1
|
Hernandez PA, Bradford JC, Brahmachary P, Ulman S, Robinson JL, June RK, Cucchiarini M. Unraveling sex-specific risks of knee osteoarthritis before menopause: Do sex differences start early in life? Osteoarthritis Cartilage 2024; 32:1032-1044. [PMID: 38703811 DOI: 10.1016/j.joca.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Sufficient evidence within the past two decades have shown that osteoarthritis (OA) has a sex-specific component. However, efforts to reveal the biological causes of this disparity have emerged more gradually. In this narrative review, we discuss anatomical differences within the knee, incidence of injuries in youth sports, and metabolic factors that present early in life (childhood and early adulthood) that can contribute to a higher risk of OA in females. DESIGN We compiled clinical data from multiple tissues within the knee joint-since OA is a whole joint disorder-aiming to reveal relevant factors behind the sex differences from different perspectives. RESULTS The data gathered in this review indicate that sex differences in articular cartilage, meniscus, and anterior cruciate ligament are detected as early as childhood and are not only explained by sex hormones. Aiming to unveil the biological causes of the uneven sex-specific risks for knee OA, we review the current knowledge of sex differences mostly in young, but also including old populations, from the perspective of (i) human anatomy in both healthy and pathological conditions, (ii) physical activity and response to injury, and (iii) metabolic signatures. CONCLUSIONS We propose that to close the gap in health disparities, and specifically regarding OA, we should address sex-specific anatomic, biologic, and metabolic factors at early stages in life, as a way to prevent the higher severity and incidence of OA in women later in life.
Collapse
Affiliation(s)
- Paula A Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | - Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA.
| | - Sophia Ulman
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Movement Science Laboratory, Scottish Rite for Children, Frisco, TX 75034, USA.
| | - Jennifer L Robinson
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar D-66421, Germany.
| |
Collapse
|
2
|
Battersby HS, Evans RJ, Eghobamien IJ, Pamukoff DN. Measurement Position Influences Sex Comparisons of Distal Femoral Cartilage Thickness With Ultrasound Imaging. J Appl Biomech 2024; 40:333-345. [PMID: 39013453 DOI: 10.1123/jab.2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 07/18/2024]
Abstract
The purpose was to examine (1) the effect of measurement position and sex on femoral cartilage outcomes, and (2) the association between gait biomechanics and cartilage outcomes. Fifty individuals participated (25 males and 25 females; age = 20.62 [1.80] y). Ultrasound measured femoral cartilage thickness and echo-intensity at 90°, 115°, and 140° of knee flexion. Gait outcomes included the external knee adduction and knee flexion moments. Cartilage outcomes were compared using 2 (sex) × 3 (position) repeated-measures analysis of variance. Gait and cartilage associations were assessed using stepwise regression. Medial cartilage was thicker when measured at 90° compared with 115° (P = .02) and 140° (P < .01), and 115° compared with 140°, (P < .01) in males but not in females. Cartilage was thicker at 90° compared with 140° across both sexes within all regions (P < .01). Males had thicker cartilage than females in all positions (P < .01). Echo-intensity was lower at 90° than 115° (P < .01) and 140° (P = .01) in the central and lower at 90° than at 115° (P < .01) and 140° (P = .03) in lateral regions. No association was found between gait and cartilage outcomes. Ultrasound imaging position effects cartilage features more in males compared with females. Imaging position and sex influence cartilage outcomes and should be considered in study designs and clinical evaluation.
Collapse
Affiliation(s)
| | - Ryan J Evans
- School of Kinesiology, Western University, London, ON, Canada
| | | | | |
Collapse
|
3
|
Huang F, Harris S, Zhou T, Roby GB, Preston B, Rivière C. Which method for femoral component sizing when performing kinematic alignment TKA? An in silico study. Orthop Traumatol Surg Res 2024; 110:103769. [PMID: 37979678 DOI: 10.1016/j.otsr.2023.103769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
INTRODUCTION The kinematically alignment (KA) technique for TKA aims to reproduce the pre-arthritic knee anatomy, including both the femoro-tibial and femoro-patellar joints. An in silico study was conducted to compare 3 different femoral component sizing techniques to identify the anatomical landmark which allows closest restoration of the native trochlear anatomy. Our study's question was: what was the best method for sizing the femoral component when performing KA-TKA? It was hypothesized that sizing the femoral component by aiming to restore the groove height would be the best method to restore the native trochlear anatomy. METHODS GMK sphere® (Medacta) femoral component 3D models were virtually kinematically aligned on 30 tri-dimensional (3D) bony osteoarthritis knee models. The femoral component was mediolaterally positioned to match distal native and prosthetic grooves. Three methods were used to size the femoral component: a conventional method with the anterior femoral cut flush to the femoral cortex (C-KATKA) and two alternative personalized methods aiming to recreate either the medial facet's height (ATM-KATKA) or the groove's height (ATG-KATKA). In-house analysis software was used to compare native and prosthetic trochlear articular surfaces and mediolateral implant overhangs. RESULTS Compared with the C-KATKA, ATG-KATKA and ATM-KATKA techniques increased the component size by a mean of 0.90 (SD 0.31, min 0.5 to max 1.5) (p<0.001) and 1.02 (SD 0.31, min 0.5 to max 1.5) (p<0.001), respectively. C-KATKA technique substantially proximally understuffed the trochleae with maximum values of 7.11mm (SD 1.39, min 3.93mm to max 10.57mm) in the medial facet, 4.72mm (SD 1.27, min 1.46mm to max 6.86mm) in the lateral facet and 4.51mm (SD 1.40, min 1.92mm to max 7.30mm) in the groove, respectively. Alternative techniques understuffed medial facet with maximum values of 5.07mm (SD 1.29, min 2.83mm to max 8.34mm) and 4.70mm (SD 1.52, min 0.83mm to max 8.04mm) for ATG-KATKA and ATM-KATKA techniques, respectively. There was no significant understuffing of the groove or lateral facet for alternative techniques (ATM and ATG). The ATM-KATKA and ATG-KATKA techniques generated mediolateral implant overhang, mainly postero-lateral, with a rate of 90.0% and 86.7%, respectively. In this study, no mediolateral implant overhang was found for C-KATKA. DISCUSSION/CONCLUSION The C-KATKA technique substantially understuffs the native trochlear articular surfaces in medial, lateral and groove parts. Alternative techniques (ATM-KATKA and ATG-KATKA) for sizing the femoral component better restore the native trochlear anatomy but also generate a high rate of postero-lateral implant overhangs. Would this postero-lateral implant overhang be clinically deleterious remains unknown? The aspect ratio of contemporary femoral TKA implants can probably be optimized to allow a better anatomical restoration of the anterior femoral compartment. LEVEL OF EVIDENCE II, in silico study.
Collapse
Affiliation(s)
- Fasen Huang
- MSK laboratory, Department of Surgery and Cancer, Imperial College London, London W12 0BZ, United Kingdom; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Simon Harris
- MSK laboratory, Department of Surgery and Cancer, Imperial College London, London W12 0BZ, United Kingdom
| | - Tianyu Zhou
- MSK laboratory, Department of Surgery and Cancer, Imperial College London, London W12 0BZ, United Kingdom
| | - Gabriel B Roby
- Bordeaux Arthroplasty Research Institute, 6, rue Georges-Negrevergne, 33700 Mérignac, France
| | - Benjamin Preston
- Imperial College London School of Medicine, South Kensington Campus, London SW7 2DD, United Kingdom
| | - Charles Rivière
- MSK laboratory, Department of Surgery and Cancer, Imperial College London, London W12 0BZ, United Kingdom; Bordeaux Arthroplasty Research Institute, 6, rue Georges-Negrevergne, 33700 Mérignac, France; Clinique du Sport Bordeaux-Mérignac, 4, rue Georges-Negrevergne, 33700 Mérignac, France.
| |
Collapse
|
4
|
Ahmad MI, Liu L, Sheikh A, Nicolaou S. Dual-energy CT: Impact of detecting bone marrow oedema in occult trauma in the Emergency. BJR Open 2024; 6:tzae025. [PMID: 39345237 PMCID: PMC11427222 DOI: 10.1093/bjro/tzae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Dual-energy computed tomography (DECT) is an advanced imaging technique that acquires data using two distinct X-ray energy spectra, typically at 80 and 140 kVp, to differentiate materials based on their atomic number and electron density. This capability allows for the enhanced visualisation of various pathologies, including bone marrow oedema (BMO), by providing high-resolution images with notable energy spectral separation while maintaining radiation doses comparable to conventional CT. DECT's ability to create colour-coded virtual non-calcium (VNCa) images has proven particularly valuable in detecting traumatic bone marrow lesions (BMLs) and subtle fractures, offering a reliable alternative or complement to MRI. DECT has emerged as a significant tool in the detection and characterisation of bone marrow pathologies, especially in traumatic injuries. Its ability to generate high-resolution images and distinguish between different tissue types makes it a valuable asset in clinical diagnostics. With its comparable diagnostic accuracy to MRI and the added advantage of reduced examination time and increased availability, DECT represents a promising advancement in the imaging of BMO and related conditions.
Collapse
Affiliation(s)
| | - Lulu Liu
- Department of Radiology, Univeristy of British Columbia, Vancouver, Canada
| | - Adnan Sheikh
- Department of Radiology, Univeristy of British Columbia, Vancouver, Canada
| | - Savvas Nicolaou
- Department of Radiology, Univeristy of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Nakagawa Y, Mori K, Mukai S, Shinya Y, Nakamura R, Takahashi M. Intraoperative Acoustic Evaluation of Living Human Knee Cartilage-Comparison with Respect to Cartilage Degeneration and Aging. Cartilage 2023; 14:261-268. [PMID: 36788438 PMCID: PMC10601570 DOI: 10.1177/19476035231154509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE The objective of the study was to evaluate the mechanical properties of living human knee cartilage using our ultrasonic device, and to compare the measurements with respect to cartilage degeneration and aging. DESIGN A total of 95 knees which had undergone arthroscopic knee surgery, from 88 patients, were included in the study, with informed consent. All procedures were reviewed and approved by the ethical committee of our hospital. In the study group, there were 41 men, 47 women, 39 right knees, and 56 left knees. The conditions primarily included knee osteoarthritis and anterior cruciate ligament rupture. The mean operative age was 44.1 years old (range = 10-83). We compared mechanical properties of the knee cartilage with respect to aging and gender, in comparison with normal cartilage. A P value of <0.05 represented statistical significance. RESULTS In the context of the International Cartilage Repair Society (ICRS) classification of cartilage degeneration (grade 0-3), the signal intensity in grade 0 was significantly larger than that in grade 1, 2, or 3. The thickness in grade 0 was significantly higher than that in grade 1, 2, or 3. Normal cartilage in older women had the lowest signal intensity and the least cartilage thickness among all the groups. CONCLUSION The ultrasonic system we developed was able to detect early degenerative changes in living cartilage in knees. The lowest signal intensity and least cartilage thickness in normal cartilage among older women were correlated to a large prevalence of knee osteoarthritis in women. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Yasuaki Nakagawa
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Orthopaedic Surgery, Japan Baptist Medical Foundation, Kyoto, Japan
| | - Koji Mori
- Department of Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shogo Mukai
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuki Shinya
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Ryota Nakamura
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Motoi Takahashi
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
6
|
Barnes RFW, Aguero P, Hanacek C, Flores A, Steiner B, Bailey C, Quon DV, Kruse-Jarres R, von Drygalski A. Consistency of serial ultrasonographic joint tissue measurements by the Joint tissueActivity and Damage Exam (JADE) protocol in relation to hemophilic joint health parameters. BMC Musculoskelet Disord 2023; 24:299. [PMID: 37061676 PMCID: PMC10105411 DOI: 10.1186/s12891-023-06419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVES The Joint tissueActivity and Damage Exam (JADE) is a point-of-care (POC) musculoskeletal ultrasound (MSKUS) protocol for non-radiologists to evaluate hemophilic arthopathy. Our aim was to determine the consistency of cross-sectional analyses of direct tissue measurements (JADE protocol) and clinical Hemophilia Joint Health Score [HJHS] and functional joint assessments (arc) at three clinic visits. METHODS We prospectively studied adults (n = 44) with hemophilia (A or B) of any severity and arthropathy at 3 North American sites. We assessed HJHS, total arc, and JADE parameters (bilateral elbows, ankles, and knees) at study entry, at ≈12-18 months, and at ≈24-36 months, and used MSKUS to evaluate painful episodes between study visits. JADE measurements included osteochondral alterations, cartilage thickness, and soft tissue expansion at sentinel positions. Associations between joint HJHS and total arc with each JADE variable were examined with random intercept models. RESULTS At each visit increasing HJHS and decreasing total arc were associated in the expected direction with increasing length of OAs and soft tissue expansion in all joints, and decreasing cartilage thickness in the knee. However, HJHS associations with cartilage thickness were U-shaped for elbow and ankle (i.e. cartilage thinning and thickening). Associations between total arc and cartilage thickness followed a similar curve. (Near) normal levels of both joint parameters (HJHS and total arc) were associated with normal ranges of cartilage thickness. JADE views were also helpful to detect hemarthrosis in association with joint pains. CONCLUSIONS POC MSKUS applying direct tissue measurements using the JADE protocol provided reproducible cross-sectional associations with joint health outcomes on three visits. These findings advance protocol validation and enable iterative adaptations resulting in JADE protocol version 2.
Collapse
Affiliation(s)
- Richard F W Barnes
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, 9333 Genesee Avenue, St 310, San Diego, CA, 92122, USA
| | - Peter Aguero
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, 9333 Genesee Avenue, St 310, San Diego, CA, 92122, USA
| | - Cris Hanacek
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, 9333 Genesee Avenue, St 310, San Diego, CA, 92122, USA
| | - Andres Flores
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, 9333 Genesee Avenue, St 310, San Diego, CA, 92122, USA
- Department of Physical Medicine and Rehabilitation, University of California San Diego, San Diego, CA, USA
| | - Bruno Steiner
- Washington Center for Bleeding Disorders, Seattle, WA, USA
| | - Cindy Bailey
- Orthopaedic Hemophilia Treatment Center at Orthopaedic Institute for Children Los Angeles, Los Angeles, CA, USA
| | - Doris V Quon
- Orthopaedic Hemophilia Treatment Center at Orthopaedic Institute for Children Los Angeles, Los Angeles, CA, USA
| | | | - Annette von Drygalski
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, 9333 Genesee Avenue, St 310, San Diego, CA, 92122, USA.
| |
Collapse
|
7
|
Femoral Cartilage Thickness in Knee Osteoarthritis Patients and Healthy Adults: An Ultrasound Measurement Comparison. ScientificWorldJournal 2023; 2023:3942802. [PMID: 36845755 PMCID: PMC9957620 DOI: 10.1155/2023/3942802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Background Currently, conventional radiography is still widely used to diagnose knee osteoarthritis and assess the grade according to Kallgren and Lawrence's criteria. Ultrasound is a simple, inexpensive, noninvasive, and dynamic modality for evaluating femoral cartilage (FC) thickness. This study aims to measure the FC thickness in knee osteoarthritis (OA) patients and compare it to healthy adults using ultrasound assessment. Methods An observational study with a cross-sectional design was conducted at the Department of Physical Medicine and Rehabilitation of Hajj General Hospital, Surabaya, Indonesia, from May to July 2022. Participants radiologically diagnosed with OA were included in the study and assigned to the OA group. Meanwhile, healthy adults without knee symptoms were included in the control group. FC thickness was measured using ultrasound scans at three sites: medial condyle (MC), intercondylar (IC), and lateral condyle (LC) on both sides of the knee. Results The mean age in the OA and control groups was 61.03 ± 8.6 and 33.93 ± 14.7 years, respectively. Most participants in both groups were female. The OA group exhibited a thinner FC (1.49-1.63 mm) than the control group (1.68-1.87 mm). There was a significant difference in the mean of the right and left MC in both groups (p < 0.05) but no significant difference in the IC and LC. Conclusion OA patients exhibited a thinner FC than healthy adults in the control group. There was a significant difference in the mean thickness of the MC between groups.
Collapse
|
8
|
Uysal A, Oktay G, Ural C, Kalkan NB. The effect of ferritin levels on distal femoral cartilage thickness in patients with beta thalassaemia major. J Bone Miner Metab 2023; 41:95-104. [PMID: 36422676 DOI: 10.1007/s00774-022-01384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION To the best of our knowledge, the present study is the first in the literature to assess distal femoral cartilage thickness and its relationship with ferritin levels in adult patients with beta thalassaemia major (BTM). MATERIALS AND METHODS 45 patients with BTM and 45 healthy controls were included in the study. Ferritin and haemoglobin levels of the patient and healthy groups were determined by blood analysis and distal femoral cartilage thicknesses were measured via ultrasound. Then, the patient group was divided into subgroups according to whether their ferritin levels were below or above 2500 µg/L. They were then compared among themselves and with the healthy control group using the available data. RESULTS Distal femoral cartilage thickness values were statistically significantly lower in the BTM group compared to the healthy control group (p values < 0.001). Patients with a ferritin level below 2500 µg/L had statistically significantly higher right and left average distal femoral cartilage thickness values than the patients with a ferritin level above 2500 µg/L (p = 0.029 and p = 0.019, respectively). The right and left average distal femoral cartilage thickness values of the patient subgroup with low ferritin levels were statistically similar to the control group (p = 0.146 and p = 0.164, respectively). CONCLUSION Our study showed that thalassaemia patients are more likely to develop osteoarthritis (OA) than the normal population and possible OA development can be prevented by keeping the ferritin levels of these patients in the optimum range.
Collapse
Affiliation(s)
- Alper Uysal
- Physical Medicine and Rehabilitation Clinic, Hatay Training and Research Hospital, Güzelburç, 31001, Antakya, Hatay, Turkey.
| | - Gönül Oktay
- Thalassemia Center, Hatay Training and Research Hospital, Hatay, Turkey
| | - Cihan Ural
- Hematology Clinic, Hatay Training and Research Hospital, Hatay, Turkey
| | | |
Collapse
|
9
|
Ren Q, Tang D, Xiong Z, Zhao H, Zhang S. Traumatic bone marrow lesions in dual-energy computed tomography. Insights Imaging 2022; 13:174. [PMID: 36308637 PMCID: PMC9617981 DOI: 10.1186/s13244-022-01312-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
Traumatic bone marrow lesions (TBMLs) are considered to represent a range of concealed bone injuries, including haemorrhage, infarction, and localised oedema caused by trabecular microfracture occurring in the cancellous bone. If TBMLs are not managed timeously, they potentially cause a series of complications that can lead to irreversible morbidity and prolonged recovery time. This article reviews interesting image findings of bone marrow lesions in dual-energy computed tomography (DECT). In addition to combining the benefits of traditional CT imaging, DECT also reveals and identifies various structures using diverse attenuation characteristics of different radiographic spectra. Therefore, DECT has the capacity to detect TBMLs, which have traditionally been diagnosed using MRI. Through evaluating DECT virtual non-calcium maps, the detection of TBMLs is rendered easier and more efficient in some acute accidents.
Collapse
Affiliation(s)
- Qiuping Ren
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Deqiu Tang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, Hunan, People's Republic of China
| | - Zhiyuan Xiong
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, Hunan, People's Republic of China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Hernandez PA, Moreno M, Barati Z, Hutcherson C, Sathe AA, Xing C, Wright J, Welch T, Dhaher Y. Sexual Dimorphism in the Extracellular and Pericellular Matrix of Articular Cartilage. Cartilage 2022; 13:19476035221121792. [PMID: 36069595 PMCID: PMC9459468 DOI: 10.1177/19476035221121792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Women have a higher prevalence and burden of joint injuries and pathologies involving articular cartilage than men. Although knee injuries affecting young women are on the rise, most studies related to sexual dimorphism target postmenopausal women. We hypothesize that sexual dimorphism in cartilage structure and mechanics is present before menopause, which can contribute to sex disparities in cartilage pathologies. DESIGN Bovine knee was used as a model to study healthy adult cartilage. We compared elastic moduli under compression, abundances of extracellular and pericellular matrix (PCM) proteins using proteomics, and PCM constituency with tissue immunofluorescence. The gene expression of matrix-related genes under basal, anabolic, and catabolic conditions was assessed by quantitative polymerase chain reaction (qPCR). RESULTS The equilibrium modulus was higher in male cartilage compared with female cartilage. Proteoglycans were not associated with this biomechanical dimorphism. Proteomic and pathway analyses of tissue showed dimorphic enriched pathways in extracellular matrix (ECM)-related proteins in which male cartilage was enriched in matrix interconnectors and crosslinkers that strengthen the ECM network. Moreover, male and female tissue differed in enriched PCM components. Females had more abundance of collagen type VI and decorin, suggesting different PCM mechanics. Furthermore, the activation of regenerative and catabolic function in chondrocytes triggered sex-dependent signatures in gene expression, indicating dimorphic genetic regulation that is dependent on stimulation. CONCLUSIONS We provide evidence for sexual dimorphism in cartilage before menopause. Some differences are intrinsic to chondrocytes' gene expression defined by their XX versus XY chromosomal constituency.
Collapse
Affiliation(s)
- Paula A. Hernandez
- Department of Orthopedic Surgery,
University of Texas Southwestern Medical Center, Dallas, TX, USA,Paula A. Hernandez, Department of
Orthopaedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry
Hines Blvd, Dallas, TX 75390, USA.
| | - Miranda Moreno
- Department of Orthopedic Surgery,
University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zahra Barati
- Department of Orthopedic Surgery,
University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Conner Hutcherson
- Department of Orthopedic Surgery,
University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait A. Sathe
- Eugene McDermott Center for Human
Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX,
USA
| | - Chao Xing
- Eugene McDermott Center for Human
Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX,
USA,Department of Bioinformatics,
University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Population and Data
Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Wright
- Department of Cardiovascular and
Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX,
USA
| | - Tre Welch
- Department of Cardiovascular and
Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX,
USA
| | - Yasin Dhaher
- Department of Orthopedic Surgery,
University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Physical Medicine &
Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX,
USA
| |
Collapse
|