1
|
Hou H, Jiang B, Zhu A, Hou J, Qu Z, Liu R, Li A. Protective effect and mechanism of Sufentanil on acute lung injury in septic mice. Front Pharmacol 2025; 15:1514602. [PMID: 39885929 PMCID: PMC11780379 DOI: 10.3389/fphar.2024.1514602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025] Open
Abstract
This study was designed to investigate the protective effect and mechanism of Sufentanil on acute lung injury in septic mice based on network pharmacology and animal experiments, and to provide new ideas for clinical treatment. To this end, a protein-protein interaction (PPI) network for common targets was first constructed with Swiss Target Prediction Database, GeneCards Database, Draw Venn Diagram Software, STRING 11.5 Database, Cytoscape 3.10.0 Software and Metascape Database, and then key targets were subject to enrichment analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to obtain the key targets of Sufentanil for the treatment of pulmonary sepsis, and then verified by animal experiments. A sepsis model was constructed by cecal ligation and puncture (CLP) in this study, and lung tissues and bronchoalveolar lavage fluid (BALF) were taken from each group of mice. The morphological changes of lung tissues and apoptosis were observed by HE and TUNEL staining, the content of inflammatory factors in the lung tissues was detected by ELISA, and the expression of proteins, such as p-JAK2 and p-STAT3, was detected in the lung tissues by Western blotting. According to the results of network pharmacology, a total of 40 common targets of were screened out for Sufentanil and pulmonary sepsis, and GO enrichment analysis involved 1,483 biological processes (BPs), 84 cellular components (CCs) and 125 molecular functions (MFs); KEGG enrichment analysis identified 137 signaling pathways with p < 0.05 such as JAK-STAT. According to the results of animal experiments, compared with the control group, mice in the model group had severe lung tissue injury and elevated expression of relevant inflammatory factors in lung tissue. Compared with the model group, CLP + Sufentanil group showed reduced pathomorphologic lesions, lower expression of inflammatory factors and apoptosis level, as well as lower expression of p-JAK2 and p-STAT3 proteins in lung tissue. The results of animal experiments were consistent with network pharmacology. In summary, Sufentanil may improve lung injury in septic mice by inhibiting the JAK2-STAT3 signaling pathway, which provides a basis for research on the mechanism of Sufentanil on pulmonary sepsis and clinical treatment.
Collapse
Affiliation(s)
- Hongqiao Hou
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Bowen Jiang
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Aiqing Zhu
- Department of Dermatology and Venereology, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Junjun Hou
- Department of Respiratory and Critical Care Medicine, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Zhe Qu
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Ruping Liu
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Aiqun Li
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
2
|
Song Z, Wang Z, Cai J, Zhou Y, Jiang Y, Tan J, Gu L. Down-regulating lncRNA KCNQ1OT1 relieves type II alveolar epithelial cell apoptosis during one-lung ventilation via modulating miR-129-5p/HMGB1 axis induced pulmonary endothelial glycocalyx. ENVIRONMENTAL TOXICOLOGY 2024; 39:3578-3596. [PMID: 38488667 DOI: 10.1002/tox.24201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Endothelial glycocalyx (EG) maintains vascular homeostasis and is destroyed after one-lung ventilation (OLV)-induced lung injury. Long noncoding RNAs (lncRNAs) are critically involved in various lung injuries. This study aimed to investigate the role and regulatory mechanism of KCNQ1 overlapping transcript 1 (KCNQ1OT1) in OLV-induced lung injury and LPS-induced type II alveolar epithelial cell (AECII) apoptosis. METHODS The rat OLV model was established, and the effects of KCNQ1OT1 on OLV-induced ALI in vivo were explored. Bax and Caspase-3 expression in rat lung tissues was measured by immunochemistry (IHC). AECIIs were isolated from rat lungs and treated with LPS or normal saline (control) for in vitro analysis. The expression of KCNQ1OT1, miR-129-5p, and HMGB1 was measured by quantitative real-time PCR (qRT-PCR) or Western blot (WB). Cell proliferation and apoptosis were examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and flow cytometry. The downstream targets of KCNQ1OT1 were predicted by bioinformatics, and the binding relationship between KCNQ1OT1 and miR-129-3p was verified by dual-luciferase reporter assays. The potential target of miR-129-5p was further explored on the Targetscan website and revealed to target HMGB1. Enzyme-linked immunosorbent assay (ELISA) or WB was adopted to determine the levels of IL-1β, TNF-α, MDA, SOD, heparanase (HPA), matrix metalloproteinase 9 (MMP9), heparan sulfate (HS) and syndecan-1 (SDC-1). RESULTS KCNQ1OT1 and HMGB1 were up-regulated during OLV-induced lung injury, and their expression was positively correlated. KCNQ1OT1 knockdown reduced OLV-induced pulmonary edema and lung epithelial cell apoptosis, increased vascular permeability, reduced IL-1β, TNF-α, MDA, and SOD levels and glycocalyx markers by targeting miR-129-5p or upregulating HMGB1. Overexpressing KCNQ1OT1 promoted cell apoptosis, reduced cell proliferation, aggravated inflammation and oxidative stress, and up-regulated HMGB1, HPA and MMP9 in LPS-treated AECIIs, while the HMGB1 silencing showed the opposite effects. MiR-129-5p mimics partially eliminated the KCNQ1OT1-induced effects, while recombinant HMGB1 restored the effects of miR-129-5p overexpression on AECIIs. Additionally, KCNQ1OT1 was demonstrated to promote the activation of the p38 MAPK/Akt/ERK signaling pathways in AECIIs via HMGB1. CONCLUSION KCNQ1OT1 knockdown alleviated AECII apoptosis and EG damage during OLV by targeting miR-129-5p/HMGB1 to inactivate the p38 MAPK/Akt/ERK signaling. The findings of our study might deepen our understanding of the molecular basis in OLV-induced lung injury and provide clues for the targeted disease management.
Collapse
Affiliation(s)
- Zhenghuan Song
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
| | - Zhongqiu Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
| | - Jiaqin Cai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Yihu Zhou
- Department of Anesthesiology, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Yueyi Jiang
- Department of Anesthesiology, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Jing Tan
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Lianbin Gu
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing City, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| |
Collapse
|
3
|
Liu D, Huang Y, Shang Y. Sufentanil Suppresses Cell Carcinogenesis Via Targeting miR-186-5p/HMGB1 Axis and Wnt/β-Catenin Pathway in Non-Small-Cell Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01104-x. [PMID: 38470557 DOI: 10.1007/s12033-024-01104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Sufentanil is a common opioid anesthetic agent, which exerts anti-cancer properties in several cancer types. However, its action mechanisms in non-small cell lung cancer (NSCLC) are unclear. Therefore, the present study investigated the pharmacological effect of sufentanil on miRNAs in NSCLC treatment. In this study, after treatment with sufentanil, the proliferation, migration, invasion and apoptosis of A549 and H1299 NSCLC cell lines were measured by cell counting kit-8 (CCK-8) assay, colony formation assay, transwell assays and flow cytometry. Quantitative real time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of miR-186-5p and high mobility group box-1 (HMGB1), and their interaction was analyzed using luciferase reporter assay. The proteins of HMGB1, and apoptosis- and Wnt/β-catenin pathway-related factors were detected by western blot. It was demonstrated that sufentanil significantly upregulated miR‑186‑5p to restrict NSCLC cell proliferation, migration, invasion, and boost apoptosis in vitro. Mechanically, miR-186-5p interacted with HMGB1 and negatively regulated HMGB1 in NSCLC cells. Furthermore, rescue assay showed that sufentanil exerted antitumor activities by upregulating miR-186-5p, which targeted HMGB1 and restrained Wnt/β-catenin signal pathway in NSCLC cells. In conclusion, these results suggested that sufentanil disrupts the oncogenicity of NSCLC cells by regulating miR-186-5p/HMGB1/β-catenin axis, providing a promising implication for the anti-oncogenic effect of sufentanil.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Ye Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
4
|
Huang H, Wang J, Hussain SA, Gangireddygari VSR, Fan Y. Gossypin exert lipopolysaccharide induced lung inflammation via alteration of Nrf2/HO-1 and NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37148149 DOI: 10.1002/tox.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Acute Lung Injury (ALI) is a critical medical condition that induces the injury into the lung tissue, resulting in decreased the oxygen levels in the circulation and finally causes the respiratory failure. In this study, we try to made effort for scrutinized the preventive effect of gossypin against lipopolysaccharide (LPS) induced lung inflammation and explore the underlying mechanism. LPS (7.5 mg/kg) was used for induction the lung inflammation in the rats and rats were received the oral administration of gossypin (5, 10 and 15 mg/kg). The wet to dry weight lung ratio and lung index were estimated. The bronchoalveolar lavage fluid (BALF) were collected to determination the inflammatory cells, total protein, macrophages and neutrophils. ELISA kits were used for the estimation of antioxidant, inflammatory cytokines, inflammatory parameters, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) parameters. Finally, we used the lung tissue for scrutinize the alteration in the lung histopathology. Gossypin treatment significantly (p < .001) reduced the W/D ratio of lung tissue and lung index. Gossypin significantly (p < .001) decreased the total cells, neutrophils, macrophages and total protein in BALF. It is also altered the level of inflammatory cytokines, antioxidant and inflammatory parameters, respectively. Gossypin improved the level of Nrf2 and HO-1 at dose dependent manner. Gossypin treatment remarkably enhance the ALI severity via balancing the structural integrity of lung tissue, decrease the thickness of the alveolar wall, decline the pulmonary interstitial edema, and number of inflammatory cells in the lung tissue. Gossypin is a promising agent for the treatment of LPS induced lung inflammation via altering Nrf2/HO-1 and NF-κB.
Collapse
Affiliation(s)
- Hao Huang
- Department of Cardiothoracic, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Venkata Subba Reddy Gangireddygari
- Plant Virus Research, Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Yingying Fan
- Department of Anesthesiology, Honghui Hospital, Xi'an, China
| |
Collapse
|
5
|
Yue Y, Xu F, Zhang J, Zhao M, Zhou F. Sufentanil alleviates pre-eclampsia via silencing microRNA-24-3p to target 11β-Hydroxysteroid dehydrogenase type 2. Bioengineered 2022; 13:11456-11470. [PMID: 35506414 PMCID: PMC9275916 DOI: 10.1080/21655979.2022.2066753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pre-eclampsia (PE) is a prevalent pregnancy disease characterized by insufficient trophoblast cell migration (HTR8/SVneo). Consequently, accelerating trophoblast cell proliferation might ameliorate PE. This study assessed the effects and molecular mechanisms of Sufentanil (SUF) on HTR8/SVneo cells proliferation. HTR8/SVneo cells and PE clinical samples were used. Peripheral blood was collected from PE patients’ samples, and microRNA (miR)-24-3p and 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) was analyzed in the blood and cells. HTR8/SVneo cells were treated with varying SUF concentrations or transfected with miR-24-3p mimics/inhibitors, or HSD11B2 elevation vector. CCK-8, colony formation, transwell, and flow cytometry assays were then carried out. Association of miR-24 − 3p with HSD11B2 was investigated. PE animal model was constructed using Wistar rats to verify SUF’s role on PE in vivo. According to the results, SUF boosted HTR8/SVneo cell proliferation, and inhibited miR-24-3p to accelerate HSD11B2. MiR-24-3p was increased in PE, while HSD11B2 was inhibited, and miR-24-3p targeted HSD11B2. HSD11B2 reversed miR-24-3p’s repression on HTR/SVneo cell advancement. SUF restrained PE’s progression in vivo and in vitro via mediating the miR-24-3p/HSD11B2 axis. In conclusion, SUF enhances HSD11B2 via repressing miR-24-3p, thereby suppressing PE’s progression. The study provides an insight into the possibility of using SUF as a novel therapeutic target for PE, which acts via combining with miR-24-3p.
Collapse
Affiliation(s)
- Yang Yue
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| | - Fu Xu
- Department of Anesthesiology, Longhua District People's Hospital, Shenzhen, Guangdong, China
| | - JiaRong Zhang
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| | - Miao Zhao
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| | - FangFang Zhou
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| |
Collapse
|