1
|
Ma Y, Hou J, Huang D, Zhang Y, Liu Z, Tian M. Expression of protein phosphatase 4 in different tissues under hypoxia. INDIAN J PATHOL MICR 2023; 66:577-583. [PMID: 37530343 DOI: 10.4103/ijpm.ijpm_1179_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Relevant research data shows that there is a certain degree of energy metabolism imbalance in highland residents. Protein phosphatase 4 (PP4) has been found as a new factor in the regulation of sugar and lipid metabolism. Here, we investigate the differential expression of PP4 at a simulated altitude of 4,500 m in the heart, lung, and brain tissues of rats. A hypoxic plateau rat model was established using an animal decompression chamber. A blood routine test was performed by an animal blood cell analyzer on rats cultured for different hypoxia periods at 4,500 m above sea level. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the changes of protein phosphatase 4 catalytic subunit (PP4C) gene and protein in heart, lung, and brain tissues. The PP4C gene with the highest expression level found in rats slowly entering the high altitude area (20 m-2200 m-7 d-4500 m-3 d) was about twice as high as the low elevation group (20 m above sea level). The simulated high-altitude hypoxia induced an increase of PP4C expression level in all tissues, and the expression in the lung tissue was twice as expressed as heart and brain tissue at high altitude (P < 0.05). These results suggest that the PP4 phosphatase complex is ubiquitously expressed in rat tissues and likely involved in adaptation to or disease associated with high-altitude hypoxia.
Collapse
Affiliation(s)
- Yanyan Ma
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| | - Jing Hou
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Dengliang Huang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Yaogang Zhang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Zhe Liu
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Meiyuan Tian
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
2
|
Gao J, Zhao M, Cheng X, Yue X, Hao F, Wang H, Duan L, Han C, Zhu L. Metabolomic analysis of human plasma sample after exposed to high altitude and return to sea level. PLoS One 2023; 18:e0282301. [PMID: 36989280 PMCID: PMC10058093 DOI: 10.1371/journal.pone.0282301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/12/2023] [Indexed: 03/30/2023] Open
Abstract
When ascending to high altitude, it is a rigorous challenge to people who living in the low altitude area to acclimatize to hypoxic environment. Hypoxia exposure can cause dramatic disturbances of metabolism. This longitudinal cohort study was conducted to delineate the plasma metabolomics profile following exposure to altitude environments and explore potential metabolic changes after return to low altitude area. 25 healthy volunteers living in the low altitude area (Nor; 40m) were transported to high altitude (HA; 3,650m) for a 7-day sojourn before transported back to the low altitude area (HAP; 40m). Plasma samples were collected on the day before ascending to HA, the third day on HA(day 3) and the fourteenth day after returning to low altitude(14 day) and analyzed using UHPLC-MS/MS tools and then the data were subjected to multivariate statistical analyses. There were 737 metabolites were obtained in plasma samples with 133 significantly changed metabolites. We screened 13 differential metabolites that were significantly changed under hypoxia exposure; enriched metabolic pathways under hypoxia exposure including tryptophan metabolism, purine metabolism, regulation of lipolysis in adipocytes; We verified and relatively quantified eight targeted candidate metabolites including adenosine, guanosine, inosine, xanthurenic acid, 5-oxo-ETE, raffinose, indole-3-acetic acid and biotin for the Nor and HA group. Most of the metabolites recovered when returning to the low altitude area, however, there were still 6 metabolites that were affected by hypoxia exposure. It is apparent that high-altitude exposure alters the metabolic characteristics and two weeks after returning to the low altitude area a small portion of metabolites was still affected by high-altitude exposure, which indicated that high-altitude exposure had a long-term impact on metabolism. This present longitudinal cohort study demonstrated that metabolomics can be a useful tool to monitor metabolic changes exposed to high altitude, providing new insight in the attendant health problem that occur in response to high altitude.
Collapse
Affiliation(s)
- Jiayue Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fangbin Hao
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hui Wang
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lian Duan
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Cong Han
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
3
|
Gandhi S, Chinnadurai V, Bhadra K, Gupta I, Kanwar RS. Urinary metabolic modulation in human participants residing in Siachen: a 1H NMR metabolomics approach. Sci Rep 2022; 12:9070. [PMID: 35641596 PMCID: PMC9156790 DOI: 10.1038/s41598-022-13031-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
The main physiological challenge in high altitude environment is hypoxia which affects the aerobic metabolism reducing the energy supply. These changes may further progress toward extreme environment-related diseases. These are further reflected in changes in small molecular weight metabolites and metabolic pathways. In the present study, metabolic changes due to chronic environmental hypoxia were assessed using 1H NMR metabolomics by analysing the urinary metabolic profile of 70 people at sea level and 40 people at Siachen camp (3700 m) for 1 year. Multivariate statistical analysis was carried out, and PLSDA detected 15 metabolites based on VIP score > 1. ROC analysis detected cis-aconitate, Nicotinamide Mononucleotide, Tyrosine, Choline and Creatinine metabolites with a high range of sensitivity and specificity. Pathway analysis revealed 16 pathways impact > 0.05, and phenylalanine tyrosine and tryptophan biosynthesis was the most prominent altered pathway indicating metabolic remodelling to meet the energy requirements. TCA cycle, Glycine serine and Threonine metabolism, Glutathione metabolism and Cysteine alterations were other metabolic pathways affected during long-term high-altitude hypoxia exposure. Present findings will help unlock a new dimension for the potential application of NMR metabolomics to address extreme environment-related health problems, early detection and developing strategies to combat high altitude hypoxia.
Collapse
Affiliation(s)
- Sonia Gandhi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Vijayakumar Chinnadurai
- Cognitive Control and Machine Learning Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Kuntal Bhadra
- Department of Endocrinology and Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Isha Gupta
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ratnesh Singh Kanwar
- Department of Endocrinology and Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|
4
|
Zou X, Yang H, Li Q, Li N, Hou Y, Wang X, Meng X, Yu J, Zhang Y, Tang C, Kuang T. Protective Effect of Brassica rapa Polysaccharide against Acute High-Altitude Hypoxia-Induced Brain Injury and Its Metabolomics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3063899. [PMID: 39282147 PMCID: PMC11401678 DOI: 10.1155/2022/3063899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 09/18/2024]
Abstract
Brassica rapa L., a traditional Tibetan medicine, has been wildly used for treating plateau disease. Polysaccharide is an important chemical component in B. rapa. The present study aimed to evaluate the effect of B. rapa polysaccharide (BRP) against acute high-altitude hypoxia (AHH) induced brain injury and its metabolic mechanism. The rats were randomly divided into six groups: control group, AHH group, Hongjingtian oral liquid group, and three BRP groups (38, 75, and 150 mg/kg/d). Serum levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were detected by commercial biochemical kits. Hippocampus and cortex histopathological changes were observed by H&E staining and Nissl staining. Neuronal apoptosis was observed by TUNEL staining. The protein and gene expression of Caspase-3, Bax, Bcl-2, p-PI3K, PI3K, p-Akt, Akt, HIF-1α, microRNA 210, ISCU1/2, and COX10 were detected by western blotting and qRT-PCR. Then, a brain metabolomics method based on UPLC-Q-Exactive-MS was performed to discover potential biomarkers and analyze metabolic pathways. It was found that BRP decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, reduced the pathological changes, inhibited apoptosis, and activated the PI3K/Akt/HIF-1α signaling pathway as evidenced by increased phosphorylation of PI3K and Akt, enhanced protein expression of HIF-1α and gene levels of microRNA210, ISCU1/2, and COX10. Furthermore, 15 endogenous potential biomarkers were identified in the brain through metabolomics analysis. BRP can regulate 7 potential biomarkers and the corresponding metabolic pathways were mainly associated with pyruvate metabolism and glycolysis/gluconeogenesis. Collectively, BRP has a clear protective effect on AHH-induced brain injury and its mechanisms may be related to ameliorate oxidative stress injury, inhibit apoptosis by activating PI3K/Akt/HIF-1α signaling pathway, and reverse metabolic pathway disturbances.
Collapse
Affiliation(s)
- Xuemei Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hailing Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuyue Li
- Pharmacy Intravenous Admixture Services, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646600, China
| | - Ning Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Wang D, Liu F, Yang W, Sun Y, Wang X, Sui X, Yang J, Wang Q, Song W, Zhang M, Xiao Z, Wang T, Wang Y, Luo Y. Meldonium Ameliorates Hypoxia-Induced Lung Injury and Oxidative Stress by Regulating Platelet-Type Phosphofructokinase-Mediated Glycolysis. Front Pharmacol 2022; 13:863451. [PMID: 35450040 PMCID: PMC9017743 DOI: 10.3389/fphar.2022.863451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Hypoxic environments at high altitudes influence the long-term non-altitude health of residents, by inducing changes in metabolism and the mitochondria, severe lung injury, and endangering life. This study was aimed to determine whether meldonium can ameliorate hypoxia-induced lung injury and investigate its possible molecular mechanisms. We used Swiss mice and exposed type Ⅱ alveolar epithelial cell to hypobaric hypoxic conditions to induce lung injury and found that meldonium has significant preventive effect, which was associated with the regulation of glycolysis. We found using human proteome microarrays assay, molecular docking, immunofluorescence and pull-down assay that the target protein of meldonium is a platelet-type phosphofructokinase (PFKP), which is a rate-limiting enzyme of glycolysis. Also, meldonium promotes the transfer of nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, which mitigates oxidative stress and mitochondrial damage under hypoxic condition. Mechanistically, meldonium ameliorates lung injury by targeting PFKP to regulate glycolysis, which promotes Nrf2 translocation from the cytoplasm to the nucleus to alleviate oxidative stress and mitochondrial damage under hypoxic condition. Our study provides a novel potential prevention and treatment strategy against hypoxia-induced lung injury.
Collapse
Affiliation(s)
- Daohui Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education (Yantai University), Yantai University, Yantai, China
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoning Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qian Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenhao Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Minmin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education (Yantai University), Yantai University, Yantai, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
6
|
Shan S, Wu C, Shi J, Zhang X, Niu J, Li H, Li Z. Inhibitory Effects of Peroxidase from Foxtail Millet Bran on Colitis-Associated Colorectal Carcinogenesis by the Blockage of Glycerophospholipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8295-8307. [PMID: 32657580 DOI: 10.1021/acs.jafc.0c03257] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormal glycerophospholipid (GPL) metabolism represented by phosphatidylcholine (PC) and phosphatidylethanolamine (PE) has been as a universal metabolic hallmark of cancer, which is involved in tumor progression. Our previous finding showed that peroxidase from foxtail millet bran (FMBP) exhibited significant anticolorectal cancer (CRC) activity in vitro and in nude mice. Presently, the potential of FMBP in clinical application was further evaluated by an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated carcinogenesis (CAC) mice model, revealed the pivotal role of GPL metabolism in anti-CRC effects of FMBP. Excitedly, FMBP significantly reduced the number and volume of CAC polyps of mice and effectively improved physiological indexes of CAC mice. Meanwhile, the elevated expressions of CRC early markers (cyclooxygenase 2, tumor-proliferating nuclear antigen Ki-67, and EGF module-containing mucin-like receptor 1) in CAC mice were efficiently prevented by FMBP treatment. Metabolomics analysis showed that the elevated abundances of PC and PE involved in GPL metabolism in CAC mice were markedly decreased in FMBP-treated groups, which was also verified in human CRC cells. Further, FMBP reduced the expression levels of PE and PC key metabolic enzymes, resulting in the blockage of GPL metabolism and insufficient adenosine triphosphate to maintain CRC growth. Collectively, FMBP has the potential as a preventive and therapeutic candidate for CRC through the blockage of GPL metabolism.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Caihong Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaoli Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jinping Niu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Chang Y, He J, Tang J, Chen K, Wang Z, Xia Q, Li H. Investigation of the gene co-expression network and hub genes associated with acute mountain sickness. Hereditas 2020; 157:13. [PMID: 32299499 PMCID: PMC7164164 DOI: 10.1186/s41065-020-00127-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Acute mountain sickness has become a heavily researched topic in recent years. However, the genetic mechanism and effects have not been elucidated. Our goal is to construct a gene co-expression network to identify the key modules and hub genes associated with high altitude hypoxia. Results The GSE46480 dataset of rapidly transported healthy adults with acute mountain sickness was selected and analyzed by weighted gene co-expression network analysis (WGCNA) to construct a co-expression network. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the data set were carried out using Database for Annotation Visualization and Integrated Discovery (DAVID), and the hub genes were selected. We found that the turquoise module was most significantly correlated with acute mountain sickness. The functional enrichment analysis showed that the turquoise module was related to the apoptotic process, protein transport, and translation processes. The metabolic pathway analysis identified hsa03010:ribosome and hsa04144:endocytosis as the most important pathways in the turquoise module. Ten top 10 hub genes (MRPL3, PSMC6, AIMP1, HAT1, DPY30, ATP5L, COX7B, UQCRB, DPM1, and COMMD6) for acute mountain sickness were identified. Conclusion One module and 10 hub genes were identified, which were related to acute mountain sickness. The reference provided by this module may help to elucidate the mechanism of acute mountain sickness. In addition, the hub genes may be used in the future as a biomarker and therapeutic target for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Yue Chang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China
| | - Jiange He
- Institute of Special War Trauma Emergency Technology, Characteristic Medical Center of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Jiqiang Tang
- Department of Orthopaedics, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China
| | - Zhenguo Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - Qun Xia
- Institute of Special War Trauma Emergency Technology, Characteristic Medical Center of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China.
| | - Hai Li
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China. .,Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No.403 Xiqing Road, Xiqing District, Tianjin, 300380, China.
| |
Collapse
|