1
|
Sampaio P, Waitzberg DL, Machado NM, de Miranda Torrinhas RSM, Fonseca DC, Ferreira BAM, Marques M, Barcelos S, Ishida RK, Guarda IFMS, de Moura EGH, Sakai P, Santo MA, Heymsfield SB, Corrêa-Giannella ML, Passadore MD, Sala P. Gastrointestinal genetic reprogramming of vitamin A metabolic pathways in response of Roux-en-Y gastric bypass. INT J VITAM NUTR RES 2024; 94:27-36. [PMID: 36164727 DOI: 10.1024/0300-9831/a000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) is one of the most performed bariatric surgical techniques. However, RYGB commonly results, as side effects, in nutritional deficiencies. This study aimed to examine changes in the expression of vitamin A pathway encoding genes in the gastrointestinal tract (GI) and to evaluate the potential mechanisms associated with hypovitaminosis A after RYGB. Intestinal biopsies were obtained through double-balloon endoscopy in 20 women with obesity (age 46.9±6.2 years; body mass index [BMI] 46.5±5.3 kg/m2 [mean±SD]) before and three months after RYGB (BMI, 38.2±4.2 kg/m2). Intestinal mucosal gene microarray analyses were performed in samples using a Human GeneChip 1.0 ST array (Affymetrix). Vitamin A intake was assessed from 7-day food records and serum retinol levels were evaluated by electrochemiluminescence immunoassay. Our results showed the following genes with significant downregulation (p≤0.05): LIPF (-0.60), NPC1L1 (-0.71), BCO1 (-0.45), and RBP4 (-0.13) in the duodenum; CD36 (-0.33), and ISX (-0.43) in the jejunum and BCO1 (-0.29) in the ileum. No significant changes in vitamin A intake were found (784±694 retinol equivalents [RE] pre-operative vs. 809±753 RE post-operative [mean±SD]). Although patients were routinely supplemented with 3500 international units IU/day (equivalent to 1050 μg RE/day) of oral retinol palmitate, serum concentrations were lower in the post-operative when compared to pre-operative period (0.35±0.14 μg/L vs. 0.52±0.33 μg/L, respectively - P=0.07), both within the normal range. After RYGB, the simultaneous change in expression of GI genes, may impair carotenoid metabolism in the enterocytes, formation of nascent chylomicrons and transport of retinol, resulting in lower availability of vitamin A.
Collapse
Affiliation(s)
- Priscilla Sampaio
- Centro Universitário São Camilo, São Paulo, Brazil
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Dan Linetzky Waitzberg
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Natasha Mendonça Machado
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | | | - Danielle C Fonseca
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Beatriz A M Ferreira
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Mariane Marques
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Samira Barcelos
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | | | | | | | - Paulo Sakai
- Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil
| | | | | | - Maria Lúcia Corrêa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, University of São Paulo, Brazil
| | | | - Priscila Sala
- Centro Universitário São Camilo, São Paulo, Brazil
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| |
Collapse
|
2
|
Mancuzo DC, Machado NM, Teppedino J, Santander L, Calder PC, Waitzberg DL, Torrinhas RS. Effect of Roux-en-Y Gastric Bypass on circulating oxylipin profile in women with obesity and type 2 diabetes. Prostaglandins Leukot Essent Fatty Acids 2024; 200:102605. [PMID: 38141589 DOI: 10.1016/j.plefa.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND & AIMS Chronic inflammation associated with obesity directly contributes to metabolic comorbidities, including type 2 diabetes (T2D). Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for obesity-associated T2D. We investigated the effect of RYGB on the circulating profile of oxylipins derived from arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids as a potential mechanism underlying the metabolic benefits of the surgery. METHODS Plasma samples were collected from 28 women with obesity and T2D before and 3 months after RYGB. Circulating levels of oxylipins and their precursors, along with biochemical markers of glucose homeostasis, were evaluated using untargeted mass spectrometry and routine biochemical techniques, respectively. RESULTS No significant changes were observed in the levels of oxylipins derived from EPA and DHA. However, there was an increase in ARA and its derived oxylipins, TXB2 (an inert derivative of TXA2) and PGD2 (Wilcoxon, p ≤ 0.05). Positive correlations were observed between hemoglobin A1c levels and TXB2 as well as ARA levels (Spearman, p ≤ 0.05). CONCLUSIONS Our data suggest that the anti-inflammatory oxylipins derived from EPA and DHA may not be involved in the metabolic benefits associated with RYGB. However, the findings indicate that the pro-inflammatory oxylipin TXA2 and its precursor ARA may negatively impact glucose homeostasis both before and after RYGB.
Collapse
Affiliation(s)
- Daiane Cavalari Mancuzo
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil.
| | - Natasha Mendonça Machado
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| | - Juliana Teppedino
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil; Nutrologia Clínica, Hospital Sírio Libanês de Brasília, Brasília, Distrito Federal, Brazil
| | - Lucas Santander
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Dan Linetzky Waitzberg
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| | - Raquel Susana Torrinhas
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
3
|
de Azevedo Muner Ferreira B, Fonseca DC, Sala P, Alves JTM, Prudêncio APA, Machado NM, Marques M, Barcelos S, Ishida RK, Guarda IFMS, De Moura EGH, Sakai P, Santo MA, de Miranda Torrinhas RSM, Waitzberg DL. Roux-en-Y gastric bypass affects the expression of genes related to the intestinal folate metabolism pathway in obese women. Nutrition 2023; 112:112054. [PMID: 37224573 DOI: 10.1016/j.nut.2023.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Roux-en-Y gastric bypass (RYGB) promotes sustained weight loss, and the resulting new gastrointestinal anatomy can contribute to nutritional depletions. Folate deficiency is one of the most frequently observed nutritional deficiencies after RYGB. The aim of this study was to assess whether RYGB affects the expression of genes related to the intestinal folate metabolism pathway as an additional molecular mechanism contributing to its postoperative deficiency. METHODS Biopsies from the duodenum, jejunum, and ileum of 20 obese women were collected before and 3 mo after RYGB. The expression of genes involved in intestinal folate metabolism was assessed by microarray and reverse transcriptase polymerase chain reaction (RT-qPCR). Folate intake (7-d food record) and plasma levels (electrochemiluminescence) also were measured. RESULTS Compared with the preoperative phase, transcriptomic alterations were observed in all intestinal segments studied after RYBG, mainly marked by decreased expression of genes encoding folate transporters/receptors and increased expression of genes involved in folate biosynthesis (P < 0.05). Reduced folate intake and plasma folate levels were also observed simultaneously (P < 0.05). Plasma folate concentrations correlated inversely with intestinal FOLR2 and SHMT2 genes (P < 0.001). CONCLUSION The present findings suggested that impaired expression of genes related to intestinal folate metabolism may contribute to the early systemic deficiency after RYGB and highlight a potential transcriptomic reprogramming of the intestine in response to RYGB to compensate for folate depletion induced by this surgical technique.
Collapse
Affiliation(s)
- Beatriz de Azevedo Muner Ferreira
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Danielle Cristina Fonseca
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Priscila Sala
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Departmento de Nutrição, Centro Universitário São Camilo, Sao Paulo, Brazil
| | - Juliana Tepedino Martins Alves
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Aguiar Prudêncio
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Natasha Mendonça Machado
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane Marques
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Samira Barcelos
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Paulo Sakai
- Hospital das Clínicas, HCFMUSP, São Paulo, Brazil
| | | | - Raquel Susana Matos de Miranda Torrinhas
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Dan Linetzky Waitzberg
- Laboratory of Nutrition and Metabolic Surgery of the Digestive Tract, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Prudêncio APA, Fonseca DC, Machado NM, Alves JTM, Sala P, Fernandes GR, Torrinhas RS, Waitzberg DL. Red Meat Intake, Indole-3-Acetate, and Dorea longicatena Together Affect Insulin Resistance after Gastric Bypass. Nutrients 2023; 15:nu15051185. [PMID: 36904185 PMCID: PMC10005351 DOI: 10.3390/nu15051185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Roux-en-Y Gastric bypass (RYGB) promotes improvement in type 2 diabetes (T2D) shortly after surgery, with metabolic mechanisms yet to be elucidated. This study aimed to investigate the relationship between food intake, tryptophan metabolism, and gut microbiota on the glycemic control of obese T2D women after RYGB surgery. Twenty T2D women who underwent RYGB were evaluated before and three months after surgery. Food intake data were obtained by a seven-day food record and a food frequency questionnaire. Tryptophan metabolites were determined by untargeted metabolomic analysis, and the gut microbiota was determined by 16S rRNA sequencing. The glycemic outcomes were fasting blood glucose, HbA1C, HOMA-IR, and HOMA-beta. Linear regression models were applied to assess the associations between the changes in food intake, tryptophan metabolism, and gut microbiota on glycemic control after RYGB. All variables changed after RYGB (p < 0.05), except for tryptophan intake. Jointly, the variation in red meat intake, plasma indole-3-acetate, and Dorea longicatena was associated with postoperative HOMA-IR {R2 0.80, R2 adj 0.74; p < 0.01}. Red meat intake decreased three months after bariatric surgery while indole-3-acetate and Dorea longicatena increased in the same period. These combined variables were associated with better insulin resistance in T2D women after RYGB.
Collapse
Affiliation(s)
- Ana Paula Aguiar Prudêncio
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Danielle Cristina Fonseca
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Natasha Mendonça Machado
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | | | - Priscila Sala
- Faculty of Nutrition, Universidade São Camilo, São Paulo 04263-200, SP, Brazil
| | | | - Raquel Susana Torrinhas
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Correspondence:
| | - Dan Linetzky Waitzberg
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System, LIM 35, Department of Gastroenterology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| |
Collapse
|
5
|
Genetic reprogramming of remnant duodenum may contribute to type 2 diabetes improvement after Roux en-Y gastric bypass. Nutrition 2022; 99-100:111631. [DOI: 10.1016/j.nut.2022.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
|
6
|
Lo T, Lee Y, Tseng CY, Hu Y, Connelly MA, Mantzoros CS, Karp JM, Tavakkoli A. Daily transient coating of the intestine leads to weight loss and improved glucose tolerance. Metabolism 2022; 126:154917. [PMID: 34687727 PMCID: PMC8666968 DOI: 10.1016/j.metabol.2021.154917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Roux-en-Y gastric bypass surgery (RYGB) has been shown to be the gold standard treatment for obesity associated type-2-diabetes (T2D), however many T2D patients do not qualify or are reluctant to proceed with surgery due to its potential risks and permanent changes to GI anatomy. We have previously described a novel oral formulation, LuCI, that provides a transient coating of the proximal bowel and mimics the effects of RYGB. Herein, we aim to investigate the outcome of chronic LuCI administration on weight and glucose homeostasis. METHODS Sprague-Dawley rats on a high fat diet achieving diet-induced obesity (DIO) received 5 weeks of daily LuCI or normal saline as control (n = 8/group). Daily weights and glucose tolerance were monitored throughout the experiment. At 5 weeks, systemic blood was sampled through a surgically placed jugular vein catheter, before and during an intestinal glucose bolus, to investigate changes in key hormones involved in glucose metabolism. To elucidate the effects of LuCI on nutrient absorption, fecal output and food intake were measured simultaneously with the analysis of homogenized stool samples performed using bomb calorimetry. RESULTS At 5 weeks, LuCI animals weighted 8.3% less and had lower fasting glucose levels than Controls (77.6 ± 3.8 mg/dl vs. 99.1 ± 2.7 mg/dl, P < 0.001). LuCI-treated animals had lower baseline insulin and HOMA-IR. Post-prandially, LuCI group had increased GLP-1 and GIP secretion following a glucose challenge. Serum lipid analysis revealed lowered LDL levels highlighting the potential to not only improve glucose control but also modify cardiovascular risk. We then investigated whether LuCI's effect on proximal bowel exclusion may play a role in energy balance. Bomb calorimetry analysis suggested that LuCI reduced calorie absorption with no difference in caloric consumption. CONCLUSION We demonstrated that LuCI recapitulates the physical and hormonal changes seen after RYGB and can ameliorate weight gain and improve insulin sensitivity in a DIO rat model. Since LuCI's effect is transient and without systemic absorption, LuCI has the potential to be a novel therapy for overweight or obese T2D patients.
Collapse
Affiliation(s)
- Tammy Lo
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Nanomedicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, Boston, MA, USA
| | - Chung-Yi Tseng
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Nanomedicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, Boston, MA, USA
| | - Yangshuo Hu
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Nanomedicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, Boston, MA, USA
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Nanomedicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, Boston, MA, USA.
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of General and GI Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Nutritional guidance, monitoring, and supplementation before and after bariatric surgery - Are we doing this correctly? NUTR HOSP 2021; 38:478-487. [PMID: 33784819 DOI: 10.20960/nh.03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background and aims: minimizing nutritional depletions after a Roux-en-Y gastric bypass (RYGB) may improve clinical results in the treatment of obesity. We evaluated nutritional aspects of obese women undergoing RYGB at a reference university hospital with a department specialized in bariatric surgery. Method: based on the Dietary Reference Intakes developed by the Food and Nutrition Council, Institute of Medicine, and the guidelines issued by the American Society for Metabolic and Bariatric Surgery, we assessed the quantitative and qualitative adequacy of nutritional intake, supplementation, and biochemical monitoring of 20 women both before and 3 and 12 months after a RYGB. Data on nutritional intake was obtained by applying different food surveys, quantitatively interpreted by the Virtual Nutri Plus® software and using reference nutritional databases. Results: nutritional intake deficits were already found before the RYGB (p ≤ 0.05). These worsened postoperatively (p ≤ 0.05), a period also marked by a qualitatively poor diet. The nutritional supplementation prescribed did not fully achieve the reference recommendations, and was poorly complied with by patients. Furthermore, nutritional monitoring was not carried out in all patients, recommended biochemical markers were not screened, and vitamin D depletions occurred. Conclusion: our data suggest that institutions specialized in bariatric patient care may not be adequately adhering to well known guidelines, or applying efficient strategies to improve compliance.
Collapse
|
8
|
Mendonça Machado N, Torrinhas RS, Sala P, Ishida RK, Guarda IFMS, Moura EGHD, Sakai P, Santo MA, Linetzky Waitzberg D. Type 2 Diabetes Metabolic Improvement After Roux-en-Y Gastric Bypass May Include a Compensatory Mechanism That Balances Fatty Acid β and ω Oxidation. JPEN J Parenter Enteral Nutr 2020; 44:1417-1427. [PMID: 32654184 DOI: 10.1002/jpen.1960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND More than half of patients who undergo Roux-en-Y gastric bypass (RYGB) can experience type 2 diabetes (T2D) remission, but the systemic and gastrointestinal (GI) metabolic mechanisms of this improvement are still elusive. METHODS Paired samples collected before and 3 months after RYGB from 28 women with obesity and T2D were analyzed by metabolomics with gas chromatography coupled to mass spectrometry. Samples include plasma (n = 56) and biopsies of gastric pouch (n = 18), gastric remnant (n = 10), duodenum (n = 16), jejunum (n = 18), and ileum (n = 18), collected by double-balloon enteroscopy. RESULTS After RYGB, improvements in body composition and weight-related and glucose homeostasis parameters were observed. Plasma-enriched metabolic pathways included arginine and proline metabolism, urea and tricarboxylic acid (TCA) cycles, gluconeogenesis, malate-aspartate shuttle, and carnitine synthesis. In GI tissue, we observed alterations of ammonia recycling and carnitine synthesis in gastric pouch, phenylacetate metabolism and trehalose degradation in duodenum and jejunum, ketone bodies in jejunum, and lactose degradation in ileum. Intermediates molecules of the TCA cycle were enriched, particularly in plasma, jejunum, and ileum. Fluctuations of dicarboxylic acids (DCAs) were relevant in several metabolomic tests, and metabolite alterations included aminomalonate and fumaric, malic, oxalic, and succinic acids. The product/substrate relationship between these molecules and its pathways may reflect a compensatory mechanism to balance metabolism. CONCLUSIONS RYGB was associated with systemic and GI metabolic reprogramming. DCA alterations link ω and β fatty acid oxidation to homeostatic mechanisms, including TCA cycle improvement.
Collapse
Affiliation(s)
- Natasha Mendonça Machado
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raquel Susana Torrinhas
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Priscila Sala
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robson Kiyoshi Ishida
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ismael Francisco Mota Siqueira Guarda
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo Guimarães Hourneaux de Moura
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Sakai
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marco Aurélio Santo
- Bariatric and Metabolic Surgery Unit, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dan Linetzky Waitzberg
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Cholecystectomy - a potential selection bias in studies assessing the metabolic effects of bariatric surgeries. Sci Rep 2020; 10:10683. [PMID: 32606360 PMCID: PMC7327072 DOI: 10.1038/s41598-020-66688-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are key mediators of the glycemic control after bariatric surgeries. Cholecystectomy modifies the kinetics of BAs, and whether this procedure influences the BAs pool and its metabolic response to bariatric surgeries is not known. We used targeted and untargeted metabolomics to assess whether cholecystectomy influenced plasma and fecal BAs fluctuations and the systemic metabolomic profile after Roux-en-Y gastric bypass (RYGB). Women with obesity and type 2 diabetes were included. Sample collections and clinical evaluations were performed before and 3 months after RYGB. RYGB influenced 9 fecal and 3 plasma BAs in patients with cholecystectomy (p ≤ 0.05). Comparisons between patients with and without cholecystectomy revealed different concentrations of 4 fecal and 5 plasma BAs (p ≤ 0.05). Cholecystectomy impacted the global metabolomics responses to RYGB, and patients who underwent the gallbladder removal also lacked some significant improvements in clinical markers, primarily the lipid profile. By affecting the BAs concentrations, cholecystectomy seems to alter the systemic metabolic response to RYGB. Therefore, cholecystectomy may act as a bias in assessments of the metabolic effects of bariatric surgeries and their relationships with clinical outcomes.
Collapse
|
10
|
Sala P, Torrinhas RSMDM, Fonseca DC, Machado NM, Singer J, Singer P, Ravacci GR, Belarmino G, Ferreira BAM, Marques M, Ishida RK, Guarda IFMS, de Moura EGH, Sakai P, Santo MA, Sunaga DY, Heymsfield SB, Bezerra DPDS, Corrêa-Giannella ML, Waitzberg DL. Intestinal expression of toll-like receptor gene changes early after gastric bypass surgery and association with type 2 diabetes remission. Nutrition 2020; 79-80:110885. [PMID: 32707229 DOI: 10.1016/j.nut.2020.110885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Abnormal activation of toll-like receptors (TLRs) is observed in obese rodents and is correlated with local dysbiosis and increased gut permeability. These purported changes trigger systemic inflammation associated with obesity-related comorbidities, including type 2 diabetes (T2D). Roux-en-Y gastric bypass (RYGB) surgery is an effective treatment for severe obesity and known to induce changes in the gut microbiota and decrease systemic inflammation in humans. This study examined the intestinal expression of TLR-encoding genes in obese women (n = 20) treated with RYGB surgery and the relationship of these genes with T2D remission (T2Dr METHODS: Intestinal biopsies were performed before and 3 months after RYGB surgery. Partial and complete T2Dr after 1 year was assessed using the American Diabetes Association criteria. Affymetrix Human GeneChip 1.0 ST array (microarray) and TaqMan assay (real-time quantitative polymerase chain reaction) were used to analyze intestinal gene expression, and associations with systemic markers of energy homeostasis were examined. RESULTS Patients experienced significant weight loss (P < 0.001) and altered gut TLR gene expression 3 months after surgery. The main effects were a reduction in jejunal TLR4 expression in patients with complete and partial T2Dr (P < 0.05). There was a postoperative decrease in jejunal TLR7 expression in patients with complete T2Dr that correlated inversely with high-density lipoprotein cholesterol and positively with triglyceride concentrations, but not with weight loss. CONCLUSIONS RYGB-induced weight loss-independent changes in the expression of intestinal TLR-encoding genes in obese women and complete T2Dr that was correlated with systemic markers of energy homeostasis. The modulation of intestinal TLRs may mediate inflammatory mechanisms linked to T2Dr after RYGB surgery.
Collapse
Affiliation(s)
- Priscila Sala
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Programa de Pós-graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil.
| | | | - Danielle C Fonseca
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Natasha Mendonça Machado
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joelle Singer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Endocrinology, Diabetes & Metabolism - Beilinson, Rabin Medical Center, Belinson Hospital, Petah Tikva, Israel
| | - Pierre Singer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; General Intensive Care Department & Institute for Nutrition Research, Rabin Medical Center, Belinson Hospital, Petah Tikva, Israel
| | - Graziela Rosa Ravacci
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Giliane Belarmino
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz A M Ferreira
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Mariane Marques
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Robson Kiyoshi Ishida
- Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | - Paulo Sakai
- Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Marco Aurélio Santo
- Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | - Daniele Pereira Dos Santos Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Programa de Pós-graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Dan Linetzky Waitzberg
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients 2020; 12:nu12020278. [PMID: 31973130 PMCID: PMC7071117 DOI: 10.3390/nu12020278] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota composition is influenced by environmental factors and has been shown to impact body metabolism. Objective: To assess the gut microbiota profile before and after Roux-en-Y gastric bypass (RYGB) and the correlation with food intake and postoperative type 2 diabetes remission (T2Dr). Design: Gut microbiota profile from obese diabetic women was evaluated before (n = 25) and 3 (n = 20) and 12 months (n = 14) after RYGB, using MiSeq Illumina-based V4 bacterial 16S rRNA gene profiling. Data on food intake (7-day record) and T2Dr (American Diabetes Association (ADA) criteria) were recorded. Results: Preoperatively, the abundance of five bacteria genera differed between patients with (57%) and without T2Dr (p < 0.050). Preoperative gut bacteria genus signature was able to predict the T2Dr status with 0.94 accuracy ROC curve (receiver operating characteristic curve). Postoperatively (vs. preoperative), the relative abundance of some gut bacteria genera changed, the gut microbial richness increased, and the Firmicutes to Bacteroidetes ratio (rFB) decreased (p < 0.05) regardless of T2Dr. Richness levels was correlated with dietary profile pre and postoperatively, mainly displaying positive and inverse correlations with fiber and lipid intakes, respectively (p < 0.05). Conclusions: Gut microbiota profile was influenced by RYGB and correlated with diet and T2Dr preoperatively, suggesting the possibility to assess its composition to predict postoperative T2Dr.
Collapse
|
12
|
Liu H, Zhang H, Wang X, Yu X, Hu C, Zhang X. Alterations of DNA methylation profile in proximal jejunum potentially contribute to the beneficial effects of gastric bypass in a diabetic rat model. Surg Obes Relat Dis 2019; 15:1291-1298. [DOI: 10.1016/j.soard.2019.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/08/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
13
|
Ravacci GR, Ishida R, Torrinhas RS, Sala P, Machado NM, Fonseca DC, André Baptista Canuto G, Pinto E, Nascimento V, Franco Maggi Tavares M, Sakai P, Faintuch J, Santo MA, Moura EGH, Neto RA, Logullo AF, Waitzberg DL. Potential premalignant status of gastric portion excluded after Roux en-Y gastric bypass in obese women: A pilot study. Sci Rep 2019; 9:5582. [PMID: 30944407 PMCID: PMC6447527 DOI: 10.1038/s41598-019-42082-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
We evaluated whether the excluded stomach (ES) after Roux-en-Y gastric bypass (RYGB) can represent a premalignant environment. Twenty obese women were prospectively submitted to double-balloon enteroscopy (DBE) with gastric juice and biopsy collection, before and 3 months after RYGB. We then evaluated morphological and molecular changes by combining endoscopic and histopathological analyses with an integrated untargeted metabolomics and transcriptomics multiplatform. Preoperatively, 16 women already presented with gastric histopathological alterations and an increased pH (≥4.0). These gastric abnormalities worsened after RYGB. A 90-fold increase in the concentration of bile acids was found in ES fluid, which also contained other metabolites commonly found in the intestinal environment, urine, and faeces. In addition, 135 genes were differentially expressed in ES tissue. Combined analysis of metabolic and gene expression data suggested that RYGB promoted activation of biological processes involved in local inflammation, bacteria overgrowth, and cell proliferation sustained by genes involved in carcinogenesis. Accumulated fluid in the ES appears to behave as a potential premalignant environment due to worsening inflammation and changing gene expression patterns that are favorable to the development of cancer. Considering that ES may remain for the rest of the patient’s life, long-term ES monitoring is therefore recommended for patients undergoing RYGB.
Collapse
Affiliation(s)
- Graziela Rosa Ravacci
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Robson Ishida
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Suzana Torrinhas
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Priscila Sala
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Natasha Mendonça Machado
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Danielle Cristina Fonseca
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele André Baptista Canuto
- Departamento de Quimica Analitica, Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA, Brazil.,Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ernani Pinto
- Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Paulo Sakai
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Joel Faintuch
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marco Aurelio Santo
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | - Dan Linetzky Waitzberg
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
14
|
Upregulation of Ghrelin Gene Expression in the Excluded Stomach of Obese Women with Type 2 Diabetes After Roux-en-Y Gastric Bypass in the SURMetaGIT Study. Obes Surg 2018; 28:877-880. [PMID: 29307107 DOI: 10.1007/s11695-017-3098-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mechanisms of type 2 diabetes remission (T2Dr) after Roux-en-Y gastric bypass (RYGB) in obese patients appear to involve gastrointestinal hormones. OBJECTIVE The objective of this study is to explore changes in ghrelin plasma levels and ghrelin gastrointestinal gene expression (GHRL) after RYGB, and their relationships to T2Dr. SETTING In 20 obese women with T2D, before and 3 months after RYGB, we assessed GHRL expression by microarray and quantitative RT-PCR in gastrointestinal biopsy samples and plasma levels of ghrelin. RESULTS After RYGB, GHRL expression increased in the excluded stomach (p < 0.05) with no change in other gastrointestinal sites. There were no significant changes in ghrelin plasma levels and no correlations with T2Dr. CONCLUSIONS After RYGB, over-expression of GHRL gene occurs only in the excluded stomach with no correlation to T2Dr.
Collapse
|
15
|
Abstract
The gastrointestinal (GI) tract is the residence of trillions of microorganisms that include bacteria, archaea, fungi and viruses. The collective genomes of whole microbial communities (microbiota) integrate the gut microbiome. Up to 100 genera and 1000 distinct bacterial species were identified in digestive tube niches. Gut microbiomes exert permanent pivotal functions by promoting food digestion, xenobiotic metabolism and regulation of innate and adaptive immunological processes. Proteins, peptides and metabolites released locally and at distant sites trigger many cell signalling and pathways. This intense crosstalk maintains the host-microbial homeostasis. Diet, age, diet, stress and diseases cause increases or decreases in relative abundance and diversity bacterial specie of GI and other body sites. Studies in animal models and humans have shown that a persistent imbalance of gut's microbial community, named dysbiosis, relates to inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), diabetes, obesity, cancer, cardiovascular and central nervous system disorders. Notably specific bacterial communities are promising clinical target to treat inflammatory and infectious diseases. In this context, intestinal microbiota transplantation (IMT) is one optional treatment for IBD, in particular to patients with recurrent Clostridium difficile-induced pseudo-membrane colitis. Here we discuss on recent discoveries linking whole gut microbiome dysbiosis to metabolic and inflammatory diseases and potential prophylactic and therapeutic applications of faecal and phage therapy, probiotic and prebiotic diets.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Joel Faintuch
- Department of Gastroenterology of Medical School, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Sala P, de Miranda Torrinhas RSM, Fonseca DC, Ravacci GR, Waitzberg DL, Giannella-Neto D. Tissue-specific methylation profile in obese patients with type 2 diabetes before and after Roux-en-Y gastric bypass. Diabetol Metab Syndr 2017; 9:15. [PMID: 28250848 PMCID: PMC5322591 DOI: 10.1186/s13098-017-0214-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Eating habits, lifestyles, and exposure to specific environmental factors can greatly impact the risk of developing type 2 diabetes (T2D), influence the genome epigenetically, and affect the expression of genes, including genes related to glycemic control, at any stage of life. The epigenetic mechanism underlying obesity and T2D pathogenesis remains poorly understood. Conventional strategies for the treatment of obesity and its comorbidities often have poor long-term adherence, and pharmacological interventions are limited. Bariatric surgery is the most effective current option to treat severe obesity, and Roux-en-Y gastric bypass (RYGB) is the most applied technique worldwide. Epigenetic changes differ depending on the approach used to treat obesity and its associated comorbidities (clinical or surgical). Compared to primary clinical care, bariatric surgery leads to much greater loss of body weight and higher remission rates of T2D and metabolic syndrome, with methylation profiles in promoter regions of genes in obese individuals becoming similar to those of normal-weight individuals. Bariatric surgery can influence DNA methylation in parallel with changes in gene expression pattern. Changes in clinical biomarkers that reflect improvements in glucose and lipid metabolism after RYGB often occur before major weight loss and are coordinated by surgery-induced changes in intestinal hormones. Therefore, the intestine methylation profile would assist in understanding the mechanisms involved in improved glycemic control after bariatric surgery. The main objectives in this area for the future are to identify epigenetic marks that could be used as early indicators of metabolic risk, and to develop treatments able to delay or even reverse these epigenetic changes. Studies that provide the "human epigenetic profile" will be of considerable value to identify tissue-specific epigenetic signatures and their role in the development of chronic diseases. Further studies should apply methods based on global analysis of the genome to identify methylated sites associated with disease and epigenetic marks associated with the remodeling response to bariatric surgery. This review describes the main epigenetic alterations associated with obesity and T2D and the potential role of RYGB in remodeling these changes.
Collapse
Affiliation(s)
- Priscila Sala
- FMUSP—Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), São Paulo, Brazil
| | | | - Danielle Cristina Fonseca
- FMUSP—Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), São Paulo, Brazil
| | - Graziela Rosa Ravacci
- FMUSP—Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), São Paulo, Brazil
| | - Dan Linetzky Waitzberg
- FMUSP—Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), São Paulo, Brazil
| | | |
Collapse
|