E.C.L.); (C.-C.C.); Tel.: +886-52-720-411 (ext. 66418) (E.C.L.); +886-52-765-041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
11
|
Lutz K, Jünger ST, Messing-Jünger M. Essential Management of Pediatric Brain Tumors. CHILDREN 2022; 9:children9040498. [PMID: 35455542 PMCID: PMC9031600 DOI: 10.3390/children9040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Brain tumors are the most common solid tumors in children and are associated with high mortality. The most common childhood brain tumors are grouped as low-grade gliomas (LGG), high grade gliomas (HGG), ependymomas, and embryonal tumors, according to the World Health Organization (WHO). Advances in molecular genetics have led to a shift from pure histopathological diagnosis to integrated diagnosis. For the first time, these new criteria were included in the WHO classification published in 2016 and has been further updated in the 2021 edition. Integrated diagnosis is based on molecular genomic similarities of the tumor subclasses, and it can better explain the differences in clinical courses of previously histopathologically identical entities. Important advances have also been made in pediatric neuro-oncology. A growing understanding of the molecular-genetic background of tumorigenesis has improved the diagnostic accuracy. Re-stratification of treatment protocols and the development of targeted therapies will significantly affect overall survival and quality of life. For some pediatric tumors, these advances have significantly improved therapeutic management and prognosis in certain tumor subgroups. Some therapeutic approaches also have serious long-term consequences. Therefore, optimized treatments are greatly needed. Here, we discuss the importance of multidisciplinary collaboration and the role of (pediatric) neurosurgery by briefly describing the most common childhood brain tumors and their currently recognized molecular subgroups.
Collapse
Affiliation(s)
- Katharina Lutz
- Neurosurgery Department, Inselspital, 3010 Bern, Switzerland
- Pediatric Neurosurgery, Asklepios Children’s Hospital, 53757 Sankt Augustin, Germany;
- Correspondence:
| | - Stephanie T. Jünger
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | | |
Collapse
|
12
|
Würtemberger U, Diebold M, Erny D, Hosp JA, Schnell O, Reinacher PC, Rau A, Kellner E, Reisert M, Urbach H, Demerath T. Diffusion Microstructure Imaging to Analyze Perilesional T2 Signal Changes in Brain Metastases and Glioblastomas. Cancers (Basel) 2022; 14:cancers14051155. [PMID: 35267463 PMCID: PMC8908999 DOI: 10.3390/cancers14051155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: Glioblastomas (GBM) and brain metastases are often difficult to differentiate in conventional MRI. Diffusion microstructure imaging (DMI) is a novel MR technique that allows the approximation of the distribution of the intra-axonal compartment, the extra-axonal cellular, and the compartment of interstitial/free water within the white matter. We hypothesize that alterations in the T2 hyperintense areas surrounding contrast-enhancing tumor components may be used to differentiate GBM from metastases. Methods: DMI was performed in 19 patients with glioblastomas and 17 with metastatic lesions. DMI metrics were obtained from the T2 hyperintense areas surrounding contrast-enhancing tumor components. Resected brain tissue was assessed in six patients in each group for features of an edema pattern and tumor infiltration in the perilesional interstitium. Results: Within the perimetastatic T2 hyperintensities, we observed a significant increase in free water (p < 0.001) and a decrease in both the intra-axonal (p = 0.006) and extra-axonal compartments (p = 0.024) compared to GBM. Perilesional free water fraction was discriminative regarding the presence of GBM vs. metastasis with a ROC AUC of 0.824. Histologically, features of perilesional edema were present in all assessed metastases and absent or marginal in GBM. Conclusion: Perilesional T2 hyperintensities in brain metastases and GBM differ significantly in DMI-values. The increased free water fraction in brain metastases suits the histopathologically based hypothesis of perimetastatic vasogenic edema, whereas in glioblastomas there is additional tumor infiltration.
Collapse
Affiliation(s)
- Urs Würtemberger
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
- Correspondence: urs.wü; Tel.: +49-761-270-51810; Fax: +49-761-270-51950
| | - Martin Diebold
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (D.E.)
- IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (D.E.)
- Berta-Ottenstein-Program for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jonas A. Hosp
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.C.R.); (M.R.)
- Fraunhofer Institute for Laser Technology, 52074 Aachen, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
- Department of Diagnostic and Interventional Radiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.C.R.); (M.R.)
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Horst Urbach
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
| | - Theo Demerath
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
| |
Collapse
|
13
|
Mărginean L, Ștefan PA, Lebovici A, Opincariu I, Csutak C, Lupean RA, Coroian PA, Suciu BA. CT in the Differentiation of Gliomas from Brain Metastases: The Radiomics Analysis of the Peritumoral Zone. Brain Sci 2022; 12:brainsci12010109. [PMID: 35053852 PMCID: PMC8774238 DOI: 10.3390/brainsci12010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Due to their similar imaging features, high-grade gliomas (HGGs) and solitary brain metastases (BMs) can be easily misclassified. The peritumoral zone (PZ) of HGGs develops neoplastic cell infiltration, while in BMs the PZ contains pure vasogenic edema. As the two PZs cannot be differentiated macroscopically, this study investigated whether computed tomography (CT)-based texture analysis (TA) of the PZ can reflect the histological difference between the two entities. Thirty-six patients with solitary brain tumors (HGGs, n = 17; BMs, n = 19) that underwent CT examinations were retrospectively included in this pilot study. TA of the PZ was analyzed using dedicated software (MaZda version 5). Univariate, multivariate, and receiver operating characteristics analyses were used to identify the best-suited parameters for distinguishing between the two groups. Seven texture parameters were able to differentiate between HGGs and BMs with variable sensitivity (56.67–96.67%) and specificity (69.23–100%) rates. Their combined ability successfully identified HGGs with 77.9–99.2% sensitivity and 75.3–100% specificity. In conclusion, the CT-based TA can be a useful tool for differentiating between primary and secondary malignancies. The TA features indicate a more heterogenous content of the HGGs’ PZ, possibly due to the local infiltration of neoplastic cells.
Collapse
Affiliation(s)
- Lucian Mărginean
- Radiology and Medical Imaging, Clinical Sciences Department, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology, 540139 Targu Mures, Romania;
- Interventional Radiology Department, Târgu Mureș County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Paul Andrei Ștefan
- Interventional Radiology Department, Târgu Mureș County Emergency Clinical Hospital, 540136 Targu Mures, Romania
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, 1090 Vienna, Austria
- Anatomy and Embriology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Radiology and Imaging Department, Cluj County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania; (A.L.); (C.C.); (P.A.C.)
- Correspondence:
| | - Andrei Lebovici
- Radiology and Imaging Department, Cluj County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania; (A.L.); (C.C.); (P.A.C.)
- Radiology, Surgical Specialties Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Iulian Opincariu
- Anatomy and Embriology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Csaba Csutak
- Radiology and Imaging Department, Cluj County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania; (A.L.); (C.C.); (P.A.C.)
- Radiology, Surgical Specialties Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Roxana Adelina Lupean
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Obstetrics and Gynecology Clinic “Dominic Stanca”, Cluj County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania
| | - Paul Alexandru Coroian
- Radiology and Imaging Department, Cluj County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania; (A.L.); (C.C.); (P.A.C.)
| | - Bogdan Andrei Suciu
- The First Surgical Clinic, Târgu Mureș County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Anatomy, Morphological Sciences Department, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology, 540139 Targu Mures, Romania
| |
Collapse
|
14
|
Gao E, Gao A, Kit Kung W, Shi L, Bai J, Zhao G, Cheng J. Histogram analysis based on diffusion kurtosis imaging: Differentiating glioblastoma multiforme from single brain metastasis and comparing the diagnostic performance of two region of interest placements. Eur J Radiol 2021; 147:110104. [PMID: 34972059 DOI: 10.1016/j.ejrad.2021.110104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To assess the value of histogram analysis, using diffusion kurtosis imaging (DKI), in differentiating glioblastoma multiforme (GBM) from single brain metastasis (SBM) and to compare the diagnostic efficiency of different region of interest (ROI) placements. METHOD Sixty-seven patients with histologically confirmed GBM (n = 35) and SBM (n = 32) were recruited. Two ROIs-the contrast-enhanced area and whole-tumor area-were delineated across all slices. Eleven histogram parameters of fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) from both ROIs were calculated. All histogram parameter values were compared between GBM and SBM, using the Mann-Whitney U test. The accuracies of different histogram parameters were compared using the McNemar test. Receiver operating characteristic (ROC) analyses were conducted to assess the diagnostic performance. RESULTS In the contrast-enhanced area, FA10, FA25, FA75, FA90, FAmean, FAmedian, FAmax, MDmax, MDskewness, and MKskewness were significantly higher for GBM than for SBM. FAskewness was significantly lower for GBM than for SBM. FA25 (0.815) had the highest area under the curve (AUC). In the whole-tumor area, FA10, FA25, FA75, FA90, FASD, FAmean, FAmedian, FAmax, MDmax, MDskewness, and MKskewness were significantly higher for GBM than for SBM. FAmedian (0.805) had the highest AUC. The accuracy of FA25 in the contrast-enhanced area was significantly higher than that of the FAmedian in the whole-tumor area. CONCLUSIONS GBM and SBM can be differentiated using the DKI-based histogram analysis. Placing the ROI on the contrast-enhanced area results in better discrimination.
Collapse
Affiliation(s)
- Eryuan Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ankang Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wing Kit Kung
- Brain Now Medical Technology Limited, Hong Kong SAR, Hong Kong, 999077, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, 999077, China
| | - Jie Bai
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
The role of apparent diffusion coefficient as a predictive factor for tumor recurrence in patients with cerebellopontine angle epidermoid tumor. Neurosurg Rev 2021; 45:1383-1392. [PMID: 34581893 DOI: 10.1007/s10143-021-01654-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Intracranial epidermoid tumors are slowly growing benign tumors, but due to adjacent critical neurovascular structures, surgical resection is challenging, with the risk of recurrence. The apparent diffusion coefficient (ADC) has been used to evaluate the characteristics of brain tumors, but its utility for intracranial epidermoid tumors has not been specifically explored. This study analyzed the utility of preoperative ADC values in predicting tumor recurrence for patients with intracranial epidermoid tumors. Between 2008 and 2019, 21 patients underwent surgery for cerebellopontine angle (CPA) epidermoid tumor, and their preoperative ADC data were analyzed. The patients were divided into two groups: the recurrence group, defined by regrowth of the remnant tumor or newly developed mass after gross total resection on magnetic resonance imaging (MRI); and the stable group, defined by the absence of growth or evidence of tumor on MRI. Receiver operating characteristic (ROC) analysis was used to obtain the ADC cutoff values for predicting tumor recurrence. The prognostic value of the ADC was assessed using Kaplan-Meier curves. The minimum ADC values were significantly lower in the recurrence group than in the stable tumor group (P = 0.020). ROC analysis showed that a minimum ADC value lower than 804.5 × 10-6 mm2/s could be used to predict higher recurrence risk of CPA epidermoid tumors. Non-total resection and mean and minimum ADC values lower than the respective cutoffs were negative predictors of recurrence-free survival. Minimum ADC values could be useful in predicting the recurrence of CPA epidermoid tumors.
Collapse
|
16
|
Aparici-Robles F, Davidhi A, Carot-Sierra JM, Perez-Girbes A, Carreres-Polo J, Mazon Momparler M, Juan-Albarracín J, Fuster-Garcia E, Garcia-Gomez JM. Glioblastoma versus solitary brain metastasis: MRI differentiation using the edema perfusion gradient. J Neuroimaging 2021; 32:127-133. [PMID: 34468052 DOI: 10.1111/jon.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Differentiation between glioblastoma multiforme (GBM) and solitary brain metastasis (SBM) remains a challenge in neuroradiology with up to 40% of the cases to be incorrectly classified using only conventional MRI. The inclusion of perfusion MRI parameters provides characteristic features that could support the distinction of these pathological entities. On these grounds, we aim to use a perfusion gradient in the peritumoral edema. METHODS Twenty-four patients with GBM or an SBM underwent conventional and perfusion MR imaging sequences before tumors' surgical resection. After postprocessing of the images, quantification of dynamic susceptibility contrast (DSC) perfusion parameters was made. Three concentric areas around the tumor were defined in each case. The monocompartimental and pharmacokinetics parameters of perfusion MRI were analyzed in both series. RESULTS DSC perfusion MRI models can provide useful information for the differentiation between GBM and SBM. It can be observed that most of the perfusion MR parameters (relative cerebral blood volume, relative cerebral blood flow, relative Ktrans, and relative volume fraction of the interstitial space) clearly show higher gradient for GBM than SBM. GBM also demonstrates higher heterogeneity in the peritumoral edema and most of the perfusion parameters demonstrate higher gradients in the area closest to the enhancing tumor. CONCLUSION Our results show that there is a difference in the perfusion parameters of the edema between GBM and SBM demonstrating a vascularization gradient. This could help not only for the diagnosis, but also for planning surgical or radiotherapy treatments delineating the real extension of the tumor.
Collapse
Affiliation(s)
- Fernando Aparici-Robles
- Servicio de Radiología, Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Andjoli Davidhi
- Servicio de Radiología, Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José Miguel Carot-Sierra
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Alexandre Perez-Girbes
- Servicio de Radiología, Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Joan Carreres-Polo
- Servicio de Radiología, Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Miguel Mazon Momparler
- Servicio de Radiología, Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Javier Juan-Albarracín
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Elies Fuster-Garcia
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Juan Miguel Garcia-Gomez
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
17
|
Wei RL, Wei XT. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front Oncol 2021; 11:694498. [PMID: 34422648 PMCID: PMC8374052 DOI: 10.3389/fonc.2021.694498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma, the most common primary brain tumor in adults, can be difficult to discern radiologically from other brain lesions, which affects surgical planning and follow-up treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma has stepped into molecular and algorithm-assisted levels. Specifically, the histology-based glioma classification is composed of multiple different molecular subtypes with distinct behavior, prognosis, and response to therapy, and now each aspect can be assessed by corresponding emerging MR sequences like amide proton transfer-weighted MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result of this novel progress, the clinical practice of glioma has been updated. Accurate diagnosis of glioma at the molecular level can be achieved ahead of the operation to formulate a thorough plan including surgery radical level, shortened length of stay, flexible follow-up plan, timely therapy response feedback, and eventually benefit patients individually.
Collapse
Affiliation(s)
- Ruo-Lun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Samani ZR, Parker D, Wolf R, Hodges W, Brem S, Verma R. Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases. Sci Rep 2021; 11:14469. [PMID: 34262079 PMCID: PMC8280204 DOI: 10.1038/s41598-021-93804-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor types are classically distinguished based on biopsies of the tumor itself, as well as a radiological interpretation using diverse MRI modalities. In the current study, the overarching goal is to demonstrate that primary (glioblastomas) and secondary (brain metastases) malignancies can be differentiated based on the microstructure of the peritumoral region. This is achieved by exploiting the extracellular water differences between vasogenic edema and infiltrative tissue and training a convolutional neural network (CNN) on the Diffusion Tensor Imaging (DTI)-derived free water volume fraction. We obtained 85% accuracy in discriminating extracellular water differences between local patches in the peritumoral area of 66 glioblastomas and 40 metastatic patients in a cross-validation setting. On an independent test cohort consisting of 20 glioblastomas and 10 metastases, we got 93% accuracy in discriminating metastases from glioblastomas using majority voting on patches. This level of accuracy surpasses CNNs trained on other conventional DTI-based measures such as fractional anisotropy (FA) and mean diffusivity (MD), that have been used in other studies. Additionally, the CNN captures the peritumoral heterogeneity better than conventional texture features, including Gabor and radiomic features. Our results demonstrate that the extracellular water content of the peritumoral tissue, as captured by the free water volume fraction, is best able to characterize the differences between infiltrative and vasogenic peritumoral regions, paving the way for its use in classifying and benchmarking peritumoral tissue with varying degrees of infiltration.
Collapse
Affiliation(s)
- Zahra Riahi Samani
- Diffusion and Connectomics in Precision Healthcare Research Lab (DiCIPHR), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Parker
- Diffusion and Connectomics in Precision Healthcare Research Lab (DiCIPHR), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald Wolf
- Department of Radiology, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Wes Hodges
- Founder at Synaptive Medical, Toronto, ON, Canada
| | - Steven Brem
- Department of Radiology, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ragini Verma
- Diffusion and Connectomics in Precision Healthcare Research Lab (DiCIPHR), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Momeni F, Abedi-Firouzjah R, Farshidfar Z, Taleinezhad N, Ansari L, Razmkon A, Banaei A, Mehdizadeh A. Differentiating Between Low- and High-grade Glioma Tumors Measuring Apparent Diffusion Coefficient Values in Various Regions of the Brain. Oman Med J 2021; 36:e251. [PMID: 33936779 PMCID: PMC8077446 DOI: 10.5001/omj.2021.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/31/2020] [Indexed: 11/03/2022] Open
Abstract
Objectives Our study aimed to apply the apparent diffusion coefficient (ADC) values to quantify the differences between low- and high-grade glioma tumors. Methods We conducted a multicenter, retrospective study between September to December 2019. Magnetic resonance imaging (MRI) diffusion-weighted images (DWIs), and the pathologic findings of 56 patients with glioma tumors (low grade = 28 and high grade = 28) were assessed to measure the ADC values in the tumor center, tumor edema, boundary area between tumor with normal tissue, and inside the healthy hemisphere. These values were compared between the two groups, and cut-off values were calculated using the receiver operating characteristic curve. Results We saw significant differences between the mean ADC values measured in the tumor center and edema between high- and low-grade tumors (p< 0.005). The ADC values in the boundary area between tumors with normal tissue and inside healthy hemisphere did not significantly differ in the groups. The ADC values at tumor center and edema were higher than 1.12 × 10-3 mm2/s (sensitivity = 100% and specificity = 96.0%) and 1.15 × 10-3 mm2/s (sensitivity = 75.0% and specificity = 64.0%), respectively, could be classified as low-grade tumors. Conclusions The ADC values from the MRI DWIs in the tumor center and edema could be used as an appropriate method for investigating the differences between low- and high-grade glioma tumors. The ADC values in the boundary area and healthy tissues had no diagnostic values in grading the glioma tumors.
Collapse
Affiliation(s)
- Farideh Momeni
- Medical Physics and Biomedical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Research Center for Neuromodulation and Pain, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razzagh Abedi-Firouzjah
- Department of Medical Physics, Radiobiology and Radiation Protection, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Farshidfar
- Radiology Technology Department, School of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Taleinezhad
- Medical Physics and Biomedical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Ansari
- Medical Physics and Biomedical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Razmkon
- Research Center for Neuromodulation and Pain, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Radiology, Faculty of Paramedical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Mehdizadeh
- Medical Physics and Biomedical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Research Center for Neuromodulation and Pain, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Tepe M, Saylisoy S, Toprak U, Inan I. The Potential Role of Peritumoral Apparent Diffusion Coefficient Evaluation in Differentiating Glioblastoma and Solitary Metastatic Lesions of the Brain. Curr Med Imaging 2021; 17:1200-1208. [PMID: 33726654 DOI: 10.2174/1573405617666210316120314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Differentiating glioblastoma (GBM) and solitary metastasis is not always possible using conventional magnetic resonance imaging (MRI) techniques. In conventional brain MRI, GBM and brain metastases are lesions with mostly similar imaging findings. In this study, we investigated whether apparent diffusion coefficient (ADC) ratios, ADC gradients, and minimum ADC values in the peritumoral edema tissue can be used to discriminate between these two tumors. METHODS This retrospective study was approved by the local institutional review board with a waiver of written informed consent. Prior to surgical and medical treatment, conventional brain MRI and diffusion-weighted MRI (b = 0 and b = 1000) images were taken from 43 patients (12 GBM and 31 solitary metastasis cases). Quantitative ADC measurements were performed on the peritumoral tissue from the nearest segment to the tumor (ADC1), the middle segment (ADC2), and the most distant segment (ADC3). The ratios of these three values were determined proportionally to calculate the peritumoral ADC ratios. In addition, these three values were subtracted from each other to obtain the peritumoral ADC gradients. Lastly, the minimum peritumoral and tumoral ADC values, and the quantitative ADC values from the normal appearing ipsilateral white matter, contralateral white matter and ADC values from cerebrospinal fluid (CSF) were recorded. RESULTS For the differentiation of GBM and solitary metastasis, ADC3 / ADC1 was the most powerful parameter with a sensitivity of 91.7% and specificity of 87.1% at the cut-off value of 1.105 (p < 0.001), followed by ADC3 / ADC2 with a cut-off value of 1.025 (p = 0.001), sensitivity of 91.7%, and specificity of 74.2%. The cut-off, sensitivity and specificity of ADC2 / ADC1 were 1.055 (p = 0.002), 83.3%, and 67.7%, respectively. For ADC3 - ADC1, the cut-off value, sensitivity and specificity were calculated as 150 (p < 0.001), 91.7% and 83.9%, respectively. ADC3 - ADC2 had a cut-off value of 55 (p = 0.001), sensitivity of 91.7%, and specificity of 77.4 whereas ADC2 - ADC1 had a cut-off value of 75 (p = 0.003), sensitivity of 91.7%, and specificity of 61.3%. Among the remaining parameters, only the ADC3 value successfully differentiated between GBM and metastasis (GBM 1802.50 ± 189.74 vs. metastasis 1634.52 ± 212.65, p = 0.022). CONCLUSION The integration of the evaluation of peritumoral ADC ratio and ADC gradient into conventional MR imaging may provide valuable information for differentiating GBM from solitary metastatic lesions.
Collapse
Affiliation(s)
- Murat Tepe
- Yunus Emre State Hospital, Department of Radiology, Tepebasi Eskisehir. Turkey
| | - Suzan Saylisoy
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Radiology, Eskisehir. Turkey
| | - Ugur Toprak
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Radiology, Eskisehir. Turkey
| | - Ibrahim Inan
- Adiyaman University, Training and Research Hospital, Department of Radiology, Adiyaman. Turkey
| |
Collapse
|
21
|
Moharamzad Y, Davarpanah AH, Yaghobi Joybari A, Shahbazi F, Esmaeilian Toosi L, Kooshkiforooshani M, Ansari A, Sanei Taheri M. Diagnostic performance of apparent diffusion coefficient (ADC) for differentiating endometrial carcinoma from benign lesions: a systematic review and meta-analysis. Abdom Radiol (NY) 2021; 46:1115-1128. [PMID: 32935258 DOI: 10.1007/s00261-020-02734-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023]
Abstract
To determine the diagnostic performance of mean ADC values in the characterization of endometrial carcinoma (EC) from benign lesions by systematic review of the literature and performing meta-analysis. A systematic search of major electronic bibliographic databases was performed to find studies that used ADC values for differentiating EC from benign lesions. Two reviewers independently screened the titles and abstracts of the search results and then by reading the full texts selected the pertinent studies for final analyses. A bivariate random-effects model with pooled sensitivity and specificity values with 95% CI (confidence interval) was used. Summary receiver operating characteristic (SROC) curve and area under curve (AUC) were created. Between-study heterogeneity was measured using I squared (I2) index. Eleven studies including 269 ECs and 208 benign lesions were analyzed. Pooled average (95% CI) ADC in EC and benign lesions groups were, respectively, 0.82 (0.77-0.87) × 10-3 mm2/s and 1.41 (1.29-1.52) × 10-3 mm2/s. The combined (95% CI) sensitivity and specificity of mean ADC values for differentiating EC from benign lesions were 93% (87-96%; I2 = 41.19%) and 94% (88-97%; I2 = 46.91%), respectively. The AUC (95% CI) of the SROC curve was 98% (96-99%). ADC values had good diagnostic accuracy for differentiating EC from benign lesions. In order to recommend ADC measurement for detecting endometrial lesions in routine clinical practice, more primary studies, especially trials and comparative studies including hysteroscopically-guided biopsy method, with larger sample sizes are still required.
Collapse
Affiliation(s)
- Yashar Moharamzad
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir H Davarpanah
- Department of Radiology and Imaging Sciences, Emory University Hospital, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ali Yaghobi Joybari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shahbazi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Ansari
- Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
| | - Morteza Sanei Taheri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Radiology, Shohada Hospital, Tajrish Sq., 1445613131, Tehran, Iran.
| |
Collapse
|
22
|
Eyüboğlu İ, Çakir İM, Aslan S, Sari A. Diagnostic efficacy of apparent diffusion coefficient measurements in differentiation of malignant intra-axial brain tumors. Turk J Med Sci 2021; 51:256-267. [PMID: 33098284 PMCID: PMC7991875 DOI: 10.3906/sag-2006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 01/24/2023] Open
Abstract
Background/aim To evaluate diagnostic efficacy of the apparent diffusion coefficient measurements from tumor (ADCt) and tumor circumference hyperintensities (ADCtch) in different types of malignant intra-axial brain tumors. Materials and methods Between April 2013 and June 2017
,
125 patients (52 females (41.6%) and 73 males (58.4%); mean age: 53 years, age range: 14-81 years), who underwent diffusion-weighted imaging (DWI) with intracranial mass, were retrospectively evaluated. The mean ADCt and ADCtch values and ratios were measured. Results Of the 125 patients, 22 (17.6%) had a low-grade glioma (LGG), 55 (44%) had a high-grade glioma (HGG), 32 (25.6%) had metastasis, and 16 (12.8%) had lymphoma diagnosis. There was a statistically significant difference in LGG and HGG in terms of mean ADCt and mean ADCtch values, and ratios. ADCtch values and ratios showed a statistically significant difference in the differentiation of HGG and metastasis and in the differentiation of HGG and lymphoma. According to ROC curve analysis, a cut-off value of 1.49 × 10−3 mm2/s for the mean ADCtch value generated the best combination of 70% sensitivity and 71% specificity for differentiation of HGGs and metastasis. The mean ADCtch value had the highest statistical predictive value for differentiation of HGGs and lymphoma with a sensitivity of 78% and a specificity of 76% for the optimal cut-off value of 0.82 × 10ˉ3 mm²/s. Conclusion The mean ADCt ratio allowed reliable differentiation of LGG and high grade brain tumors, including HGGs, metastases, and lymphoma. The mean ADCtch might be a better imaging biomarker in the differentiation of HHG from metastasis and lymphoma.
Collapse
Affiliation(s)
- İlker Eyüboğlu
- Department of Radiology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - İsmet Miraç Çakir
- Department of Radiology, Giresun University, Faculty of Medicine, Giresun, Turkey
| | - Serdar Aslan
- Department of Radiology, Giresun University, Faculty of Medicine, Giresun, Turkey
| | - Ahmet Sari
- Department of Radiology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
23
|
Apparent diffusion coefficient as a prognostic factor in clival chordoma. Sci Rep 2021; 11:486. [PMID: 33436803 PMCID: PMC7804259 DOI: 10.1038/s41598-020-79894-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Clival chordoma is a rare disease with high recurrence rates even after a combination of surgical resection and radiotherapy. Apparent diffusion coefficient (ADC) has been used to evaluate aggressive features of chordoma, but its utility for clival chordoma has not been explored specifically. In this study, the utility of preoperative ADC values was analyzed for predicting tumor progression and recurrence in patients with clival chordoma. Between 2012 and 2019, a total of 30 operated cases were analyzed with available preoperative ADC data. Receiver operating characteristic (ROC) analysis was used to obtain ADC cutoff values for predicting tumor aggressiveness. The mean and minimum ADC values were significantly lower in the aggressive tumor group than in the stable tumor group (both P < 0.001). ROC analysis showed that a mean cutoff ADC value of 1198 × 10−6 mm2/s and minimum ADC value of 895.5 × 10–6 mm2/s could be used to predict aggressive features of clival chordoma. Subtotal resection, partial resection, and mean and minimum ADC values that were lower than cutoff values were negative predictors of overall survival and progression-free survival. In conclusion, mean and minimum ADC values could be useful in predicting aggressiveness of clival chordoma.
Collapse
|
24
|
Combined application of MRS and DWI can effectively predict cell proliferation and assess the grade of glioma: A prospective study. J Clin Neurosci 2020; 83:56-63. [PMID: 33334663 DOI: 10.1016/j.jocn.2020.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
In order to assess combined application of MRS and DWI for prediction cell proliferation and grade diagnosis of glioma, We prospectively collected the Cho/Cr, Cho/NAA, Cr/NAA of MRS and tumor parenchyma ADC (ADCT), contralateral mirror brain tissue ADC (ADCH), rADC (rADC = ADCT/ADCH). According to postoperative pathology, the patients were divided into two groups: LGG group and HGG group, compared differences of age, gender, Ki67, MRS, DWI between two groups. Next, we analyzed the correlation between MRS, DWI and Ki67. On this basis, the sensitivity and specificity of MRS, DWI and MRS combined with DWI (MRS + DWI) in diagnosis of glioma grade were evaluated. The differences of Ki67, Cho/Cr, Cho/NAA, Cr/NAA, ADCT, rADC between LGG group and HGG group were statistically significant (p = 0.000, 0.000, 0.000, 0.008, 0.000, and 0.000 respectively). From ROC curve, area under the curve (AUC), sensitivity and specificity of Cho/Cr, Cho/NAA, Cr/NAA, ADCT, rADC, PRE (MRS + DWI) were (0.901, 86.7%, 85.7%), (0.876, 80.0%, 82.1%), (0.704, 63.3%, 71.4%), (0.862, 82.1%, 83.3%), (0.820, 75.0%, 76.7%), (0.920, 86.7%, 89.3%), respectively. Fisher's linear discriminant functions results suggest: Y1 = -20.447 + 3.46•X1 + 17.141•X2 (LGG), Y2 = -19.415 + 4.828•X1 + 14.543•X2 (HGG). Our study suggested that MRS and DWI can effectively predict cell proliferation preoperative. MRS combined with DWI can further improve sensitivity and specificity in assessing the grade of glioma.
Collapse
|
25
|
Bozdağ M, Er A, Çinkooğlu A, Ekmekçi S. Diagnostic role of apparent diffusion coefficient combined with intratumoral susceptibility signals in differentiating high-grade gliomas from brain metastases. Neuroradiol J 2020; 34:169-179. [PMID: 33307971 DOI: 10.1177/1971400920980164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to assess whether tumoral and peritumoral apparent diffusion coefficient values and intratumoral susceptibility signals on susceptibility-weighted imaging could distinguish between high-grade gliomas and brain metastases, and to investigate their associations with the Ki-67 proliferation index. MATERIALS AND METHODS Fifty-seven patients with pathologically confirmed diagnoses of either high-grade glioma or brain metastasis were enrolled in this study (23 with high-grade gliomas and 34 with brain metastases). The minimum and mean apparent diffusion coefficients in the enhancing tumoral region (ADCmin and ADCmean) and the minimum apparent diffusion coefficient in the peritumoral region (ADCedema) were measured from apparent diffusion coefficient maps, and intratumoral susceptibility signal grades acquired by susceptibility-weighted imaging were calculated. Ki-67 proliferation index values were obtained from the hospital database. These parameters were evaluated using the Mann-Whitney U test, independent-sample t-test, Spearman correlation analysis, receiver operating characteristic curve, and logistic regression analyses. RESULTS ADCmean, ADCmin values, and intratumoral susceptibility signal grades in brain metastases were significantly lower than those in high-grade gliomas (all p < 0.05). Ki-67 proliferation index values showed significant correlations with ADCmean, ADCmin, and intratumoral susceptibility signal grade in brain metastases (all p < 0.05), but no correlation was found in high-grade gliomas (all p > 0.05). According to receiver operating characteristic curve analysis, ADCmean achieved the highest diagnostic performance for discriminating high-grade gliomas from brain metastases. Furthermore, the combination of tumoral apparent diffusion coefficient parameters with intratumoral susceptibility signal grade provided a higher area under the curve than univariate parameters. CONCLUSION The combination of tumoral apparent diffusion coefficient with intratumoral susceptibility signal grade can offer better diagnostic performances for differential diagnosis. Apparent diffusion coefficient and intratumoral susceptibility signal may reflect cellular proliferative activity in brain metastases, but not in high-grade gliomas.
Collapse
Affiliation(s)
- Mustafa Bozdağ
- Department of Radiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ali Er
- Department of Radiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Akın Çinkooğlu
- Department of Radiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sümeyye Ekmekçi
- Department of Pathology, Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
26
|
Mao J, Zeng W, Zhang Q, Yang Z, Yan X, Zhang H, Wang M, Yang G, Zhou M, Shen J. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models. BMC Med Imaging 2020; 20:124. [PMID: 33228564 PMCID: PMC7684933 DOI: 10.1186/s12880-020-00524-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background To compare the diagnostic performance of neurite orientation dispersion and density imaging (NODDI), mean apparent propagator magnetic resonance imaging (MAP-MRI), diffusion kurtosis imaging (DKI), diffusion tensor imaging (DTI) and diffusion-weighted imaging (DWI) in distinguishing high-grade gliomas (HGGs) from solitary brain metastases (SBMs). Methods Patients with previously untreated, histopathologically confirmed HGGs (n = 20) or SBMs (n = 21) appearing as a solitary and contrast-enhancing lesion on structural MRI were prospectively recruited to undergo diffusion-weighted MRI. DWI data were obtained using a q-space Cartesian grid sampling procedure and were processed to generate parametric maps by fitting the NODDI, MAP-MRI, DKI, DTI and DWI models. The diffusion metrics of the contrast-enhancing tumor and peritumoral edema were measured. Differences in the diffusion metrics were compared between HGGs and SBMs, followed by receiver operating characteristic (ROC) analysis and the Hanley and McNeill test to determine their diagnostic performances. Results NODDI-based isotropic volume fraction (Viso) and orientation dispersion index (ODI); MAP-MRI-based mean-squared displacement (MSD) and q-space inverse variance (QIV); DKI-generated radial, mean diffusivity and fractional anisotropy (RDk, MDk and FAk); and DTI-generated radial, mean diffusivity and fractional anisotropy (RD, MD and FA) of the contrast-enhancing tumor were significantly different between HGGs and SBMs (p < 0.05). The best single discriminative parameters of each model were Viso, MSD, RDk and RD for NODDI, MAP-MRI, DKI and DTI, respectively. The AUC of Viso (0.871) was significantly higher than that of MSD (0.736), RDk (0.760) and RD (0.733) (p < 0.05). Conclusion NODDI outperforms MAP-MRI, DKI, DTI and DWI in differentiating between HGGs and SBMs. NODDI-based Viso has the highest performance.
Collapse
Affiliation(s)
- Jiaji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Qinyuan Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, No. 278 Zhouzhu Road, Shanghai, 201318, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthcare, No. 278 Zhouzhu Road, Shanghai, 201318, China
| | - Mengzhu Wang
- MR Scientific Marketing, Siemens Healthcare, No. 278 Zhouzhu Road, Shanghai, 201318, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Physics and Electronics Science, East China Normal University, No. 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Minxiong Zhou
- College of Medical Imaging, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, No. 279 Zhouzhu Road, Shanghai, 201318, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| |
Collapse
|
27
|
Gao W, Zhang S, Guo J, Wei X, Li X, Diao Y, Huang W, Yao Y, Shang A, Zhang Y, Yang Q, Chen X. Investigation of Synthetic Relaxometry and Diffusion Measures in the Differentiation of Benign and Malignant Breast Lesions as Compared to BI-RADS. J Magn Reson Imaging 2020; 53:1118-1127. [PMID: 33179809 DOI: 10.1002/jmri.27435] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women and a quantitative contrast-free method is highly desirable for its diagnosis. PURPOSE To investigate the performance of quantitative MRI in differentiating malignant from benign breast lesions and to compare with the Breast Imaging Reporting and Data System (BI-RADS). STUDY TYPE Retrospective. SUBJECTS Eighty patients (56 with malignant lesions and 24 with benign lesions). FIELD STRENGTH/SEQUENCE Diffusion-weighted imaging (DWI) with a single-shot echo planar sequence and synthetic MRI with magnetic resonance image compilation (MAGiC) were performed at 3T. ASSESSMENT T1 relaxation time (T1 ), T2 relaxation time (T2 ), and proton density (PD) from synthetic MRI and apparent diffusion coefficient (ADC) from DWI were analyzed by two radiologists (Reader A, Reader B). Univariable and multivariable models were developed to optimize differentiation between malignant and benign lesions and their performances compared to BI-RADS. STATISTICAL TESTS The diagnostic performance was evaluated using multivariate logistic regression analysis and area under the receiver operating characteristic (ROC) curves (AUC). RESULTS T2 , PD, and ADC values for malignant lesions were significantly lower than those in benign breast lesions for both radiologists (all P < 0.05). The combined T2 , PD, and ADC model had the best performance for differentiating malignant and benign lesions with AUC, sensitivity, specificity, positive predictive value, and negative predictive values of 0.904, 94.6%, 87.5%, 94.6%, and 87.5%, respectively. The corresponding results for BI-RADS were no AUC, 94.6%, 75.0%, 89.8%, and 85.7%, respectively. DATA CONCLUSION The approach that combined synthetic MRI and DWI outperformed BI-RADS in the differential diagnosis of malignant and benign breast lesions and was achieved without contrast agents. This approach may serve as an alternative and effective strategy for the improvement of breast lesion differentiation. LEVEL OF EVIDENCE 3. TECHNICAL EFFICACY STAGE 3.
Collapse
Affiliation(s)
- Weibo Gao
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqun Zhang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinxia Guo
- GE Healthcare, MR Research, Beijing, China
| | | | - Xiaohui Li
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Diao
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Huang
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Yao
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ali Shang
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Zhang
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Quanxin Yang
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Chen
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Csutak C, Ștefan PA, Lenghel LM, Moroșanu CO, Lupean RA, Șimonca L, Mihu CM, Lebovici A. Differentiating High-Grade Gliomas from Brain Metastases at Magnetic Resonance: The Role of Texture Analysis of the Peritumoral Zone. Brain Sci 2020; 10:brainsci10090638. [PMID: 32947822 PMCID: PMC7565295 DOI: 10.3390/brainsci10090638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
High-grade gliomas (HGGs) and solitary brain metastases (BMs) have similar imaging appearances, which often leads to misclassification. In HGGs, the surrounding tissues show malignant invasion, while BMs tend to displace the adjacent area. The surrounding edema produced by the two cannot be differentiated by conventional magnetic resonance (MRI) examinations. Forty-two patients with pathology-proven brain tumors who underwent conventional pretreatment MRIs were retrospectively included (HGGs, n = 16; BMs, n = 26). Texture analysis of the peritumoral zone was performed on the T2-weighted sequence using dedicated software. The most discriminative texture features were selected using the Fisher and the probability of classification error and average correlation coefficients. The ability of texture parameters to distinguish between HGGs and BMs was evaluated through univariate, receiver operating, and multivariate analyses. The first percentile and wavelet energy texture parameters were independent predictors of HGGs (75–87.5% sensitivity, 53.85–88.46% specificity). The prediction model consisting of all parameters that showed statistically significant results at the univariate analysis was able to identify HGGs with 100% sensitivity and 66.7% specificity. Texture analysis can provide a quantitative description of the peritumoral zone encountered in solitary brain tumors, that can provide adequate differentiation between HGGs and BMs.
Collapse
Affiliation(s)
- Csaba Csutak
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, Cluj-Napoca, 400006 Cluj, Romania; (C.C.); (L.M.L.); (C.M.M.); (A.L.)
- Radiology, Surgical Specialties Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Clinicilor Street, number 3–5, Cluj-Napoca, 400006 Cluj, Romania
| | - Paul-Andrei Ștefan
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, Cluj-Napoca, 400006 Cluj, Romania; (C.C.); (L.M.L.); (C.M.M.); (A.L.)
- Anatomy and Embryology, Morphological Sciences Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș Street, number 8, Cluj-Napoca, 400012 Cluj, Romania
- Correspondence: ; Tel.: +40-743-957-206
| | - Lavinia Manuela Lenghel
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, Cluj-Napoca, 400006 Cluj, Romania; (C.C.); (L.M.L.); (C.M.M.); (A.L.)
- Radiology, Surgical Specialties Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Clinicilor Street, number 3–5, Cluj-Napoca, 400006 Cluj, Romania
| | - Cezar Octavian Moroșanu
- Department of Neurosurgery, North Bristol Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol BS2 8BJ, UK;
| | - Roxana-Adelina Lupean
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, number 4, Cluj-Napoca, 400349 Cluj, Romania;
| | - Larisa Șimonca
- Department of Paediatric Surgery, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS2 8BJ, UK;
| | - Carmen Mihaela Mihu
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, Cluj-Napoca, 400006 Cluj, Romania; (C.C.); (L.M.L.); (C.M.M.); (A.L.)
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, number 4, Cluj-Napoca, 400349 Cluj, Romania;
| | - Andrei Lebovici
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, Cluj-Napoca, 400006 Cluj, Romania; (C.C.); (L.M.L.); (C.M.M.); (A.L.)
- Radiology, Surgical Specialties Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Clinicilor Street, number 3–5, Cluj-Napoca, 400006 Cluj, Romania
| |
Collapse
|
29
|
Magnetic resonance imaging evaluation of brain glioma before postoperative radiotherapy. Clin Transl Oncol 2020; 23:820-826. [PMID: 32857338 DOI: 10.1007/s12094-020-02474-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the magnetic resonance imaging (MRI) images of brain glioma before postoperative radiotherapy, and to provide reference for the delineation of postoperative radiotherapy target area. METHODS Retrospective analysis was performed on 106 cases of brain glioma confirmed by surgery and pathology in our hospital, including 70 cases of high-grade glioma (HGG) and 36 cases of low-grade glioma (LGG). The MRI images of the lesions within 1 month before and after surgery were analyzed, the apparent diffusion coefficient (ADC) values in the near and far tumor areas were measured, respectively, and the corresponding rADC values were calculated. RESULTS The incidence of residual tumors of postoperative HGG and LGG was 0, 15.7% (0/36, 11/70), respectively. The incidence of postoperative reactive enhancement was 11.0% and 52.9% (4/36 and 37/70), respectively. About 30.6% and 81.4% (11/36 and 57/70) of patients with adjacent meningeal enhancement were found in the operative area. CONCLUSIONS The MRI images of HGG and LGG before postoperative radiotherapy had certain characteristics, providing a favorable guidance for the delineation of the target area of radiotherapy and the formulation of treatment plan.
Collapse
|
30
|
Mallon D, Dixon L, Campion T, Dawe G, Bhatia K, Kachramanoglou C, Kirmi O. Beyond the brain: Extra-axial pathology on diffusion weighted imaging in neuroimaging. J Neurol Sci 2020; 415:116900. [PMID: 32464349 DOI: 10.1016/j.jns.2020.116900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/10/2023]
Abstract
Diffusion-weighted imaging (DWI) has a central role in the assessment of the brain parenchyma, particularly in the context of acute stroke. However, the applications of DWI extend far beyond the brain parenchyma and include the assessment of the extra-axial structures of the head and neck that are included in routine brain imaging. In this pictorial review, the added-value of DWI over other conventional sequences is illustrated through discussion of a broad range of disorders affecting the vasculature, skull, orbits, nasal cavity and salivary glands. This article highlights the requirement for all structures, both intra- and extra-axial, to be carefully reviewed on DWI.
Collapse
Affiliation(s)
- Dermot Mallon
- Imperial College Healthcare NHS Trust, Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK.
| | - Luke Dixon
- Imperial College Healthcare NHS Trust, Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - Tom Campion
- Imperial College Healthcare NHS Trust, Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - Gemma Dawe
- Imperial College Healthcare NHS Trust, Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - Kunwar Bhatia
- Imperial College Healthcare NHS Trust, Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - Carolina Kachramanoglou
- Imperial College Healthcare NHS Trust, Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - Olga Kirmi
- Imperial College Healthcare NHS Trust, Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| |
Collapse
|
31
|
Zhang P, Liu B. Differentiation among Glioblastomas, Primary Cerebral Lymphomas, and Solitary Brain Metastases Using Diffusion-Weighted Imaging and Diffusion Tensor Imaging: A PRISMA-Compliant Meta-analysis. ACS Chem Neurosci 2020; 11:477-483. [PMID: 31922391 DOI: 10.1021/acschemneuro.9b00698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies showed a high diagnostic value of diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) in differentiation among glioblastomas, primary cerebral lymphomas (PCLs), and solitary brain metastases, whereas other studies reported a low or no diagnostic value of DWI and DTI in differentiation among the three types of brain malignant tumors. In order to enhance the strength of evidence, meta-analysis was conducted to summarize results of studies evaluating the diagnostic values of DWI or DTI in differentiation among the three types of brain malignant tumors. Articles evaluating the diagnostic values of DWI or DTI in differentiation among the three types of tumors and published before December 2019 were searched in databases (PubMed, Medline, Web of Science, EMBASE, and Google Scholar). A summary of sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and diagnostic odds ratio (DOR) were calculated from the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) of each study using STATA 12.0 software and Meta-Disc Version 1.4. In addition, the summary receive-operating characteristic (SROC) curve was constructed. Ultimately, we included 19 diagnostic studies (including 735 glioblastomas patients, 31 PCLs patients, and 792 patients with solitary brain metastases). Regarding differentiation between glioblastomas and solitary brain metastases using DWI or DTI, the calculated pooled parameters were as follows: sensitivity, 0.84 [95% confidence interval (CI): 0.78-0.89]; specificity, 0.88 (95% CI: 0.83-0.92); PLR, 7.2 (95% CI: 4.6-11.3); NLR, 0.18 (95% CI: 0.12-0.27); and DOR, 41 (95% CI: 18-93). The analysis showed a significant heterogeneity (sensitivity, I2 = 91.31%, p < 0.01; specificity, I2 = 89.24%, p < 0.01). In conclusion, DWI and DTI showed a moderate diagnostic value for differentiating glioblastomas from solitary brain metastasis. Additionally, large-scale prospective studies are essential to explore differentiation between PCLs and solitary brain metastases using DWI or DTI.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
- Laboratory of Oncology, Fifth Medical Center, General Hospital of PLA, Beijing 100071, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
- Laboratory of Oncology, Fifth Medical Center, General Hospital of PLA, Beijing 100071, China
| |
Collapse
|
32
|
Basirjafari S, Poureisa M, Shahhoseini B, Zarei M, Aghayari Sheikh Neshin S, Anvari Aria S, Nouri-Vaskeh M. Apparent diffusion coefficient values and non-homogeneity of diffusion in brain tumors in diffusion-weighted MRI. Acta Radiol 2020; 61:244-252. [PMID: 31264441 DOI: 10.1177/0284185119856887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background The values that have been received from apparent diffusion coefficient (ADC) maps of diffusion-weighted magnetic resonance imaging (DW-MRI) might play a vital role in evaluating tumors and their grading scale. Purpose To investigate the predictive role of this heterogeneity in brain tumor pathologies and its correlation with Ki-67. Material and Methods A total of 124 patients with brain tumors underwent brain MRI with gadolinium injection. ADC and standard deviation of each lesion have been obtained from manual localization of the region of interest on the ADC map. A receiver operating characteristic analysis was conducted to determine the minimum cut-off values of the mean ADC and mean standard deviation of ADC maps having the highest sensitivity and specificity to differentiate high-grade and low-grade tumors. Results Mean ADC values in the region of interest were significantly lower for malignant tumors (grade IV and metastasis) than grade I brain tumors, while a higher mean standard deviation was observed. In a more detailed comparison of tumor groups, the mean standard deviation of the ADC for glioblastoma multiform was significantly higher than meningioma grade I ( P < 0.001) and metastasis was significantly higher than grade III and IV astrocytic tumors ( P = 0.004). The analysis of Ki-67 proliferation index and mean ADC values in gliomas showed a significant inverse correlation between the parameters (r = –0.0429, P < 0.001) and direct correlation between Ki-67 and mean standard deviation of the ADC (r = 0.551, P < 0.001). As an index for the ADC to differentiate high-grade and low-grade tumors, the cut-off values of 1.40*10−3 mm2/s for mean ADC and 45*10−3 mm2/s for mean standard deviation have the highest combination of sensitivity, specificity, and area under the curve. Conclusion The mean value and standard deviation of the ADC could be considered for differentiating between low-grade and high-grade brain tumors, as two available non-invasive methods.
Collapse
Affiliation(s)
| | - Masoud Poureisa
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Shahhoseini
- Imam Khomeini Hospital, North Khorasan University of Medical Sciences, Shirvan, Iran
| | - Mohammad Zarei
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | | | - Sheida Anvari Aria
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Masoud Nouri-Vaskeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
The Diagnostic Value of the Apparent Diffusion Coefficient Values Derived from Magnetic Resonance Imaging and Diffusion-Weighted Imaging in Differentiating the Types of Metastatic Brain Tumors. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.95813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Discrimination Between Solitary Brain Metastasis and Glioblastoma Multiforme by Using ADC-Based Texture Analysis: A Comparison of Two Different ROI Placements. Acad Radiol 2019; 26:1466-1472. [PMID: 30770161 DOI: 10.1016/j.acra.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022]
Abstract
RATIONALE AND OBJECTIVES To explore the value of texture analysis based on the apparent diffusion coefficient (ADC) value and the effect of region of interest (ROI) placements in distinguishing glioblastoma multiforme (GBM) from solitary brain metastasis (sMET). MATERIALS AND METHODS Sixty-two patients with pathologically confirmed GBM (n = 36) and sMET (n = 26) were retrospectively included. All patients underwent diffusion-weighted imaging with b values of 0 and 1000 s/mm2, and the ADC maps were generated automatically. ROIs were placed on the largest whole single-slice tumor (ROI1) and the enhanced solid portion (ROI2) of the ADC maps, respectively. The texture feature metrics of the histogram and gray-level co-occurrence matrix were then extracted by using in-house software. The parameters of the texture analysis were compared between GBM and sMET, using the Mann-Whitney U test. A receiver operating characteristic (ROC) curve analysis was performed to determine the best parameters for distinguishing between GBM from sMET. RESULTS Homogeneity and the inverse difference moment (IDM) of GBM were significantly higher than those of sMET in both ROIs (ROI1, p = 0.014 for homogeneity and p = 0.048 for IDM; ROI2, p< 0.001 for homogeneity and p = 0.029 for IDM). According to the ROC curve analysis, the area under the ROC curve (AUC) of homogeneity in ROI1 (AUC, 0.682, sensitivity, 72.2%, specificity, 61.5%) was significantly lower than that of ROI2 (AUC, 0.886, sensitivity, 83.3%, specificity, 76.9%; p= 0.012), whereas the IDM showed no statistical significance between two ROIs (p> 0.05). CONCLUSION The ADC-based texture analysis can help differentiate GBM from sMET, and the ROI on the solid portion would be recommended to calculate the ADC-based texture metrics.
Collapse
|
35
|
Zhao N, Ma C, Ye X, Danie N, Fu C, Hao Q, Lu J. The feasibility of b-value maps based on threshold DWI for detection of breast cancer: A case-control STROBE compliant study. Medicine (Baltimore) 2019; 98:e17640. [PMID: 31689773 PMCID: PMC6946245 DOI: 10.1097/md.0000000000017640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diffusion-weighted imaging (DWI) plays an important role in the diagnosis of breast cancer as well as the evaluation of treatment effects. A novel technique named b-value map based on thresholded DWI images has been proposed and can achieve good contrast for demonstrating prostate lesions only by manipulating the window width and center of the images. Its application on the breast has not yet explored, so the aim of the study was to investigate the feasibility of b-value maps based on threshold DWI for detection of breast cancer. A total of 25 patients with pathologically proven invasive ductal breast carcinoma were included and underwent preoperative magnetic resonance imaging (MRI) examinations including DWI at 3T. The capabilities to display lesions of DWIb=800, b-value maps and optimal computed DWI (cDWI) images were evaluated by using a 4-point method of scoring. Apparent diffusion coefficient (ADC) values of lesions were measured for the breast carcinoma. Mean scores indicating the display capability were compared among DWIb=800, optimal cDWI and b-value maps by using Kruskal-Wallis test followed by Nemenyi test. The scores of both b-value maps (3.92 ± 0.28) and optimal cDWI images (3.80 ± 0.41) were higher than that of DWIb=800 (3.48 ± 0.51), with statistical differences (P = .001 and P = .033, respectively). The optimal b values for manifesting breast carcinoma based on cDWI were 1000 to 1200 s/mm. The b-value map enables fast identification for breast lesions and shows similar performance to the optimal cDWI images.
Collapse
Affiliation(s)
| | | | - Xiaolong Ye
- Department of Pathology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai
| | | | - Caixia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | | | | |
Collapse
|
36
|
Suh CH, Kim HS, Jung SC, Kim SJ. Diffusion-Weighted Imaging and Diffusion Tensor Imaging for Differentiating High-Grade Glioma from Solitary Brain Metastasis: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1208-1214. [PMID: 29724766 DOI: 10.3174/ajnr.a5650] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accurate diagnosis of high-grade glioma and solitary brain metastasis is clinically important because it affects the patient's outcome and alters patient management. PURPOSE To evaluate the diagnostic performance of DWI and DTI for differentiating high-grade glioma from solitary brain metastasis. DATA SOURCES A literature search of Ovid MEDLINE and EMBASE was conducted up to November 10, 2017. STUDY SELECTION Studies evaluating the diagnostic performance of DWI and DTI for differentiating high-grade glioma from solitary brain metastasis were selected. DATA ANALYSIS Summary sensitivity and specificity were established by hierarchic logistic regression modeling. Multiple subgroup analyses were also performed. DATA SYNTHESIS Fourteen studies with 1143 patients were included. The individual sensitivities and specificities of the 14 included studies showed a wide variation, ranging from 46.2% to 96.0% for sensitivity and 40.0% to 100.0% for specificity. The pooled sensitivity of both DWI and DTI was 79.8% (95% CI, 70.9%-86.4%), and the pooled specificity was 80.9% (95% CI, 75.1%-85.5%). The area under the hierarchical summary receiver operating characteristic curve was 0.87 (95% CI, 0.84-0.89). The multiple subgroup analyses also demonstrated similar diagnostic performances (sensitivities of 76.8%-84.7% and specificities of 79.7%-84.0%). There was some level of heterogeneity across the included studies (I2 = 36%); however, it did not reach a level of concern. LIMITATIONS The included studies used various DWI and DTI parameters. CONCLUSIONS DWI and DTI demonstrated a moderate diagnostic performance for differentiation of high-grade glioma from solitary brain metastasis.
Collapse
Affiliation(s)
- C H Suh
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - H S Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - S C Jung
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - S J Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
37
|
Nandu H, Wen PY, Huang RY. Imaging in neuro-oncology. Ther Adv Neurol Disord 2018; 11:1756286418759865. [PMID: 29511385 PMCID: PMC5833173 DOI: 10.1177/1756286418759865] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Imaging plays several key roles in managing brain tumors, including diagnosis, prognosis, and treatment response assessment. Ongoing challenges remain as new therapies emerge and there are urgent needs to find accurate and clinically feasible methods to noninvasively evaluate brain tumors before and after treatment. This review aims to provide an overview of several advanced imaging modalities including magnetic resonance imaging and positron emission tomography (PET), including advances in new PET agents, and summarize several key areas of their applications, including improving the accuracy of diagnosis and addressing the challenging clinical problems such as evaluation of pseudoprogression and anti-angiogenic therapy, and rising challenges of imaging with immunotherapy.
Collapse
Affiliation(s)
- Hari Nandu
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02445, USA
| |
Collapse
|