1
|
Chou CY, Agin-Liebes J, Kuo SH. Emerging therapies and recent advances for Tourette syndrome. Heliyon 2023; 9:e12874. [PMID: 36691528 PMCID: PMC9860289 DOI: 10.1016/j.heliyon.2023.e12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tourette syndrome is the most prevalent hyperkinetic movement disorder in children and can be highly disabling. While the pathomechanism of Tourette syndrome remains largely obscure, recent studies have greatly improved our knowledge about this disease, providing a new perspective in our understanding of this condition. Advances in electrophysiology and neuroimaging have elucidated that there is a reduction in frontal cortical volume and reduction of long rage connectivity to the frontal lobe from other parts of the brain. Several genes have also been identified to be associated with Tourette syndrome. Treatment of Tourette syndrome requires a multidisciplinary approach which includes behavioral and pharmacological therapy. In severe cases surgical therapy with deep brain stimulation may be warranted, though the optimal location for stimulation is still being investigated. Studies on alternative therapies including traditional Chinese medicine and neuromodulation, such as transcranial magnetic stimulation have shown promising results, but still are being used in an experimental basis. Several new therapies have also recently been tested in clinical trials. This review provides an overview of the latest findings with regards to genetics and neuroimaging for Tourette syndrome as well as an update on advanced therapeutics.
Collapse
Affiliation(s)
- Chih-Yi Chou
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Julian Agin-Liebes
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Corresponding author. 650 West 168th Street, Room 305, New York, NY, 10032, USA. Fax: +(212) 305 1304.
| |
Collapse
|
2
|
Wehmeyer L, Schüller T, Kiess J, Heiden P, Visser-Vandewalle V, Baldermann JC, Andrade P. Target-Specific Effects of Deep Brain Stimulation for Tourette Syndrome: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:769275. [PMID: 34744993 PMCID: PMC8563609 DOI: 10.3389/fneur.2021.769275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Extended research has pointed to the efficacy of deep brain stimulation (DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four most commonly used DBS targets for TS include the centromedian nucleus-nucleus ventrooralis internus (CM-Voi) and the centromedian nucleus-parafascicular (CM-Pf) complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial portion of the globus pallidus internus (amGPi). Differences and commonalities between those targets need to be compared systematically. Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms and target-specific differences. Methods: A PubMed literature search was conducted according to the PRISMA guidelines. Eligible literature was used to conduct a systematic review and meta-analysis. Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients. DBS also resulted in significant reductions of secondary outcome measures, including the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf, also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis including six randomized controlled and double-blinded trials demonstrated clinical efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation in two separate meta-analyses. Conclusion: We conclude that DBS is a clinically effective treatment option for patients with treatment-refractory TS, with all targets showing comparable improvement rates. Future research might focus on personalized and symptom-specific target selection.
Collapse
Affiliation(s)
- Laura Wehmeyer
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany,*Correspondence: Laura Wehmeyer
| | - Thomas Schüller
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jana Kiess
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Tsai LH, Lin JW, Lue KH. Study protocol to investigate the correlation between Tourette syndrome and allergy in children and adolescents. J Int Med Res 2021; 48:300060520973921. [PMID: 33275474 PMCID: PMC7720316 DOI: 10.1177/0300060520973921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Noting that the usefulness of cases diagnosed in administrative registers is dependent on diagnostic validity, in this study, we aim to elucidate the correlation between Tourette syndrome and allergy in children and adolescents, specifically with regard to incidence of asthma, allergic rhinitis, allergic conjunctivitis, and atopic dermatitis. Methods Based on a set of inclusion and exclusion criteria, we intend to enroll 200 children and adolescents aged 18 years and younger, accompanied by their parents, for a duration of 2 years. We will administer an anonymous questionnaire in a case–control study. We will use the chi-squared test to evaluate differences between cases and controls. Results According to the European Review for Medical and Pharmacological Sciences, the proportion of allergic diseases expected in patients with Tourette syndrome is 53.1% (17/32) and 22.9% (8/35) in the controls. Setting the type 1 error to 0.05 and the power to 0.8, we will ensure a 1:2 case-to-control ratio. Conclusions This study protocol describes our analysis of anonymous questionnaire responses. Comorbidity rates, environmental factors, and genetic factors for various allergens, allergies, and other neuropsychiatric disorders will be studied.
Collapse
Affiliation(s)
- Lee-Hou Tsai
- Department of Psychiatry, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Jeng-Wen Lin
- Department of Civil Engineering, Feng Chia University; Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
| | - Ko-Huang Lue
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
5
|
Mahajan UV, Purger DA, Mantovani A, Williams NR, Espil FM, Han SS, Stein SC, Halpern CH. Deep Brain Stimulation Results in Greater Symptomatic Improvement in Tourette Syndrome than Conservative Measures: A Meta-Analysis. Stereotact Funct Neurosurg 2020; 98:270-277. [PMID: 32434201 DOI: 10.1159/000507059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/06/2020] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) has emerged as a safe and effective therapy for refractory Tourette syndrome (TS). Recent studies have identified several neural targets as effective in reducing TS symptoms with DBS, but, to our knowledge, none has compared the effectiveness of DBS with conservative therapy. METHODS A literature review was performed to identify studies investigating adult patient outcomes reported as Yale Global Tic Severity Scale (YGTSS) scores after DBS surgery, pharmacotherapy, and psychotherapy. Data were pooled using a random-effects model of inverse variance-weighted meta-analysis (n = 168 for DBS, n = 131 for medications, and n = 154 for behavioral therapy). RESULTS DBS resulted in a significantly greater reduction in YGTSS total score (49.9 ± 17.5%) than pharmacotherapy (22.5 ± 15.2%, p = 0.001) or psychotherapy (20.0 ± 11.3%, p < 0.001), with a complication (adverse effect) rate of 0.15/case, 1.13/case, and 0.60/case, respectively. CONCLUSION Our data suggest that adult patients with refractory TS undergoing DBS experience greater symptomatic improvement with surprisingly low morbidity than can be obtained with pharmacotherapy or psychotherapy.
Collapse
Affiliation(s)
- Uma V Mahajan
- Case Western Reserve University, Cleveland, Ohio, USA
| | - David A Purger
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alessandra Mantovani
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Flint M Espil
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Summer S Han
- Neurosurgery and Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California, USA
| | - Sherman C Stein
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA,
| |
Collapse
|
6
|
Deeb W, Malaty I. Deep Brain Stimulation for Tourette Syndrome: Potential Role in the Pediatric Population. J Child Neurol 2020; 35:155-165. [PMID: 31526168 DOI: 10.1177/0883073819872620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tourette syndrome (TS) is a complex neuropsychiatric disorder. Despite an expected natural history of improvement with age, many individuals continue to have severe tics and remain refractory to the current best pharmacologic and nonpharmacologic treatments. Deep brain stimulation (DBS) has emerged as a potential treatment option. This article reviews the published reports on the use of deep brain stimulation in Tourette syndrome revealing that 2 anatomical targets have been most commonly used: the centromedian thalamus and the globus pallidus internus. The evidence supports a significant clinical improvement of tics with deep brain stimulation, though the data are limited by the small number of patients and variable methodology employed. To bridge these limitations, the international Tourette syndrome deep brain stimulation database and registry have been created, fostering collaboration among multiple centers from 10 countries. By standardizing data collection, the database and registry are providing valuable insights into deep brain stimulation for Tourette syndrome. In conclusion, deep brain stimulation offers significant promise for the management of tics.
Collapse
Affiliation(s)
- Wissam Deeb
- University of Florida, Fixel Institute for Neurologic Disease, Gainesville, FL, USA
| | - Irene Malaty
- University of Florida, Fixel Institute for Neurologic Disease, Gainesville, FL, USA
| |
Collapse
|
7
|
Pandey S, Dash D. Progress in Pharmacological and Surgical Management of Tourette Syndrome and Other Chronic Tic Disorders. Neurologist 2019; 24:93-108. [DOI: 10.1097/nrl.0000000000000218] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Rossi M, Cerquetti D, Cammarota A, Merello M. Tourette syndrome: Clinical benefit with unilateral stimulation after bilateral pallidal implant. Mov Disord 2019; 34:580-582. [PMID: 30801769 DOI: 10.1002/mds.27636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Malco Rossi
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Daniel Cerquetti
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Angel Cammarota
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Marcelo Merello
- Movement Disorders, Neurology Department, Fleni, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| |
Collapse
|
9
|
Casagrande SCB, Cury RG, Alho EJL, Fonoff ET. Deep brain stimulation in Tourette's syndrome: evidence to date. Neuropsychiatr Dis Treat 2019; 15:1061-1075. [PMID: 31114210 PMCID: PMC6497003 DOI: 10.2147/ndt.s139368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder that comprises vocal and motor tics associated with a high frequency of psychiatric comorbidities, which has an important impact on quality of life. The onset is mainly in childhood and the symptoms can either fade away or require pharmacological therapies associated with cognitive-behavior therapies. In rare cases, patients experience severe and disabling symptoms refractory to conventional treatments. In these cases, deep brain stimulation (DBS) can be considered as an interesting and effective option for symptomatic control. DBS has been studied in numerous trials as a therapy for movement disorders, and currently positive data supports that DBS is partially effective in reducing the motor and non-motor symptoms of TS. The average response, mostly from case series and prospective cohorts and only a few controlled studies, is around 40% improvement on tic severity scales. The ventromedial thalamus has been the preferred target, but more recently the globus pallidus internus has also gained some notoriety. The mechanism by which DBS is effective on tics and other symptoms in TS is not yet understood. As refractory TS is not common, even reference centers have difficulties in performing large controlled trials. However, studies that reproduce the current results in larger and multicenter randomized controlled trials to improve our knowledge so as to support the best target and stimulation settings are still lacking. This article will discuss the selection of the candidates, DBS targets and mechanisms on TS, and clinical evidence to date reviewing current literature about the use of DBS in the treatment of TS.
Collapse
Affiliation(s)
- Sara C B Casagrande
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Rubens G Cury
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Eduardo J L Alho
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| | - Erich Talamoni Fonoff
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
10
|
Ethics of Deep Brain Stimulation in Adolescent Patients with Refractory Tourette Syndrome: a Systematic Review and Two Case Discussions. NEUROETHICS-NETH 2018; 11:143-155. [PMID: 29937946 PMCID: PMC5978799 DOI: 10.1007/s12152-018-9359-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Introduction Tourette Syndrome (TS) is a childhood onset disorder characterized by vocal and motor tics and often remits spontaneously during adolescence. For treatment refractory patients, Deep Brain Stimulation (DBS) may be considered. Methods and Results We discuss ethical problems encountered in two adolescent TS patients treated with DBS and systematically review the literature on the topic. Following surgery one patient experienced side effects without sufficient therapeutic effects and the stimulator was turned off. After a second series of behavioural treatment, he experienced a tic reduction of more than 50%. The second patient went through a period of behavioural disturbances that interfered with optimal programming, but eventually experienced a 70% tic reduction. Sixteen DBS surgeries in adolescent TS patients have been reported, none of which pays attention to ethical aspects. Discussion Specific ethical issues arise in adolescent TS patients undergoing DBS relating both to clinical practice as well as to research. Attention should be paid to selecting patients fairly, thorough examination and weighing of risks and benefits, protecting the health of children and adolescents receiving DBS, special issues concerning patient's autonomy, and the normative impact of quality of life. In research, registration of all TS cases in a central database covering a range of standardized information will facilitate further development of DBS for this indication. Conclusion Clinical practice should be accompanied by ongoing ethical reflection, preferably covering not only theoretical thought but providing also insights in the views and perspectives of those concerned, that is patients, family members and professionals.
Collapse
|
11
|
Wang D, Liu X, Zhou B, Kuang W, Guo T. Advanced research on deep brain stimulation in treating mental disorders. Exp Ther Med 2017; 15:3-12. [PMID: 29250146 DOI: 10.3892/etm.2017.5366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
Deep brain stimulation is a method that involves using an electric stimulus on a specific target in the brain with stereotaxis. It is a minimally invasive, safe, adjustable and reversible nerve involvement technology. At present, this technique is widely applied to treat movement disorders and has produced promising effects on mental symptoms, including combined anxiety and depression. Deep brain stimulation has therefore been employed as a novel treatment for depression, obsessive-compulsive disorder, habituation, Tourette's syndrome, presenile dementia, anorexia nervosa and other refractory mental illnesses. Many encouraging results have been reported. The aim of the present review was to briefly describe the mechanisms, target selection, side effects, ethical arguments and risks associated with deep brain stimulation. Although deep brain stimulation is a developing and promising treatment, a large amount of research is still required to determine its curative effect, and the selection of patients and targets must be subjected to strict ethical standards.
Collapse
Affiliation(s)
- Dongxin Wang
- Mental Health Institute of Hunan Province, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Xuejun Liu
- Mental Health Institute of Hunan Province, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bin Zhou
- Surgery Department of Mental Disease, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Weiping Kuang
- Surgery Department of Mental Disease, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Tiansheng Guo
- Mental Health Institute of Hunan Province, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
12
|
Neumaier F, Paterno M, Alpdogan S, Tevoufouet EE, Schneider T, Hescheler J, Albanna W. Surgical Approaches in Psychiatry: A Survey of the World Literature on Psychosurgery. World Neurosurg 2017; 97:603-634.e8. [DOI: 10.1016/j.wneu.2016.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
|
13
|
Akbarian-Tefaghi L, Zrinzo L, Foltynie T. The Use of Deep Brain Stimulation in Tourette Syndrome. Brain Sci 2016; 6:brainsci6030035. [PMID: 27548235 PMCID: PMC5039464 DOI: 10.3390/brainsci6030035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials.
Collapse
Affiliation(s)
- Ladan Akbarian-Tefaghi
- Institute of Neurology, University College London (UCL), Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
14
|
Baldermann JC, Schüller T, Huys D, Becker I, Timmermann L, Jessen F, Visser-Vandewalle V, Kuhn J. Deep Brain Stimulation for Tourette-Syndrome: A Systematic Review and Meta-Analysis. Brain Stimul 2015; 9:296-304. [PMID: 26827109 DOI: 10.1016/j.brs.2015.11.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A significant proportion of patients with Tourette syndrome (TS) continue to experience symptoms across adulthood that in severe cases fail to respond to standard therapies. For these cases, deep brain stimulation (DBS) is emerging as a promising treatment option. OBJECTIVE We conducted a systematic literature review to evaluate the efficacy of DBS for GTS. METHODS Individual data of case reports and series were pooled; the Yale Global Tic Severity Scale (YGTSS) was chosen as primary outcome parameter. RESULTS In total, 57 studies were eligible, including 156 cases. Overall, DBS resulted in a significant improvement of 52.68% (IQR = 40.74, p < 0.001) in the YGTSS. Analysis of controlled studies significantly favored stimulation versus off stimulation with a standardized mean difference of 0.96 (95% CI: 0.36-1.56). Disentangling different target points revealed significant YGTSS reductions after stimulation of the thalamus, the posteroventrolateral part and the anteromedial part of the globus pallidus internus, the anterior limb of the internal capsule and nucleus accumbens with no significant difference between these targets. A significant negative correlation of preoperative tic scores with the outcome of thalamic stimulation was found. CONCLUSIONS Despite small patient numbers, we conclude that DBS for GTS is a valid option for medically intractable patients. Different brain targets resulted in comparable improvement rates, indicating a modulation of a common network. Future studies might focus on a better characterization of the clinical effects of distinct regions, rather than searching for a unique target.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Ingrid Becker
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| |
Collapse
|
15
|
Almeida L, Martinez-Ramirez D, Rossi PJ, Peng Z, Gunduz A, Okun MS. Chasing tics in the human brain: development of open, scheduled and closed loop responsive approaches to deep brain stimulation for tourette syndrome. J Clin Neurol 2015; 11:122-31. [PMID: 25851890 PMCID: PMC4387477 DOI: 10.3988/jcn.2015.11.2.122] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/30/2022] Open
Abstract
Tourette syndrome is a childhood-onset disorder characterized by a combination of motor and vocal tics, often associated with psychiatric comorbidities including attention deficit and hyperactivity disorder and obsessive-compulsive disorder. Despite an onset early in life, half of patients may present symptoms in adulthood, with variable degrees of severity. In select cases, the syndrome may lead to significant physical and social impairment, and a worrisome risk for self injury. Evolving research has provided evidence supporting the idea that the pathophysiology of Tourette syndrome is directly related to a disrupted circuit involving the cortex and subcortical structures, including the basal ganglia, nucleus accumbens, and the amygdala. There has also been a notion that a dysfunctional group of neurons in the putamen contributes to an abnormal facilitation of competing motor responses in basal ganglia structures ultimately underpinning the generation of tics. Surgical therapies for Tourette syndrome have been reserved for a small group of patients not responding to behavioral and pharmacological therapies, and these therapies have been directed at modulating the underlying pathophysiology. Lesion therapy as well as deep brain stimulation has been observed to suppress tics in at least some of these cases. In this article, we will review the clinical aspects of Tourette syndrome, as well as the evolution of surgical approaches and we will discuss the evidence and clinical responses to deep brain stimulation in various brain targets. We will also discuss ongoing research and future directions as well as approaches for open, scheduled and closed loop feedback-driven electrical stimulation for the treatment of Tourette syndrome.
Collapse
Affiliation(s)
- Leonardo Almeida
- Department of Neurology, Division of Movement Disorders, University of Florida at Gainesville, Gainesville, FL, USA.
| | - Daniel Martinez-Ramirez
- Department of Neurology, Division of Movement Disorders, University of Florida at Gainesville, Gainesville, FL, USA
| | - Peter J Rossi
- Department of Biomedical Engineering, University of Florida at Gainesville, Gainesville, FL, USA
| | - Zhongxing Peng
- Department of Neurology, Division of Movement Disorders, University of Florida at Gainesville, Gainesville, FL, USA
| | - Aysegul Gunduz
- Department of Biomedical Engineering, University of Florida at Gainesville, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Division of Movement Disorders, University of Florida at Gainesville, Gainesville, FL, USA
| |
Collapse
|
16
|
Smith KM, Spindler MA. Uncommon applications of deep brain stimulation in hyperkinetic movement disorders. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:278. [PMID: 25713746 PMCID: PMC4314611 DOI: 10.7916/d84x56hp] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022]
Abstract
Background In addition to the established indications of tremor and dystonia, deep brain stimulation (DBS) has been utilized less commonly for several hyperkinetic movement disorders, including medication-refractory myoclonus, ballism, chorea, and Gilles de la Tourette (GTS) and tardive syndromes. Given the lack of adequate controlled trials, it is difficult to translate published reports into clinical use. We summarize the literature, draw conclusions regarding efficacy when possible, and highlight concerns and areas for future study. Methods A Pubmed search was performed for English-language articles between January 1980 and June 2014. Studies were selected if they focused primarily on DBS to treat the conditions of focus. Results We identified 49 cases of DBS for myoclonus-dystonia, 21 for Huntington's disease, 15 for choreacanthocytosis, 129 for GTS, and 73 for tardive syndromes. Bilateral globus pallidus interna (GPi) DBS was the most frequently utilized procedure for all conditions except GTS, in which medial thalamic DBS was more common. While the majority of cases demonstrate some improvement, there are also reports of no improvement or even worsening of symptoms in each condition. The few studies including functional or quality of life outcomes suggest benefit. A limited number of studies included blinded on/off testing. There have been two double-blind controlled trials performed in GTS and a single prospective double-blind, uncontrolled trial in tardive syndromes. Patient characteristics, surgical target, stimulation parameters, and duration of follow-up varied among studies. Discussion Despite these extensive limitations, the literature overall supports the efficacy of DBS in these conditions, in particular GTS and tardive syndromes. For other conditions, the preliminary evidence from small studies is promising and encourages further study.
Collapse
Affiliation(s)
- Kara M Smith
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith A Spindler
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Schrock LE, Mink JW, Woods DW, Porta M, Servello D, Visser-Vandewalle V, Silburn PA, Foltynie T, Walker HC, Shahed-Jimenez J, Savica R, Klassen BT, Machado AG, Foote KD, Zhang JG, Hu W, Ackermans L, Temel Y, Mari Z, Changizi BK, Lozano A, Auyeung M, Kaido T, Agid Y, Welter ML, Khandhar SM, Mogilner AY, Pourfar MH, Walter BL, Juncos JL, Gross RE, Kuhn J, Leckman JF, Neimat JA, Okun MS. Tourette syndrome deep brain stimulation: a review and updated recommendations. Mov Disord 2014; 30:448-71. [PMID: 25476818 DOI: 10.1002/mds.26094] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022] Open
Abstract
Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients.
Collapse
Affiliation(s)
- Lauren E Schrock
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Motlagh MG, Smith ME, Landeros-Weisenberger A, Kobets AJ, King RA, Miravite J, de Lotbinière ACJ, Alterman RL, Mogilner AY, Pourfar MH, Okun MS, Leckman JF. Lessons Learned from Open-label Deep Brain Stimulation for Tourette Syndrome: Eight Cases over 7 Years. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2013; 3. [PMID: 24255802 PMCID: PMC3822402 DOI: 10.7916/d8m32tgm] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/23/2013] [Indexed: 12/26/2022]
Abstract
Background Deep brain stimulation (DBS) remains an experimental but promising treatment for patients with severe refractory Gilles de la Tourette syndrome (TS). Controversial issues include the selection of patients (age and clinical presentation), the choice of brain targets to obtain optimal patient-specific outcomes, and the risk of surgery- and stimulation-related serious adverse events. Methods This report describes our open-label experience with eight patients with severe refractory malignant TS treated with DBS. The electrodes were placed in the midline thalamic nuclei or globus pallidus, pars internus, or both. Tics were clinically assessed in all patients pre- and postoperatively using the Modified Rush Video Protocol and the Yale Global Tic Severity Scale (YGTSS). Results Although three patients had marked postoperative improvement in their tics (>50% improvement on the YGTSS), the majority did not reach this level of clinical improvement. Two patients had to have their DBS leads removed (one because of postoperative infection and another because of lack of benefit). Discussion Our clinical experience supports the urgent need for more data and refinements in interventions and outcome measurements for severe, malignant, and medication-refractory TS. Because TS is not an etiologically homogenous clinical entity, the inclusion criteria for DBS patients and the choice of brain targets will require more refinement.
Collapse
Affiliation(s)
- Maria G Motlagh
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Gilles de la Tourette syndrome is a movement disorder characterized by repetitive stereotyped motor and phonic movements with varying degrees of psychiatric comorbidity. Deep brain stimulation (DBS) has emerged as a novel therapeutic intervention for patients with refractory Tourette syndrome. Since 1999, more than 100 patients have undergone DBS at various targets within the corticostriatothalamocortical network thought to be implicated in the underlying pathophysiology of Tourette syndrome. Future multicenter clinical trials and the use of a centralized online database to compare the results are necessary to determine the efficacy of DBS for Tourette syndrome.
Collapse
Affiliation(s)
- Won Kim
- Department of Neurosurgery, University of California, Los Angeles 10945, Le Conte Avenue, Suite 2120, Los Angeles, CA 90095, USA.
| | | |
Collapse
|