1
|
Zhou X, Ning J, Cai R, Liu J, Yang H, Bai Y. Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: INSIG1. J Inflamm Res 2024; 17:11485-11503. [PMID: 39735895 PMCID: PMC11681806 DOI: 10.2147/jir.s492875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/15/2024] [Indexed: 12/31/2024] Open
Abstract
Background Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research. Methods We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis. Bulk transcriptome and scRNA-seq data were integrated to identify differentially expressed genes (DEGs). Machine learning was employed to screen candidate genes. Correlation analysis was used to predict the interactions between cells expressing insulin-induced gene 1 (INSIG1) and other immune cells. Finally, drug docking was performed on INSIG1, and the expression levels of INSIG1 in psoriasis were verified through clinical and in vivo experiments, and further in vivo experiments established the efficacy of tetrandrine in the treatment of psoriasis. Results T cells were initially categorized into seven states, with differentially expressed genes in T cells (TDEGs) identified and their functions and signaling pathways. INSIG1 emerged as a characteristic gene for psoriasis and was found to be downregulated in psoriasis and potentially negatively associated with T cells, influencing psoriasis fatty acid metabolism, as inferred from enrichment and immunoinfiltration analyses. In the cellular communication network, cells expressing INSIG1 exhibited close interactions with other immune cells through multiple signaling channels. Furthermore, drug sensitivity showed that tetrandrine stably binds to INSIG1, could be a potential therapeutic agent for psoriasis. Conclusion INSIG1 emerges as a specific candidate gene potentially regulating the fatty acid metabolism of patients with psoriasis. In addition, tetrandrine shows promise as a potential treatment for the condition.
Collapse
Affiliation(s)
- Xiangnan Zhou
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People’s Republic of China
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, People’s Republic of China
| | - Jingyuan Ning
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Rui Cai
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, People’s Republic of China
| | - Jiayi Liu
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical School of Medicine, Beijing, 100029, People’s Republic of China
| | - Haoyu Yang
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Yanping Bai
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
2
|
Song J, Liu Y, Guo Y, Yuan M, Zhong W, Tang J, Guo Y, Guo L. Therapeutic effects of tetrandrine in inflammatory diseases: a comprehensive review. Inflammopharmacology 2024; 32:1743-1757. [PMID: 38568399 DOI: 10.1007/s10787-024-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 05/30/2024]
Abstract
Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.
Collapse
Affiliation(s)
- Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yurou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenxiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Ren D, Li F, Cao Q, Gao A, Ai Y, Zhang J. Yangxin granules alleviate doxorubicin-induced cardiotoxicity by suppressing oxidative stress and apoptosis mediated by AKT/GSK3 β/ β-catenin signaling. J Int Med Res 2020; 48:300060520945161. [PMID: 32780664 PMCID: PMC7425278 DOI: 10.1177/0300060520945161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Yangxin granules (YXC), a Chinese herbal medicine, have been confirmed to have clinical benefits in the treatment of heart failure. This study examined the effects and molecular mechanisms of YXC in the treatment of doxorubicin-induced cardiotoxicity in vitro. METHODS H9c2 cardiomyocytes were pretreated with YXC (5, 10, or 20 mg/mL) or the AKT inhibitor MK-2206 (50 nM) before doxorubicin treatment (1 µM). Cell apoptosis, viability, inflammatory factor expression (TNF-α, IL-1β, and IL-6), and oxidative stress mediator levels including superoxide dismutase, reactive oxygen species, and malondialdehyde were detected. RESULTS YXC increased the viability of H9c2 cells. In addition, doxorubicin inhibited AKT/GSK3β/β-catenin signaling, whereas YXC increased the expression of phosphorylated AKT and GSK3β, and β-catenin in doxorubicin-treated H9c2 cells. Moreover, T-cell factor/lymphoid enhancer factor signaling downstream of β-catenin was also activated by YXC. YXC pretreatment also inhibited doxorubicin-induced inflammation, oxidative stress, and apoptosis. However, MK-2206 reversed the effects of YXC in doxorubicin-treated H9c2 cells. CONCLUSIONS YXC alleviates doxorubicin-induced inflammation, oxidative stress, and apoptosis in H9c2 cells. These effects might be mediated by the AKT/GSK3β/β-catenin signaling pathway. YXC might have preventive effects against doxorubicin-induced heart failure.
Collapse
Affiliation(s)
- Dezhi Ren
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - Fang Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China.,College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Qingwen Cao
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - An Gao
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - Yingna Ai
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China
| | - Junru Zhang
- Department of Cardiology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi Province, China.,First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| |
Collapse
|
4
|
Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 2020; 72:1491-1512. [PMID: 32696989 DOI: 10.1111/jphp.13339] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/21/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Tetrandrine, a natural bisbenzylisoquinoline alkaloid, possesses promising anticancer activities on diverse tumours. This review provides systematically organized information on cancers of tetrandrine in vivo and in vitro, discuss the related molecular mechanisms and put forward some new insights for the future investigations. KEY FINDINGS Anticancer activities of tetrandrine have been reported comprehensively, including lung cancer, colon cancer, bladder cancer, prostate cancer, ovarian cancer, gastric cancer, breast cancer, pancreatic cancer, cervical cancer and liver cancer. The potential molecular mechanisms corresponding to the anticancer activities of tetrandrine might be related to induce cancer cell apoptosis, autophagy and cell cycle arrest, inhibit cell proliferation, migration and invasion, ameliorate metastasis and suppress tumour cell growth. Pharmaceutical applications of tetrandrine combined with nanoparticle delivery system including liposomes, microspheres and nanoparticles with better therapeutic efficiency have been designed and applied encapsulate tetrandrine to enhance its stability and efficacy in cancer treatment. SUMMARY Tetrandrine was proven to have definite antitumour activities. However, the safety, bioavailability and pharmacokinetic parameter studies on tetrandrine are very limited in animal models, especially in clinical settings. Our present review on anticancer potentials of tetrandrine would be necessary and highly beneficial for providing guidelines and directions for further research of tetrandrine.
Collapse
Affiliation(s)
- Fei Luan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Nan Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Anticancer Activity of Tetrandrine by Inducing Apoptosis in Human Breast Cancer Cell Line MDA-MB-231 In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6823520. [PMID: 32714412 PMCID: PMC7345956 DOI: 10.1155/2020/6823520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023]
Abstract
Tetrandrine (TET) is an alkaloid extracted from a traditional Chinese medicinal plant. It exerts remarkable anticancer activity and induces apoptotic cell death in various human cancer cells. The present study aimed to investigate the effects of TET on the inhibition of tumor growth and the induction of apoptosis in MDA-MB-231 breast cancer in xenograft mice. Tumor weight and volume were measured. The histopathological changes in the tumor tissue were observed. Immunohistochemistry analysis of Bcl-2-associated X protein (Bax) and B-cell lymphoma/leukemia-2 (Bcl-2) was carried out. The expression of apoptosis-associated genes and proteins, such as cysteine aspartic acid-specific protease-3 (Caspase-3), Survivin, Bax, Bcl-2, BH3-interacting domain death agonist (Bid), and poly ADP-ribose polymerase (PARP), was measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. TET inhibited tumor growth and induced apoptosis in TNBC cell line MDA-MB-231. The mechanism underlying this effect might be mediated by TET-upregulated Caspase-3, Bax, and Bid and downregulated by Bcl-2, Survivin, and PARP. Taken together, this study supported the fact that TET is a promising therapeutic agent for the treatment of TNBC, thereby providing experimental evidence for its use in the treatment of breast cancer.
Collapse
|
6
|
Miao X, Xiang Y, Mao W, Chen Y, Li Q, Fan B. TRIM27 promotes IL-6-induced proliferation and inflammation factor production by activating STAT3 signaling in HaCaT cells. Am J Physiol Cell Physiol 2019; 318:C272-C281. [PMID: 31747314 DOI: 10.1152/ajpcell.00314.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The IL-6/STAT3 signaling pathway is required for the development of psoriatic lesions, and tripartite motif-containing 27 (TRIM27) is a protein inhibitor of activated STAT3 (PIAS3)-interacting protein that could modulate IL-6-induced STAT3 activation. However, whether TRIM27 is associated with the IL-6/STAT3 signaling pathway in psoriasis remains enigmatic. TRIM27 expression and gene set enrichment analysis in patients with psoriasis were determined using bioinformatics. Human keratinocyte HaCaT cells treated with recombinant protein IL-6 (rh-IL-6) were transduced with lentivirus silencing TRIM27 and/or PIAS3 or, otherwise, transduced with lentivirus expressing TRIM27 and/or lentivirus silencing STAT3, or MG132, a proteasome-specific protease inhibitor. Cell proliferation and inflammation factor production were measured using Cell Counting Kit-8 and ELISA, respectively. TRIM27, proliferation marker protein Ki-67 (Ki67), phospho-STAT3 (p-STAT3), STAT3, and PIAS3 expressions were determined using real-time quantitative PCR, immunofluorescence staining, or Western blot analysis. Coimmunoprecipitation combined with ubiquitination analysis was performed to explore the interaction between TRIM27 and PIAS3. In the present study, TRIM27 expression was increased in psoriatic lesions, associated with the IL-6 signaling pathway, and induced by rh-IL-6 in a time-dependent manner. The increased cell proliferation, inflammation factor production, and expression of Ki67 and of p-STAT3 relative to STAT3 induced by rh-IL-6 and TRIM27 overexpression were significantly inhibited by TRIM27 silencing and STAT3 silencing, respectively. More importantly, TRIM27 interacted with PIAS3, and its overexpression promoted PIAS3 ubiquitination in HaCaT cells. PIAS3 silencing also significantly promoted TRIM27-dependent and IL6-induced STAT3 activation, cell proliferation, and inflammation factor production. In conclusion, our results highlight that TRIM27 expression is significantly increased by IL-6 and suggest a TRIM27/STAT3-dependent mechanism for regulation of inflammation and proliferation-associated development of psoriasis.
Collapse
Affiliation(s)
- Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Mao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Fan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|