1
|
Li R, Edalati M, Muccigrosso D, Lau JMC, Laforest R, Woodard PK, Zheng J. A simplified method to correct saturation of arterial input function for cardiac magnetic resonance first-pass perfusion imaging: validation with simultaneously acquired PET. J Cardiovasc Magn Reson 2023; 25:35. [PMID: 37344848 PMCID: PMC10286396 DOI: 10.1186/s12968-023-00945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND First-pass perfusion imaging in magnetic resonance imaging (MRI) is an established method to measure myocardial blood flow (MBF). An obstacle for accurate quantification of MBF is the saturation of blood pool signal intensity used for arterial input function (AIF). The objective of this project was to validate a new simplified method for AIF estimation obtained from single-bolus and single sequence perfusion measurements. The reference MBF was measured simultaneously on 13N-ammonia positron emission tomography (PET). METHODS Sixteen patients with clinically confirmed myocardial ischemia were imaged in a clinical whole-body PET-MRI system. PET perfusion imaging was performed in a 10-min acquisition after the injection of 10 mCi of 13N-ammonia. The MRI perfusion acquisition started simultaneously with the start of the PET acquisition after the injection of a 0.075 mmol/kg gadolinium contrast agent. Cardiac stress imaging was initiated after the administration of regadenoson 20 s prior to PET-MRI scanning. The saturation part of the MRI AIF data was modeled as a gamma variate curve, which was then estimated for a true AIF by minimizing a cost function according to various boundary conditions. A standard AHA 16-segment model was used for comparative analysis of absolute MBF from PET and MRI. RESULTS Overall, there were 256 segments in 16 patients, mean resting perfusion for PET was 1.06 ± 0.34 ml/min/g and 1.04 ± 0.30 ml/min/g for MRI (P = 0.05), whereas mean stress perfusion for PET was 2.00 ± 0.74 ml/min/g and 2.12 ± 0.76 ml/min/g for MRI (P < 0.01). Linear regression analysis in MBF revealed strong correlation (r = 0.91, slope = 0.96, P < 0.001) between PET and MRI. Myocardial perfusion reserve, calculated from the ratio of stress MBF over resting MBF, also showed a strong correlation between MRI and PET measurements (r = 0.82, slope = 0.81, P < 0.001). CONCLUSION The results demonstrated the feasibility of the simplified AIF estimation method for the accurate quantification of MBF by MRI with single sequence and single contrast injection. The MRI MBF correlated strongly with PET MBF obtained simultaneously. This post-processing technique will allow easy transformation of clinical perfusion imaging data into quantitative information.
Collapse
Affiliation(s)
- Ran Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO, USA
| | - Masoud Edalati
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO, USA
| | - David Muccigrosso
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO, USA
| | - Jeffrey M C Lau
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO, USA
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO, USA.
| |
Collapse
|
2
|
Kellman P, Xue H, Chow K, Howard J, Chacko L, Cole G, Fontana M. Bright-blood and dark-blood phase sensitive inversion recovery late gadolinium enhancement and T1 and T2 maps in a single free-breathing scan: an all-in-one approach. J Cardiovasc Magn Reson 2021; 23:126. [PMID: 34743718 PMCID: PMC8573877 DOI: 10.1186/s12968-021-00823-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Quantitative cardiovascular magnetic resonance (CMR) T1 and T2 mapping are used to detect diffuse disease such as myocardial fibrosis or edema. However, post gadolinium contrast mapping often lacks visual contrast needed for assessment of focal scar. On the other hand, late gadolinium enhancement (LGE) CMR which nulls the normal myocardium has excellent contrast between focal scar and normal myocardium but has poor ability to detect global disease. The objective of this work is to provide a calculated bright-blood (BB) and dark-blood (DB) LGE based on simultaneous acquisition of T1 and T2 maps, so that both diffuse and focal disease may be assessed within a single multi-parametric acquisition. METHODS The prototype saturation recovery-based SASHA T1 mapping may be modified to jointly calculate T1 and T2 maps (known as multi-parametric SASHA) by acquiring additional saturation recovery (SR) images with both SR and T2 preparations. The synthetic BB phase sensitive inversion recovery (PSIR) LGE may be calculated from the post-contrast T1, and the DB PSIR LGE may be calculated from the post-contrast joint T1 and T2 maps. Multi-parametric SASHA maps were acquired free-breathing (45 heartbeats). Protocols were designed to use the same spatial resolution and achieve similar signal-to-noise ratio (SNR) as conventional motion corrected (MOCO) PSIR. The calculated BB and DB LGE were compared with separate free breathing (FB) BB and DB MOCO PSIR acquisitions requiring 16 and 32 heart beats, respectively. One slice with myocardial infarction (MI) was acquired with all protocols within 4 min. RESULTS Multiparametric T1 and T2 maps and calculated BB and DB PSIR LGE images were acquired for patients with subendocardial chronic MI (n = 10), acute MI (n = 3), and myocarditis (n = 1). The contrast-to-noise (CNR) between scar (MI and myocarditis) and remote was 26.6 ± 7.7 and 20.2 ± 7.4 for BB and DB PSIR LGE, and 31.3 ± 10.6 and 21.8 ± 7.6 for calculated BB and DB PSIR LGE, respectively. The CNR between scar and the left ventricualr blood pool was 5.2 ± 6.5 and 29.7 ± 9.4 for conventional BB and DB PSIR LGE, and 6.5 ± 6.0 and 38.6 ± 11.6 for calculated BB and DB PSIR LGE, respectively. CONCLUSIONS A single free-breathing acquisition using multi-parametric SASHA provides T1 and T2 maps and calculated BB and DB PSIR LGE images for comprehensive tissue characterization.
Collapse
Affiliation(s)
- Peter Kellman
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD USA
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD USA
| | - Kelvin Chow
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, IL USA
| | - James Howard
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Liza Chacko
- Royal Free London NHS Foundation Trust, London, UK
- National Amyloidosis Centre, Division of Medicine, University College London, London, UK
| | - Graham Cole
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Marianna Fontana
- Royal Free London NHS Foundation Trust, London, UK
- National Amyloidosis Centre, Division of Medicine, University College London, London, UK
| |
Collapse
|
3
|
Abstract
This review focuses on the trends in contrast media (CM) research published in Acta Radiologica during the last 100 years, since the first edition in 1921. The main topics covered are the developments of iodine- and gadolinium-based CM. Other topics include manganese-based CM for magnetic resonance imaging (MRI) and barium for the investigation of the alimentary tract. From a historic point of view, special CM for use in cholegraphy and myelography are addressed in the review. Today, these imaging procedures are obsolete due to the development of computed tomography, MRI, and ultrasound. The historical use of radioactive thorium-based CM for angiography is also addressed. Furthermore, publications on adverse reactions to CM are reviewed.
Collapse
Affiliation(s)
- Yousef W Nielsen
- Department of Radiology, University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Henrik S Thomsen
- Department of Radiology, University Hospital Herlev and Gentofte, Copenhagen, Denmark
| |
Collapse
|
4
|
Li J, Jiang X, Shang L, Li Z, Yang C, Luo Y, Hu D, Shen Y, Zhang Z. L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent. Drug Deliv 2021; 28:134-143. [PMID: 33356629 PMCID: PMC7782420 DOI: 10.1080/10717544.2020.1862363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study aimed to synthesize and characterize L-epigallocatechin gallate (EGCG) complexed Mn2+ nanoparticle (L-EGCG-Mn), a proof-of-concept pH-sensitive manganese core nanoparticle (NP), and compare its magnetic resonance (MR) properties with those of Gd-DTPA, both in vitro and in vivo. Reverse microemulsion was used to obtain the L-EGCG-Mn NPs. The physicochemical properties of L-EGCG-Mn were characterized using dynamic light scattering, transmission electron microscopy, and near-infrared fluorescence small animal live imaging. The in vitro relaxivity of L-EGCG-Mn incubated with different pH buffer solutions (pH = 7.4, 6.8, 5.5) was evaluated. The T1-weighted MR imaging (MRI) properties were evaluated in vitro using hypoxic H22 cells as well as in H22 tumor-bearing mice. Cytotoxicity tests and histological analysis were performed to evaluate the safety of L-EGCG-Mn. L-EGCG-Mn showed good biocompatibility, stability, pH sensitivity, and tumor-targeting ability. Moreover, when the pH was decreased from 7.4 to 5.5, the r 1 relaxivity of L-EGCG-Mn was shown to gradually increase from 1.79 to 6.43 mM-1·s-1. Furthermore, after incubation with L-EGCG-Mn for 4 h, the T1 relaxation time of hypoxic H22 cells was significantly lower than that of normoxic H22 cells (1788 ± 89 vs. 1982 ± 68 ms, p=.041). The in vivo analysis showed that after injection, L-EGCG-Mn exhibited a higher MRI signal compared to Gd-DTPA in H22 tumor-bearing mice (p < .05). Furthermore, L-EGCG-Mn was found to have a good safety profile via cytotoxicity tests and histological analysis. L-EGCG-Mn has a good safety profile and pH sensitivity and may thus serve as a potential MRI contrast agent.
Collapse
Affiliation(s)
- Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lihuan Shang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, PR China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, PR China.,Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
5
|
Luo Y, Yu H, Hu D, Li J, Hu X, Li Z, Shen Y. Manganese threonine chelate-a new enteric contrast agent for MRI: a pilot study on rats. NMR IN BIOMEDICINE 2020; 33:e4293. [PMID: 32175654 DOI: 10.1002/nbm.4293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Enteric contrast agents are important in gastrointestinal MRI. However, no currently available agent is well established as the standard of care. In this study, in vitro relaxivities of manganese threonine chelate (Mn-Thr), a common nutritional food supplement, were measured at 1.5 T and 3 T with further investigation of its efficacy and safety in vivo as an enteric contrast agent. According to the calculated relaxivities, T1 W and T2 W TSE sequences of Mn-Thr solutions at different concentrations were acquired, and the optimal concentration for dark lumen imaging on both T1 W and T2 W images was determined in vitro. To validate the optimal concentration in vivo, eight Sprague-Dawley rats were randomly divided into two groups. Each group received rectal injection of either 2.00 g/L (about 3.80 mM) Mn-Thr or saline as an enteric contrast agent and underwent MRI. After a time interval of one week, the same procedures were repeated with the alternative contrast agent. Animals were sacrificed after the second MRI. Tissue manganese quantification and histopathological examination were obtained. Qualitative MR image quality assessments were performed and compared between Mn-Thr and saline. Measured T1 and T2 relaxivities of Mn-Thr were significantly higher than those of MnCl2 in vitro (p < 0.05). At the concentration of 2.00 g/L (about 3.80 mM), Mn-Thr produced a dark lumen on T1 W and T2 W images both in vitro and in vivo. Compared with saline, Mn-Thr showed significantly more homogenous luminal signal and increased bowel wall conspicuity in image quality assessments. Tissue manganese concentrations were not significantly different between two groups. Histopathological examinations were normal in both groups. Our data suggest that Mn-Thr possesses favorable paramagnetic properties and can create a homogenous dark lumen on T1 W and T2 W images without obvious side effects in healthy rats. As a commercially available nutritional food supplement, Mn-Thr appears to be a promising enteric contrast agent for MRI.
Collapse
Affiliation(s)
- Yan Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Yu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuemei Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Kapre R, Zhou J, Li X, Beckett L, Louie AY. A novel gamma GLM approach to MRI relaxometry comparisons. Magn Reson Med 2020; 84:1592-1604. [PMID: 32048764 PMCID: PMC7317199 DOI: 10.1002/mrm.28192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To demonstrate that constant coefficient of variation (CV), but nonconstant absolute variance in MRI relaxometry (T1 , T2 , R1 , R2 ) data leads to erroneous conclusions based on standard linear models such as ordinary least squares (OLS). We propose a gamma generalized linear model identity link (GGLM-ID) framework that factors the inherent CV into parameter estimates. We first examined the effects on calculations of contrast agent relaxivity before broadening to other applications such as analysis of variance (ANOVA) and liver iron content (LIC). METHODS Eight models including OLS and GGLM-ID were initially fit to data obtained on sulfated dextran iron oxide (SDIO) nanoparticles. Both a resampling simulation on the data as well as two separate Monte Carlo simulations (with and without concentration error) were performed to determine mean square error (MSE) and type I error rate. We then evaluated the performance of OLS/GGLM-ID on R1 repeatability and LIC data sets. RESULTS OLS had an MSE of 4-5× that of GGLM-ID as well as a type I error rate of 20-30%, whereas GGLM-ID was near the nominal 5% level in the relaxivity study. Only OLS found statistically significant effects of MRI facility on relaxivity in an R1 repeatability study, but no significant differences were found in a resampling, whereas GGLM was more consistent. GGLM-ID was also superior to OLS for modeling LIC. CONCLUSIONS OLS leads to erroneous conclusions when analyzing MRI relaxometry data. GGLM-ID factors in the inherent CV of an MRI experiment, leading to more reproducible conclusions.
Collapse
Affiliation(s)
- Rohan Kapre
- Department of Biomedical Engineering, University of California, Davis, CA.,Biostatistics Graduate Group, University of California, Davis, CA
| | - Junhan Zhou
- Chemistry Graduate Group, University of California, Davis, CA
| | - Xinzhe Li
- Department of Biomedical Engineering, University of California, Davis, CA
| | - Laurel Beckett
- Biostatistics Graduate Group, University of California, Davis, CA
| | - Angelique Y Louie
- Department of Biomedical Engineering, University of California, Davis, CA.,Chemistry Graduate Group, University of California, Davis, CA
| |
Collapse
|