1
|
Kaushik A, Singh DP, Sahu M, Kumar A, Pratibha, Pandey P, Patel MK, Chanda D, Sundaresan V, Mani DN, Shukla AK. Protective effect of Achyranthes aspera against compound 48/80, histamine and ovalbumin-induced allergic disorders in murine model. Mol Biol Rep 2024; 51:202. [PMID: 38270668 DOI: 10.1007/s11033-023-09137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Achyranthes aspera L. (family Amaranthaceae) is a plant species valued in Ayurveda for the treatment of respiratory ailments. Scientific validation of its antiallergic potential was aimed. METHODS AND RESULTS Three extracts of A. aspera [aqueous (AaAq), hydroalcoholic (AaHA), ethanolic (AaEt)] were evaluated for their potency against C48/80-induced anaphylaxis in mice at 200 mg/kg BW oral dose. The effective dose of the most potent extract was determined through its effect on C48/80-induced anaphylaxis, and was further analyzed through its effect on mast cell degranulation, histamine-induced bronchospasm and ovalbumin (OVA)-induced asthma in a murine model. Among the three extracts, AaAq was found to be most potent at 200 mg/kg BW. AaAq 400 (400 mg/kg BW) was found to be the most effective dose in terms of inhibition of mortality and histamine level. AaAq 400 prevented the peritoneal and mesenteric mast cells from undergoing morphological changes due to degranulation induced by C48/80. Further, AaAq 400 delayed pre-convulsive time in histamine-induced bronchospasm. In the OVA-induced asthma model, AaAq 400 inhibited the level of inflammatory cell count in blood, bronchoalveolar lavage fluid and peritoneal fluid of mice. The Th2 cytokines (IL-4, IL-5, IL-13), TGF-β and OVA-specific IgE were also reduced as evaluated by ELISA. Also, significant reduction in IL-5 (an eosinophilia indicator) transcript abundance and lung inflammatory score was observed. AaAq was safe up to 4000 mg/kg BW. CONCLUSIONS Thus AaAq 400 possesses significant antiallergic potential and acts via attenuation of C48/80-induced anaphylaxis and inhibition of mast cell degranulation. It reduces pre-convulsive dyspnea in histamine-induced bronchospasm and Th2 cytokines in asthmatic mice.
Collapse
Affiliation(s)
- Amit Kaushik
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Dewasya P Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Mridula Sahu
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Ashish Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Pratibha
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Pallavi Pandey
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Manish K Patel
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Velusamy Sundaresan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Daya N Mani
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Wójcik-Pszczoła K, Pociecha K, Chłoń-Rzepa G, Zadrożna M, Nowak B, Plutecka H, Koczurkiewicz-Adamczyk P, Przejczowska-Pomierny K, Pękala E, Gosens R, Wyska E. Inhaled pan-phosphodiesterase inhibitors ameliorate ovalbumin-induced airway inflammation and remodeling in murine model of allergic asthma. Int Immunopharmacol 2023; 119:110264. [PMID: 37159965 DOI: 10.1016/j.intimp.2023.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Asthma is a heterogeneous, chronic respiratory disease characterized by airway inflammation and remodeling. Phosphodiesterase (PDE) inhibitors represent one of the intensively studied groups of potential anti-asthmatic agents due to their affecting both airway inflammation and remodeling. However, the effect of inhaled pan-PDE inhibitors on allergen induced asthma has not been reported to date. In this study we investigated the impact of two, representative strong pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione: compound 38 and 145, on airway inflammation and remodeling in murine model of ovalbumin (OVA)-challenged allergic asthma. Female Balb/c mice were sensitized and challenged with OVA, 38 and 145 were administrated by inhalation, before each OVA challenge. The inhaled pan-PDE inhibitors markedly reduced the OVA-induced airway inflammatory cell infiltration, eosinophil recruitment, Th2 cytokine level in bronchoalveolar lavage fluid, as well as both, total and OVA-specific IgE levels in plasma. In addition, inhaled 38 and 145 decreased many typical features of airway remodeling, including goblet cell metaplasia, mucus hypersecretion, collagen overproduction and deposition, as well as Tgfb1, VEGF, and α-SMA expression in airways of allergen challenged mice. We also demonstrated that both 38 and 145 alleviate airway inflammation and remodelling by inhibition of the TGF-β/Smad signaling pathway activated in OVA-challenged mice. Taken together, these results suggest that the investigated pan-PDE inhibitors administered by inhalation are dual acting agents targeting both airway inflammation and remodeling in OVA-challenged allergic asthma and may represent promising, anti-asthmatic drug candidates.
Collapse
Affiliation(s)
- Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Zadrożna
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Nowak
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Cytobiology, Medyczna 9, 30-688 Kraków, Poland
| | - Hanna Plutecka
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Przejczowska-Pomierny
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland
| | - Reinoud Gosens
- University of Groningen, Department of Molecular Pharmacology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
3
|
Nkeck JP, Nkeck JR, Chedjou JP, Ndoadoumgue AL, Essama DB, Afane Ze E, Mbacham WF. MCP-1-2518 (A>G) polymorphism and asthma risk: a pilot case-control study in Cameroon. Pan Afr Med J 2023; 44:166. [PMID: 37455894 PMCID: PMC10349619 DOI: 10.11604/pamj.2023.44.166.38544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction there is little data on the genetic determinants of asthma in Cameroon and sub-Saharan Africa, yet the involvement of genetics in the pathogenesis of this disease has been reported in the literature for several years. This study aims to investigate the possible role of MCP-1 2518 for the risk of asthma in Cameroonians. Methods we performed a case-control study on 30 volunteers suffering from asthma, matched by aged and sex to 30 healthy subjects. We determine the polymorphism of MCP-1 2518 using restriction fragment length polymorphism following Polymerase Chain Reaction (RFLP-PCR). Fisher exact test was used to compare proportions, with a threshold of significance set at 0.05. Results the average age of cases was 21±10 years with 17 (56.7%) females. The distribution of the MCP-1-2518 (A>G) gene polymorphism in people with asthma was as follows: 3 for AA, 5 for GG, and 22 for AG. The minor G allele was predominant (90%) in people with asthma. It was significantly associated with asthma whether the genotype was heterozygous AG or homozygous GG (p<0.01). Conclusion MCP-1-2518 (A>G) shows an association with asthma in our sample. Future larger studies evaluating several polymorphisms are needed to describe the genetic determinants of asthma in Cameroon and sub-Saharan Africa.
Collapse
Affiliation(s)
- Jériel Pascal Nkeck
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jan René Nkeck
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean-Paul Chedjou
- Laboratory of Public Health Biotechnology, Biotechnology Centre of the University of Yaoundé I, Yaoundé, Cameroon
| | - Aude Laetitia Ndoadoumgue
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- School of Health and Related Research, The University of Sheffield, United Kingdom
| | - Doris Bibi Essama
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Emmanuel Afane Ze
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Pneumology Unit, Jamot Hospital of Yaoundé, Yaoundé, Cameroon
| | - Wilfred Fon Mbacham
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Laboratory of Public Health Biotechnology, Biotechnology Centre of the University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
4
|
Makled MN, El-Sheakh AR. Fingolimod attenuates ovalbumin-induced airway inflammation via inhibiting MAPK/ERK signaling in mice. J Biochem Mol Toxicol 2023; 37:e23266. [PMID: 36468814 DOI: 10.1002/jbt.23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The current study was designed to investigate the potential anti-inflammatory and antioxidant effects of fingolimod against Ovalbumin (Ova)-induced allergic airway inflammation compared to dexamethasone. Fingolimod was given (0.5 mg/kg/day, p.o.) for sensitized mice 1 h before Ova challenge from Days 19 to 24. Fingolimod significantly inhibited Ova-induced elevation of inflammatory cells and eosinophils numbers in bronchoalveolar lavage fluid (BALF) and reduced concentrations of immunoglobulin E in serum and of sphingosine-1-phosphate, interleukin (IL)-4, and IL-13 in BALF. Fingolimod inhibited microvascular leakage and edema as reflected by the decreased lung/body weight index. These findings were supported by histopathological examination results showing that fingolimod substantially decreased perivascular edema and inflammatory cell infiltration. Fingolimod also attenuated Ova-induced oxidative stress as evidenced by decreased malondialdehyde concentration along with increasing concentrations of reduced glutathione and superoxide dismutase in lung tissues. Fingolimod also significantly decreased monocyte chemoattractant protein-1 (MCP-1), p-ERK, and p-P38 in lung tissues of Ova-challenged mice. In conclusion, the current study demonstrated the anti-inflammatory and antioxidant effects of fingolimod in allergic airway inflammation that might be associated with the downregulation of mitogen activated kinases signaling to decrease T helper 2 cytokine secretion (IL-4 and IL-13) and MCP-1 expression, along with the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Future Studies and Risks Management & National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, ElSayeda Zeinab, Egypt
| |
Collapse
|
5
|
Aslaner DM, Alghothani O, Saldana TA, Ezell KG, Yallourakis MD, MacKenzie DM, Miller RA, Wold LE, Gorr MW. E-cigarette vapor exposure in utero causes long-term pulmonary effects in offspring. Am J Physiol Lung Cell Mol Physiol 2022; 323:L676-L682. [PMID: 36218276 PMCID: PMC9722245 DOI: 10.1152/ajplung.00233.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
The in utero environment is sensitive to toxicant exposure, altering the health and growth of the fetus, and thus sensitive to contaminant exposure. Though recent clinical data suggest that e-cigarette use does no further harm to birth outcomes than a nicotine patch, this does not account for the effects of vaping during pregnancy on the long-term health of offspring. Pregnant mice were exposed to: 1) e-cigarette vapor with nicotine (PV + Nic; 2% Nic in 50:50 propylene glycol: vegetable glycerin), 2) e-cigarette vapor without nicotine [PV; (50:50 propylene glycol:vegetable glycerin)], or 3) HEPA filtered air (FA). Dams were removed from exposure upon giving birth. At 5 mo of age, pulmonary function tests on the offspring revealed female and male mice from the PV group had greater lung stiffness (Ers) and alveolar stiffness (H) compared with the FA group. Furthermore, baseline compliance (Crs) was reduced in female mice from the PV group and in male mice from the PV and PV + Nic groups. Lastly, female mice had decreased forced expiratory volume (FEV0.1) in the PV group, but not in the male groups, compared with the FA group. Lung histology revealed increased collagen deposition around the vessels/airways and in alveolar tissue in PV and PV + Nic groups. Furthermore, goblet hyperplasia was observed in PV male and PV/PV + Nic female mice. Our work shows that in utero exposure to e-cigarette vapor, regardless of nicotine presence, causes lung dysfunction and structural impairments that persist in the offspring to adulthood.
Collapse
Affiliation(s)
- David M Aslaner
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Omar Alghothani
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Ty A Saldana
- College of Nursing, The Ohio State University, Columbus, Ohio
| | | | | | | | - Roy A Miller
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Loren E Wold
- College of Nursing, The Ohio State University, Columbus, Ohio
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew W Gorr
- College of Nursing, The Ohio State University, Columbus, Ohio
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
El-Baz LM, Elaidy SM, Hafez HS, Shoukry NM. Vismodegib, a sonic hedgehog signalling blockade, ameliorates ovalbumin and ovalbumin/lipopolysaccharide-induced airway inflammation and asthma phenotypical models. Life Sci 2022; 310:121119. [DOI: 10.1016/j.lfs.2022.121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
7
|
Jia J, Zeng M, Zhu D, Jiao X, Zhang B, Yang R, Feng W, Zheng X. An Amide Alkaloid Isolated from Ephedra sinica Ameliorates OVA-Induced Allergic Asthma by Inhibiting Mast Cell Activation and Dendritic Cell Maturation. Int J Mol Sci 2022; 23:13541. [PMID: 36362328 PMCID: PMC9655655 DOI: 10.3390/ijms232113541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 09/14/2023] Open
Abstract
Asthma, which is a chronic inflammatory disease of the airways, is usually caused by allergens in which various structures and immune cells are involved. Ephedra sinica, the most commonly used Chinese medicine, has significant clinical effects on asthma, but its components are complex and the mechanism of action has not been fully elucidated. Among its components, we identified an amide alkaloid (EB-A) and investigated its anti-asthmatic activity and the underlying mechanisms. In this study, we replicated an OVA-sensitized/challenged allergic asthma mouse model, and divided the mice into a model (OVA) group, positive drug (Y, 0.5 mg/kg/day) group, and EB-A treatment with low (Low, 10 mg/kg/day) and high dose (High, 20 mg/kg/day) groups. Asthma-related features were analyzed through the airway hyperresponsiveness (AHR), cough and wheeze indexes, allergen-specific IgE, prostaglandin D2 (PDG2), and lung histology in mice. The levels of apoptosis and reactive oxygen species (ROS) in the primary lung cells, cytokines in the serum and broncho-alveolar lavage fluid (BALF), and proteinase-activated receptor-2 (PAR2) pathway activation in the lung tissue were measured to evaluate the inflammatory injury and lung epithelial barrier damage in the mice. Dendritic cell (DC) maturation and mast cell (MC) activation were verified in vitro and in vivo. Furthermore, the effect of a PAR2 activation in lung epithelial cells on the maturation of DCs was evaluated by the co-culture system of (human bronchial epithelial cell lines) 16HBE and bone marrow-derived dendritic cells (BMDCs). The results showed that EB-A inhibited the typical asthmatic phenotypes, as well as lung injury and inflammation, MC activation and degranulation, and DC maturation in the OVA-sensitized/challenged BALB/c mice. In addition, EB-A inhibited the expression of PAR2 in the lung epithelial cells and significantly interfered with the maturation of DCs after inhibiting PAR2. Taken together, our study firstly demonstrated that EB-A could ameliorate OVA-induced allergic asthma by inhibiting MC activation and DC maturation, and the molecular mechanism of EB-A's anti-asthmatic activity might be mediated by inhibiting PAR2. Our data provide a molecular justification for the use of EB-A in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Denghui Zhu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xinmian Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Ruolan Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| |
Collapse
|
8
|
Short-term PM exposure and social stress cause pulmonary and cardiac dysfunction. Toxicol Lett 2022; 370:66-73. [PMID: 36122649 DOI: 10.1016/j.toxlet.2022.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
Ambient particulate matter (PM) exposure increases risk for cardiopulmonary health problems which may be exacerbated in a stressful environment. Co-exposure to PM and stress characterizes the experience of many deployed military personnel and first responders but has not been thoroughly investigated. This is especially relevant to military personnel who have been exposed to high PM levels in conjunction with stressful military conflict situations. To understand the mechanisms and time-course of the health consequences following burn pit exposure, we exposed mice to moderate levels of ambient PM less than 2.5 μM in diameter (PM2.5) alone or in combination with psychological stress. We found male mice exposed to PM2.5 alone or in combination with stress had significantly reduced pulmonary function when subjected to methacholine, indicating increased airway hyperreactivity. These mice experienced increased goblet cell hyperplasia in their lungs, with no change in alveolar density. Mice exposed to PM2.5 and/or stress also exhibited reduced cardiac contractility, right ventricular (RV) output, and changes in RV capillary density and cardiac inflammatory markers. Taken together, these data indicate that short-term exposure to PM2.5 with or without stress causes a clear reduction in pulmonary and cardiac function. We believe that this model is well-suited for the study of military and other occupational exposures, and future work will identify potential mechanisms, including the inflammatory progression of these co-exposures.
Collapse
|
9
|
Seo HR, Han HJ, Lee Y, Noh YW, Cho SJ, Kim JH. Human Pluripotent Stem Cell-Derived Alveolar Organoid with Macrophages. Int J Mol Sci 2022; 23:ijms23169211. [PMID: 36012471 PMCID: PMC9409017 DOI: 10.3390/ijms23169211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Alveolar organoids (AOs), derived from human pluripotent stem cells (hPSCs) exhibit lung-specific functions. Therefore, the application of AOs in pulmonary disease modeling is a promising tool for understanding disease pathogenesis. However, the lack of immune cells in organoids limits the use of human AOs as models of inflammatory diseases. In this study, we generated AOs containing a functional macrophage derived from hPSCs based on human fetal lung development using biomimetic strategies. We optimized culture conditions to maintain the iMACs (induced hPSC-derived macrophages) AOs for up to 14 days. In lipopolysaccharide (LPS)-induced inflammatory conditions, IL-1β, MCP-1 and TNF-α levels were significantly increased in iMAC-AOs, which were not detected in AOs. In addition, chemotactic factor IL-8, which is produced by mononuclear phagocytic cells, was induced by LPS treatment in iMACs-AOs. iMACs-AOs can be used to understand pulmonary infectious diseases and is a useful tool in identifying the mechanism of action of therapeutic drugs in humans. Our study highlights the importance of immune cell presentation in AOs for modeling inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Ha-Rim Seo
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
| | - Hyeong-Jun Han
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
| | - Youngsun Lee
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
| | - Young-Woock Noh
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
| | - Seung-Ju Cho
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
- Correspondence: (S.-J.C.); (J.-H.K.)
| | - Jung-Hyun Kim
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
- Correspondence: (S.-J.C.); (J.-H.K.)
| |
Collapse
|
10
|
Kim HJ, Song JY, Park TI, Choi WS, Kim JH, Kwon OS, Lee JY. The effects of BRL-50481 on ovalbumin-induced asthmatic lung inflammation exacerbated by co-exposure to Asian sand dust in the murine model. Arch Pharm Res 2022; 45:51-62. [PMID: 34984603 PMCID: PMC8726530 DOI: 10.1007/s12272-021-01367-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022]
Abstract
Asian sand dust (ASD), which mainly originates in China and Mongolia in the spring and blows into Korea, can exacerbate respiratory and immunological diseases. This study aims to observe effects of co-exposure to ASD on ovalbumin (OVA)-induced asthmatic lung inflammation and of treatment with a phosphodiesterase 7 (PDE7) inhibitor in a mouse model. The challenge with OVA increased airway hyperresponsiveness (AHR) and inflammatory cell infiltration into the lung tissue. Interleukin (IL)-13, tumor necrosis factor-alpha, monocyte-protein-1, mucin, and antigen-specific IgE and IgG1 production increased in mouse serum. The co-exposure of ASD significantly exacerbated these effects in this asthma model. Notably, the administration of a PDE7 inhibitor, BRL-50481 (BRL), significantly reduced AHR, infiltration of inflammatory cells into the lungs, and the levels of type 2 T helper cell-related cytokines, antigen-specific immunoglobulins, and mucin. Thus, the administration of BRL ameliorated OVA-induced allergic asthmatic responses exacerbated by co-exposure to ASD. This study suggests that PDE7 inhibition can be a therapeutic strategy for inflammatory lung diseases and asthma via the regulation of T lymphocytes and reduction of IL-13, and, consequently, mucin production.
Collapse
Affiliation(s)
- Hong Jo Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jin Yong Song
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae Il Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jong Heon Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Oh Seong Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
- Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|