1
|
Mesny E, Leporq B, Chapet O, Beuf O. Intravoxel incoherent motion magnetic resonance imaging to assess early tumor response to radiation therapy: Review and future directions. Magn Reson Imaging 2024; 108:129-137. [PMID: 38354843 DOI: 10.1016/j.mri.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Early prediction of radiation response by imaging is a dynamic field of research and it can be obtained using a variety of noninvasive magnetic resonance imaging methods. Recently, intravoxel incoherent motion (IVIM) has gained interest in cancer imaging. IVIM carries both diffusion and perfusion information, making it a promising tool to assess tumor response. Here, we briefly introduced the basics of IVIM, reviewed existing studies of IVIM in various type of tumors during radiotherapy in order to show whether IVIM is a useful technique for an early assessment of radiation response. 31/40 studies reported an increase of IVIM parameters during radiotherapy compared to baseline. In 27 studies, this increase was higher in patients with good response to radiotherapy. Future directions including implementation of IVIM on MR-Linac and its limitation are discussed. Obtaining new radiologic biomarkers of radiotherapy response could open the way for a more personalized, biology-guided radiation therapy.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France.
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| | - Olivier Chapet
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France
| | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| |
Collapse
|
2
|
Qian WL, Chen Q, Zhang JB, Xu JM, Hu CH. RESOLVE-based radiomics in cervical cancer: improved image quality means better feature reproducibility? Clin Radiol 2023; 78:e469-e476. [PMID: 37029000 DOI: 10.1016/j.crad.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
AIM To compare the reproducibility of apparent diffusion coefficient (ADC)-based radiomic features between readout-segmented echo-planar diffusion-weighted imaging (RESOLVE) and single-shot echo-planar diffusion-weighted imaging (SS-EPI DWI) in cervical cancer. MATERIALS AND METHODS The RESOLVE and SS-EPI DWI images of 36 patients with histopathologically confirmed cervical cancer were collected retrospectively. Two observers independently delineated the whole tumour on RESOLVE and SS-EPI DWI, and then copied them to the corresponding ADC maps. Shape, first-order, and texture features were extracted from ADC maps in the original and filtered (Laplacian of Gaussian [LoG] and wavelet) images. Thereafter, 1,316 features were generated in each RESOLVE and SS-EPI DWI, respectively. The reproducibility of radiomic features was assessed using intraclass correlation coefficient (ICC). RESULTS In the original images, RESOLVE showed 92.86%, 66.67%, and 86.67% of features with excellent reproducibility in shape, first-order, and texture features, while SS-EPI DWI showed 85.71%, 72.22%, and 60% of features with excellent reproducibility, respectively. In the LoG and wavelet filtered images, RESOLVE had 56.77% and 65.32% of features with excellent reproducibility and SS-EPI DWI had 44.95% and 61.96% of features with excellent reproducibility, respectively. CONCLUSION Compared with SS-EPI DWI, the feature reproducibility of RESOLVE was better in cervical cancer, especially for texture features. The filtered images cannot improve the feature reproducibility compared with the original images for both SS-EPI DWI and RESOLVE.
Collapse
|
3
|
Scalco E, Rizzo G, Mastropietro A. The quantification of IntraVoxel incoherent motion - MRI maps cannot preserve texture information: An evaluation based on simulated and in-vivo images. Comput Biol Med 2023; 154:106495. [PMID: 36669333 DOI: 10.1016/j.compbiomed.2022.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Radiomics can be applied on parametric maps obtained from IntraVoxel Incoherent Motion (IVIM) MRI to characterize heterogeneity in diffusion and perfusion tissue properties. The purpose of this work is to assess the accuracy and reproducibility of radiomic features computed from IVIM maps using different fitting methods. METHODS 200 digitally simulated IVIM-MRI images with various SNR containing different combinations of texture patterns were generated from ground truth maps of true diffusion D, pseudo-diffusion D* and perfusion fraction f. Four different methods (segmented least-square LSQ, Bayesian, supervised and unsupervised deep learning DL) were adopted to quantify IVIM maps from simulations and from two real images of liver tumor. Radiomic features were computed from ground truth and estimated maps. Accuracy and reproducibility among quantification methods were assessed. RESULTS Almost 50% of radiomic features computed from D maps using DL approaches, 36% using Bayes and 27% using LSQ presented errors lower than 50%. Radiomic features from f and D* maps were accurate only if computed using DL methods from histogram. High reproducibility (ICC>0.8) was found only for D maps among DL and Bayes methods, whereas features from f and D* maps were less reproducible, with LSQ approach in lower agreement with the others. CONCLUSIONS Texture patterns were preserved and correctly estimated only on D maps, except for LSQ approach. We suggest limiting radiomic analysis only to histogram and some texture features from D maps, to histogram features from f maps, and to avoid it on D* maps.
Collapse
Affiliation(s)
- Elisa Scalco
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy.
| | - Giovanna Rizzo
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Alfonso Mastropietro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| |
Collapse
|
4
|
Stamoulou E, Spanakis C, Manikis GC, Karanasiou G, Grigoriadis G, Foukakis T, Tsiknakis M, Fotiadis DI, Marias K. Harmonization Strategies in Multicenter MRI-Based Radiomics. J Imaging 2022; 8:303. [PMID: 36354876 PMCID: PMC9695920 DOI: 10.3390/jimaging8110303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Radiomics analysis is a powerful tool aiming to provide diagnostic and prognostic patient information directly from images that are decoded into handcrafted features, comprising descriptors of shape, size and textural patterns. Although radiomics is gaining momentum since it holds great promise for accelerating digital diagnostics, it is susceptible to bias and variation due to numerous inter-patient factors (e.g., patient age and gender) as well as inter-scanner ones (different protocol acquisition depending on the scanner center). A variety of image and feature based harmonization methods has been developed to compensate for these effects; however, to the best of our knowledge, none of these techniques has been established as the most effective in the analysis pipeline so far. To this end, this review provides an overview of the challenges in optimizing radiomics analysis, and a concise summary of the most relevant harmonization techniques, aiming to provide a thorough guide to the radiomics harmonization process.
Collapse
Affiliation(s)
- Elisavet Stamoulou
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Constantinos Spanakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Georgia Karanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Grigoris Grigoriadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Manolis Tsiknakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| | - Dimitrios I. Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology—FORTH, University Campus of Ioannina, 451 15 Ioannina, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| |
Collapse
|
5
|
Shrestha P, Poudyal B, Yadollahi S, E. Wright D, V. Gregory A, D. Warner J, Korfiatis P, C. Green I, L. Rassier S, Mariani A, Kim B, K. Laughlin-Tommaso S, L. Kline T. A systematic review on the use of artificial intelligence in gynecologic imaging – Background, state of the art, and future directions. Gynecol Oncol 2022; 166:596-605. [PMID: 35914978 DOI: 10.1016/j.ygyno.2022.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Machine learning, deep learning, and artificial intelligence (AI) are terms that have made their way into nearly all areas of medicine. In the case of medical imaging, these methods have become the state of the art in nearly all areas from image reconstruction to image processing and automated analysis. In contrast to other areas, such as brain and breast imaging, the impacts of AI have not been as strongly felt in gynecologic imaging. In this review article, we: (i) provide a background of clinically relevant AI concepts, (ii) describe methods and approaches in computer vision, and (iii) highlight prior work related to image classification tasks utilizing AI approaches in gynecologic imaging. DATA SOURCES A comprehensive search of several databases from each database's inception to March 18th, 2021, English language, was conducted. The databases included Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, and Ovid Cochrane Database of Systematic Reviews and ClinicalTrials.gov. METHODS OF STUDY SELECTION We performed an extensive literature review with 61 articles curated by three reviewers and subsequent sorting by specialists using specific inclusion and exclusion criteria. TABULATION, INTEGRATION, AND RESULTS We summarize the literature grouped by each of the three most common gynecologic malignancies: endometrial, cervical, and ovarian. For each, a brief introduction encapsulating the AI methods, imaging modalities, and clinical parameters in the selected articles is presented. We conclude with a discussion of current developments, trends and limitations, and suggest directions for future study. CONCLUSION This review article should prove useful for collaborative teams performing research studies targeted at the incorporation of radiological imaging and AI methods into gynecological clinical practice.
Collapse
|
6
|
Scalco E, Rizzo G, Mastropietro A. The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac60b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
The use of MRI radiomic models for the diagnosis, prognosis and treatment response prediction of tumors has been increasingly reported in literature. However, its widespread adoption in clinics is hampered by issues related to features stability. In the MRI radiomic workflow, the main factors that affect radiomic features computation can be found in the image acquisition and reconstruction phase, in the image pre-processing steps, and in the segmentation of the region of interest on which radiomic indices are extracted. Deep Neural Networks (DNNs), having shown their potentiality in the medical image processing and analysis field, can be seen as an attractive strategy to partially overcome the issues related to radiomic stability and mitigate their impact. In fact, DNN approaches can be prospectively integrated in the MRI radiomic workflow to improve image quality, obtain accurate and reproducible segmentations and generate standardized images. In this review, DNN methods that can be included in the image processing steps of the radiomic workflow are described and discussed, in the light of a detailed analysis of the literature in the context of MRI radiomic reliability.
Collapse
|
7
|
Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 2021; 11:4431-4460. [PMID: 34603997 DOI: 10.21037/qims-21-86] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability are also raised. This review attempts to update and overview the current status of radiomics reliability research in the ever expanding medical literature from the perspective of a single reliability metric of intraclass correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, were included for review. In these highly heterogeneous studies, feature reliability to image segmentation was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability to image segmentation. Image acquisition was found to introduce much more feature variability than image segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. More future researches on radiomics reliability are warranted.
Collapse
Affiliation(s)
- Cindy Xue
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Amy T Y Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
8
|
Gastman B, Agarwal PK, Berger A, Boland G, Broderick S, Butterfield LH, Byrd D, Fecci PE, Ferris RL, Fong Y, Goff SL, Grabowski MM, Ito F, Lim M, Lotze MT, Mahdi H, Malafa M, Morris CD, Murthy P, Neves RI, Odunsi A, Pai SI, Prabhakaran S, Rosenberg SA, Saoud R, Sethuraman J, Skitzki J, Slingluff CL, Sondak VK, Sunwoo JB, Turcotte S, Yeung CC, Kaufman HL. Defining best practices for tissue procurement in immuno-oncology clinical trials: consensus statement from the Society for Immunotherapy of Cancer Surgery Committee. J Immunother Cancer 2020; 8:e001583. [PMID: 33199512 PMCID: PMC7670953 DOI: 10.1136/jitc-2020-001583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy is now a cornerstone for cancer treatment, and much attention has been placed on the identification of prognostic and predictive biomarkers. The success of biomarker development is dependent on accurate and timely collection of biospecimens and high-quality processing, storage and shipping. Tumors are also increasingly used as source material for the generation of therapeutic T cells. There have been few guidelines or consensus statements on how to optimally collect and manage biospecimens and source material being used for immunotherapy and related research. The Society for Immunotherapy of Cancer Surgery Committee has brought together surgical experts from multiple subspecialty disciplines to identify best practices and to provide consensus on how best to access and manage specific tissues for immuno-oncology treatments and clinical investigation. In addition, the committee recommends early integration of surgeons and other interventional physicians with expertise in biospecimen collection, especially in clinical trials, to optimize the quality of tissue and the validity of correlative clinical studies in cancer immunotherapy.
Collapse
Affiliation(s)
- Brian Gastman
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Piyush K Agarwal
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Adam Berger
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Genevieve Boland
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen Broderick
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Surgery, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Lisa H Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - David Byrd
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert L Ferris
- Departments of Otolaryngology, Immunology, and Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | | | - Matthew M Grabowski
- Department of Neurosurgery, Duke Center for Brain and Spine Metastasis, Durham, North Carolina, USA
| | - Fumito Ito
- Center for Immunotherapy, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Michael Lim
- Departments of Neurosurgery, Oncology, Radiation Oncology, and Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haider Mahdi
- OBGYN and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Carol D Morris
- Division of Orthopaedic Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pranav Murthy
- Department of Surgery, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rogerio I Neves
- Department of Surgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Adekunle Odunsi
- Departments of Immunology and Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sara I Pai
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sangeetha Prabhakaran
- Division of Surgical Oncology, Department of Surgery, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Ragheed Saoud
- Department of Surgery, University of Chicago Hospitals, Chicago, Illinois, United States
| | | | - Joseph Skitzki
- Departments of Surgical Oncology and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, Breast and Melanoma Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - John B Sunwoo
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Simon Turcotte
- Surgery Department, Centre Hospitalier de l'Universite de Montreal, Montreal, Quebec, Canada
| | - Cecilia Cs Yeung
- Department of Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Howard L Kaufman
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Immuneering Corp, Cambridge, Massachusetts, USA
| |
Collapse
|