1
|
Alnefaie GO. A review of the complex interplay between chemoresistance and lncRNAs in lung cancer. J Transl Med 2024; 22:1109. [PMID: 39639388 PMCID: PMC11619437 DOI: 10.1186/s12967-024-05877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Lung Cancer (LC) is characterized by chemoresistance, which poses a significant clinical challenge and results in a poor prognosis for patients. Long non-coding RNAs (lncRNAs) have recently gained recognition as crucial mediators of chemoresistance in LC. Through the regulation of key cellular processes, these molecules play important roles in the progression of LC and response to therapy. The mechanisms by which lncRNAs affect chemoresistance include the modulation of gene expression, chromatin structure, microRNA interactions, and signaling pathways. Exosomes have emerged as key mediators of lncRNA-driven chemoresistance, facilitating the transfer of resistance-associated lncRNAs between cancer cells and contributing to tumor development. Consequently, exosomal lncRNAs may serve as biomarkers and therapeutic targets for the treatment of LC. Therapeutic strategies targeting lncRNAs offer novel approaches to circumvent chemoresistance. Different approaches, including RNA interference (RNAi) and antisense oligonucleotides (ASOs), are available to degrade lncRNAs or alter their function. ASO-based therapies are effective at reducing lncRNA expression levels, increasing chemotherapy sensitivity, and improving clinical outcomes. The use of these strategies can facilitate the development of targeted interventions designed to disrupt lncRNA-mediated mechanisms of chemoresistance. An important aspect of this review is the discussion of the complex relationship between lncRNAs and drug resistance in LC, particularly through exosomal pathways, and the development of innovative therapeutic strategies to enhance drug efficacy by targeting lncRNAs. The development of new pathways and interventions for treating LC holds promise in overcoming this resistance.
Collapse
Affiliation(s)
- Ghaliah Obaid Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
2
|
Huang Y, Yi Q, Feng J, Xie W, Sun W, Sun W. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum Cell 2022; 35:1640-1649. [PMID: 35969349 DOI: 10.1007/s13577-022-00768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of multifunctional endogenous RNA transcript. The dysregulation of lncRNAs is considered to play a role in the initiation and progression of cancer. One such lncRNA, long intergenic non-coding RNA-p21 (lincRNA-p21), was identified in 2010 as a regulator in the p53 pathway and is gradually being identified to play crucial roles in diverse cellular processes. In this review, we have summarised the diverse regulatory functions of lincRNA-p21. For example, lincRNA-p21 has been reported to function as a protein decoy, act as a competitive endogenous RNA, regulate the transcription, regulate the translation processes and exist in the secreted exosomes. Furthermore, we highlight the emerging roles of lincRNA-p21 in cancer cell regulation. Various types of cancers, including colorectal carcinoma, hepatocellular carcinoma and non-small cell lung carcinoma, aberrantly express lincRNA-p21. However, the current understanding of the roles of lincRNA-p21 in cancer remains limited. Therefore, considering its potential as a valuable therapeutic target or biomarker for cancer, more research should be conducted to understand the role of lincRNA-p21 in cancer and other diseases.
Collapse
Affiliation(s)
- Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Qian Yi
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China. .,The Central Laboratory, Shenzhen Second People' Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
3
|
Ma X, Yan W, Xu P, Ma L, Zan Y, Huang L, Wang G, Liu L, Hui W. LncRNA-p21 suppresses cell proliferation and induces apoptosis in gastric cancer by sponging miR-514b-3p and up-regulating ARHGEF9 expression. Biol Chem 2022; 403:945-958. [PMID: 35947460 DOI: 10.1515/hsz-2022-0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
The long non-coding RNA p21 (lncRNA-p21) was a tumor suppressor gene in most cancer types including gastric cancer (GC). We aimed to identify a specific lncRNA-p21-involved pathway in regulating the proliferation and apoptosis of GC cells. A lower lncRNA-p21 expression in tumors was associated with advanced disease stage and predicted worse survival of GC patients. LncRNA-p21 overexpression in GC cell line somatic gastric cancer (SGC)-7901 and human gastric cancer (HGC)-27 suppressed cell proliferation and enhanced apoptosis, while lncRNA-p21 knockdown caused the opposite effects. Through bioinformatics analysis and luciferase-based reporter assays, we identified miR-514b-3p as a sponge target of lncRNA-p21. Cdc42 guanine nucleotide exchange factor 9 (ARHGEF9), functioned as a tumor suppress factor in GC, was found as the downstream target of miR-514-3p, and their expressions were negatively correlated in GC tumor tissues. In addition, like lncRNA-p21 overexpression alone, miR-514-3p inactivation alone also led to decreased proliferation and increased apoptosis in SGC-7901 and HGC-27 cells, which were markedly attenuated by additional ARHGEF9 knockdown. Xenograft SGC-7901 cells with more lncRNA-p21 or ARHGEF9 expressions or with less miR-514-3p expression exhibited obviously slower in vivo growth than the control SGC-7901 cells in nude mice. Our study reveals a novel lncRNA-p21/miR-514b-3p/ARHGEF9 pathway that can be targeted for GC therapy.
Collapse
Affiliation(s)
- Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Wenyu Yan
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Guanying Wang
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Lili Liu
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Wentao Hui
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| |
Collapse
|
4
|
Zhao X, Lan Y, Chen D. Exploring long non-coding RNA networks from single cell omics data. Comput Struct Biotechnol J 2022; 20:4381-4389. [PMID: 36051880 PMCID: PMC9403499 DOI: 10.1016/j.csbj.2022.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
|
5
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
6
|
Hidden Treasures: Macrophage Long Non-Coding RNAs in Lung Cancer Progression. Cancers (Basel) 2021; 13:cancers13164127. [PMID: 34439281 PMCID: PMC8392679 DOI: 10.3390/cancers13164127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Ever since RNA sequencing of whole genomes and transcriptomes became available, numerous RNA transcripts without having the classic function of encoding proteins have been discovered. Long non-coding RNAs (lncRNAs) with a length greater than 200 nucleotides were considered as "junk" in the beginning, but it has increasingly become clear that lncRNAs have crucial roles in regulating a variety of cellular mechanisms and are often deregulated in several diseases, such as cancer. Lung cancer is the leading cause of cancer-related deaths and has a survival rate of less than 10%. Immune cells infiltrating the tumor microenvironment (TME) have been shown to have a great effect on tumor development with macrophages being the major cell type within the TME. Macrophages can inherit an inflammatory M1 or an anti-inflammatory M2 phenotype. Tumor-associated macrophages, which are predominantly polarized to M2, favor tumor growth, angiogenesis, and metastasis. In this review, we aimed to describe the complex roles and functions of lncRNAs in macrophages and their influence on lung cancer development and progression through the TME.
Collapse
|
7
|
Tokgun O, Tokgun PE, Turel S, Inal B, Inci K, Tan S, Can Alvur O. Bryonia multiflora Extract Induces Autophagy via Regulating Long Non-coding RNAs in Breast Cancer Cells. Nutr Cancer 2021; 73:1792-1803. [PMID: 34024207 DOI: 10.1080/01635581.2021.1922717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bryonia multiflora, one of the species of Bryonia L. (Cucurbitaceae) genus, is a perennial, dioecious, herbaceous plant with rhizome-shaped roots. Bryonia species have anti-inflammatory, antimicrobial, cytotoxic, antioxidant, etc., activities and their components consume antitumoral effects. Purpose of the study to investigate the effect of Bryonia Multiflora extract (BMST) on breast cancer cells. Our results revealed that MCF-7 and MDA-MB-231 cells underwent significant morphological changes leading to cell rounding. No significant changes were observed in the cell viability by MTT. Acridine orange staining of our cells gave rise to think that BMST might lead our cells to autophagy. Therefore, possible molecular mechanisms underlying morphological changes such as autophagy (LC-3B, Beclin, AMBRA1) and apoptosis (Bcl-2) were evaluated on mRNA and protein levels. BMST treated MCF-7 and MDA-MB-231 cells had increased levels of autophagy markers whereas decreased levels of Bcl-2. p21 levels were also found to be increased in both cells. Analysis of lncRNA expressions has shown that BMST treatment led to changes in the expression levels of several lncRNAs playing roles in autophagy. The current study has shown that BMST induces autophagy in MCF-7 and MDA-MB-231 cells via regulating the lncRNAs revealing that BMST could be a promising therapeutic agent.
Collapse
Affiliation(s)
- Onur Tokgun
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey.,Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin Elvan Tokgun
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Samet Turel
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Behcet Inal
- Faculty of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| | - Kubilay Inci
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Secil Tan
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Ozge Can Alvur
- Medical Biology, Faculty of Medicine, Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
8
|
Sun Y, Peng P, He L, Gao X. Identification of lnc RNAs Related to Prognosis of Patients With Colorectal Cancer. Technol Cancer Res Treat 2020; 19:1533033820962120. [PMID: 33111631 PMCID: PMC7607722 DOI: 10.1177/1533033820962120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to identify long noncoding RNAs (lncRNAs) related to prognosis of patients with colorectal cancer (CRC) and develop a prognostic prediction model for CRC. Transcriptome data and survival information of CRC patients were downloaded from The Cancer Genome Atlas. The differentially expressed lncRNAs (DElncRNAs) between CRC and normal colorectal tissues were identified by the edgeR package. The association of DElncRNAs expression with prognosis of CRC patients was analyzed by the survival package. A nomogram predicting 3- and 5- year overall survival of CRC patients was drawn by the rms package. A total of 1046 DElncRNAs were identified, including 271 down-regulated and 775 up-regulated lncRNAs in CRC. Multivariate Cox regression analysis showed 10 lncRNAs related to the prognosis of CRC patients. Thereinto high expression of AC004009.1, LHX1-DT, ELFN1-AS1, AL136307.1, AC087379.2, RBAKDN and AC078820.1 was associated with poorer prognosis of CRC patients. High expression of LINC01055, AL590483.1 and AC008514.1 was associated with better prognosis of CRC patients. Furthermore, the risk score model developed based on the 10 lncRNAs could effectively predict overall survival of CRC patients. In conclusion, 10 prognostic biomarkers for CRC were identified, which would be helpful to understand the role of lncRNAs in CRC progression.
Collapse
Affiliation(s)
- Yuqi Sun
- School of Pharmacy, 56689Yancheng Teachers' University, Yancheng, Jiangsu, China
| | - Peng Peng
- Nanjing Health School, Jiangsu Union Technical Institute, Nanjing, Jiangsu, China
| | - Lanlan He
- Nanjing Health School, Jiangsu Union Technical Institute, Nanjing, Jiangsu, China
| | - Xueren Gao
- School of Pharmacy, 56689Yancheng Teachers' University, Yancheng, Jiangsu, China
| |
Collapse
|
9
|
Yang W, Yue Y, Yin F, Qi Z, Guo R, Xu Y. LINC01133 and LINC01243 are positively correlated with endometrial carcinoma pathogenesis. Arch Gynecol Obstet 2020; 303:207-215. [PMID: 32929617 DOI: 10.1007/s00404-020-05791-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To characterize the role of two long non-coding RNAs (lncRNAs), LINC01133 and LINC01243, in endometrial carcinoma (EC) pathogenesis. LINC01133 is an lncRNA that has been implicated in many cancers, and LINC01243 is a newly identified lncRNA identified from the NCBI GEO database. METHODS We studied the effect of LINC01133 and LINC01243 on EC malignancy using siRNA knockdown and real-time quantitative polymerase chain reaction (RT-qPCR), flow cytometry, Annexin V-FITC/propidium iodide double staining, Transwell, and scratch invasion assays in two EC cell lines (Ishikawa and HEC-1-A cells). RESULTS We first confirmed the partial knockdown of both LINC01133 and LINC01243 expression in Ishikawa and HEC-1-A cells using RT-qPCR. Following confirmation of lncRNA knockdown, we assessed the effect of knockdown on EC malignancy. We observed reduced EC cell proliferation using the CCK-8 assay, as well as cell cycle arrest and increased apoptosis in both EC cell lines. Furthermore, Transwell and scratch invasion assays revealed decreased migration and invasion of the two EC cell lines, respectively. CONCLUSION We demonstrated that LINC01133 and LINC01243 expression are associated with EC development and progression. Our findings suggest a potential role for these lncRNAs as novel EC biomarkers.
Collapse
Affiliation(s)
- Weina Yang
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yingying Yue
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fei Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiying Qi
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ruimeng Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Amirinejad R, Rezaei M, Shirvani-Farsani Z. An update on long intergenic noncoding RNA p21: a regulatory molecule with various significant functions in cancer. Cell Biosci 2020; 10:82. [PMID: 32582435 PMCID: PMC7310005 DOI: 10.1186/s13578-020-00445-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNA p21 was mapped on the human chromosome 6p21.2. Accordingly, it was firstly described by promoting the p53-dependent apoptosis in the mouse. Also, it is a new lncRNA playing some vital roles in the cell cycle, apoptosis, cell proliferation, tumorigenesis, invasion, metastasis, and angiogenesis. In this regard, it was shown that, lincRNA-p21 regulates these biological processes involved in carcinogenesis through various signaling pathways including Notch signaling, JAK2/STAT3, and AKT/mTOR pathways. Another mechanism by that lincRNA-p21 can affect these processes is a cross-talk with different miRNAs. In vitro and in vivo studies revealed dysregulation of lincRNA-p21 in various human cancers. In addition, emerging evidence demonstrated that, lincRNA-p21 can be considered as a potential prognostic and therapeutic biomarker in cancers. Also, lincRNA-p21 enhances the response to radiotherapy for colorectal cancer. However, the molecular mechanisms of lincRNA-p21 in carcinogenesis have not been fully elucidated so far. So, this review summarizes the function of lincRNA-p21, as a tumor suppressor factor in different biological processes implicated in cancers.
Collapse
Affiliation(s)
- Roya Amirinejad
- Genetics Department, Breast Cancer Research Center, Motamed Center Institute, ACECR, Tehran, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| |
Collapse
|
11
|
Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A, Mirzaei H. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2020; 25:3563-3577. [PMID: 31470781 DOI: 10.2174/1381612825666190830161528] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sima Fathullahzadeh
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Li K, Wang X, Huang Z, Xu H, Zheng S, Qiu Y. Retracted Article: Long non-coding RNA MEG3 inhibits cell proliferation, migration, invasion and enhances apoptosis in non-small cell lung cancer cells by regulating the miR-31-5p/TIMP3 axis. RSC Adv 2019; 9:38200-38208. [PMID: 35541776 PMCID: PMC9075888 DOI: 10.1039/c9ra07880k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 06/05/2020] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant lung cancer and accounts for 80% of lung cancer-related deaths. Long non-coding RNA maternally expressed gene 3 (MEG3) has been identified as a tumor suppressor in multiple cancers. However, the regulatory mechanism of MEG3 in NSCLC development is still largely unknown. The expression levels of MEG3, microRNA-31-5p (miR-31-5p) and tissue inhibitor of metalloproteinase 3 (TIMP3) in NSCLC tumors and cells were measured by quantitative real time polymerase chain reaction (qRT-PCR). Cell viability, apoptosis, migration and invasion were detected by cell counting kit-8 (CCK-8), flow cytometry, western blotting and transwell assays, respectively. Xenograft mouse models were established by subcutaneously injecting NSCLC cells stably transfected with Lenti-pcDNA or Lenti-MEG3. The interaction between miR-31-5p and MEG3 or TIMP3 was validated by luciferase reporter and RNA immunoprecipitation (RIP) assays. MEG3 and TIMP3 levels were up-regulated, whereas miR-31-5p expression was down-regulated in NSCLC tumors and cells compared with normal tissues and cells. Overexpression of MEG3 repressed cell proliferation, migration and invasion, but induced apoptosis in NSCLC cells. More importantly, MEG3 effectively hindered tumor growth in vivo. Next, luciferase reporter and RIP assays confirmed the interaction between miR-31-5p and MEG3 or TIMP3. Pearson's correlation coefficient revealed that miR-31-5p was inversely correlated with MEG3 or TIMP3. Rescue experiments indicated that MEG3 regulated TIMP3 expression by sponging miR-31-5p in NSCLC cells. Thus, MEG3 inhibited cell proliferation, migration and invasion, but enhanced apoptosis in NSCLC cells through up-regulating TIMP3 expression by regulating miR-31-5p, indicating novel biomarkers for the therapy of NSCLC. Non-small cell lung cancer (NSCLC) is a malignant lung cancer and accounts for 80% of lung cancer-related deaths.![]()
Collapse
Affiliation(s)
- Kui Li
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749.,Technical Service Department, Guangzhou Huayin Medical Institute. Ltd Guangzhou Guangdong China
| | - Xiaodan Wang
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| | - Zhen Huang
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| | - Hui Xu
- Technical Service Department, Guangzhou Huayin Medical Institute. Ltd Guangzhou Guangdong China
| | - Songbai Zheng
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| | - Yurong Qiu
- Department of Translational Medicine Research Institute, Guangzhou Huayin Medical Laboratory Center. Ltd The Second Floor of Life Sciences Building of Southern Medical University No. 1838, North Guangzhou Street Guangzhou Guangdong China +86-18520035749
| |
Collapse
|
13
|
Guo L, Li L, Zhang Y, Fu S, Zhang J, Wang X, Zhu H, Qiao M, Wu L, Liu Y. Long non-coding RNA profiling in LPS-induced intestinal inflammation model: New insight into pathogenesis. Innate Immun 2019; 25:491-502. [PMID: 31474162 PMCID: PMC6900666 DOI: 10.1177/1753425919872812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
LPS can induce an inflammatory immune response in the intestine, and long
non-coding RNA (lncRNA) is involved in the process of inflammatory disease.
However, the biological role of lncRNA in the intestinal inflammation of piglets
remains unclear. In this study, the lncRNA expression profile of the ileal
mucosa of piglets challenged by LPS was analysed using lncRNA sequencing. In
total, 112 novel lncRNAs were predicted, of which 58 were up-regulated and 54
down-regulated following LPS challenge. Expression of 15 selected lncRNAs was
validated by quantitative PCR. We further investigated the target genes of
lncRNA that were enriched in the signalling pathways involved in the
inflammatory immune response by utilising Gene Ontology and Kyoto Encyclopaedia
of Genes and Genomes analysis, with cell adhesion molecules and mTOR signalling
pathway identified. In addition, the co-expression networks between the
differentially expressed lncRNAs and the target mRNAs were constructed, with
seven core lncRNAs identified, which also demonstrated that the relationship
between lncRNAs and the target genes was highly correlated. Our study offers
important information about the lncRNAs of the mucosal immune system in piglets
and provides new insights into the inflammatory mechanism of LPS challenge,
which might serve as a novel target to control intestinal inflammation.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Linna Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
| | - Yang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Mu Qiao
- Key Laboratory of Animal Embryo Engineering and Molecular
Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei
Academy of Agricultural Sciences, PR China
| | - Lingying Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
- Yulan Liu, Hubei Key Laboratory of Animal
Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR
China.
| |
Collapse
|