1
|
Mohammadian A, Fateh ST, Nikbaf-Shandiz M, Gholami F, Rasaei N, Bahari H, Rastgoo S, Bagheri R, Shiraseb F, Asbaghi O. The effect of acarbose on inflammatory cytokines and adipokines in adults: a systematic review and meta-analysis of randomized clinical trials. Inflammopharmacology 2024; 32:355-376. [PMID: 38170330 DOI: 10.1007/s10787-023-01401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Although a large number of trials have observed an anti-inflammatory property of acarbose, the currently available research remains controversial regarding its beneficial health effects. Hence, the purpose of this study was to examine the effect of acarbose on inflammatory cytokines and adipokines in adults. METHODS PubMed, Web of Science, and Scopus were systematically searched until April 2023 using relevant keywords. The mean difference (MD) of any effect was calculated using a random-effects model. Weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated via the random-effects model. RESULTS The current meta-analysis of data comprised a total of 19 RCTs. Meta-analysis showed that acarbose significantly decreased tumor necrosis factor-alpha (TNF-α) (weighted mean difference [WMD]) = - 4.16 pg/ml, 95% confidence interval (CI) - 6.58, - 1.74; P = 0.001) while increasing adiponectin (WMD = 0.79 ng/ml, 95% CI 0.02, 1.55; P = 0.044). However, the effects of acarbose on TNF-α concentrations were observed in studies with intervention doses ≥ 300 mg/d (WMD = - 4.09; 95% CI - 7.00, - 1.18; P = 0.006), and the adiponectin concentrations were significantly higher (WMD = 1.03 ng/ml, 95%CI 0.19, 1.87; P = 0.016) in studies in which the duration of intervention was less than 24 weeks. No significant effect was seen for C-reactive protein (CRP; P = 0.134), interleukin-6 (IL-6; P = 0.204), and leptin (P = 0.576). CONCLUSION Acarbose had beneficial effects on reducing inflammation and increasing adiponectin. In this way, it may prevent the development of chronic diseases related to inflammation. However, more studies are needed.
Collapse
Affiliation(s)
- Ali Mohammadian
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Bahari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Rastgoo
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|
3
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Ahrén J, Pirouzifard M, Holmquist B, Sundquist J, Halling A, Sundquist K, Zöller B. A hypothesis - generating Swedish extended national cross-sectional family study of multimorbidity severity and venous thromboembolism. BMJ Open 2023; 13:e072934. [PMID: 37328186 PMCID: PMC10277039 DOI: 10.1136/bmjopen-2023-072934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVES Venous thromboembolism (VTE) is a common worldwide disease. The burden of multimorbidity, that is, two or more chronic diseases, has increased. Whether multimorbidity is associated with VTE risk remains to be studied. Our aim was to determine any association between multimorbidity and VTE and any possible shared familial susceptibility. DESIGN A nationwide extended cross-sectional hypothesis - generating family study between 1997 and 2015. SETTING The Swedish Multigeneration Register, the National Patient Register, the Total Population Register and the Swedish cause of death register were linked. PARTICIPANTS 2 694 442 unique individuals were analysed for VTE and multimorbidity. MAIN OUTCOMES AND MEASURES Multimorbidity was determined by a counting method using 45 non-communicable diseases. Multimorbidity was defined by the occurrence of ≥2 diseases. A multimorbidity score was constructed defined by 0, 1, 2, 3, 4 or 5 or more diseases. RESULTS Sixteen percent (n=440 742) of the study population was multimorbid. Of the multimorbid patients, 58% were females. There was an association between multimorbidity and VTE. The adjusted odds ratio (OR) for VTE in individuals with multimorbidity (2 ≥ diagnoses) was 3.16 (95% CI: 3.06 to 3.27) compared with individuals without multimorbidity. There was an association between number of diseases and VTE. The adjusted OR was 1.94 (95% CI: 1.86 to 2.02) for one disease, 2.93 (95% CI: 2.80 to 3.08) for two diseases, 4.07 (95% CI: 3.85 to 4.31) for three diseases, 5.46 (95% CI: 5.10 to 5.85) for four diseases and 9.08 (95% CI: 8.56 to 9.64) for 5 ≥ diseases. The association between multimorbidity and VTE was stronger in males OR 3.45 (3.29 to 3.62) than in females OR 2.91 (2.77 to 3.04). There were significant but mostly weak familial associations between multimorbidity in relatives and VTE. CONCLUSIONS Increasing multimorbidity exhibits a strong and increasing association with VTE. Familial associations suggest a weak shared familial susceptibility. The association between multimorbidity and VTE suggests that future cohort studies where multimorbidity is used to predict VTE might be worthwhile.
Collapse
Affiliation(s)
- Jonatan Ahrén
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - MirNabi Pirouzifard
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | | | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Anders Halling
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Bengt Zöller
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
5
|
Kurien SS, David R, Varma RP, Dev AS, Chellappan A, Yadev IP. Correlation Between Biomarkers and Age-Adjusted Charlson Comorbidity Index in Patients With COVID-19: A Cross-Sectional Study in a Tertiary Care Center in South India. Cureus 2023; 15:e36000. [PMID: 37041917 PMCID: PMC10083133 DOI: 10.7759/cureus.36000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background Coronaviruses, generally known to cause a mild degree of respiratory illness have in the recent past caused three serious disease outbreaks. The world is yet to be released from the grip of the most recent coronavirus disease 2019 (COVID-19) pandemic due to emerging mutant strains. Age, presence of comorbidities, clinical severity, and laboratory markers such as C-reactive protein and D-dimer are some of the factors being employed to prioritize patients for hospital care. It is known that comorbidities themselves are an outcome of inflammation and can induce a pro-inflammatory state. Our study aims to elucidate the influence of age and comorbidities on laboratory markers in patients with COVID-19. Methodology This is a single-center retrospective study of patients with a laboratory diagnosis of COVID-19 admitted to our hospital between September 21, 2020, and October 1, 2020. A total of 387 patients above the age of 18 years were included in the analysis and categorized based on the age-adjusted Charlson comorbidity index (ACCI) score into group A (score ≤4) and group B (score >4). Demographic, clinical, and laboratory factors as well as outcomes were compared. Results Group B exhibited higher intensive care unit admission and mortality, as well as statistically significant higher mean values of most laboratory markers. A correlation was also observed between the ACCI score and biomarker values. On comparison between the two groups regarding cut-offs predicting mortality for laboratory determinants, no consistent pattern was observed. Conclusions A correlation between age, the number of comorbidities, and laboratory markers was observed in our analysis of COVID-19-affected patients. Aging and comorbid conditions can produce a state of meta-inflammation and can thereby contribute to hyperinflammation in COVID-19. This can be an explanation for the higher risk of COVID-19-related mortality in older individuals and those with underlying comorbidities.
Collapse
|
6
|
Garay RP. Recent clinical trials with stem cells to slow or reverse normal aging processes. FRONTIERS IN AGING 2023; 4:1148926. [PMID: 37090485 PMCID: PMC10116573 DOI: 10.3389/fragi.2023.1148926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023]
Abstract
Aging is associated with a decline in the regenerative potential of stem cells. In recent years, several clinical trials have been launched in order to evaluate the efficacy of mesenchymal stem cell interventions to slow or reverse normal aging processes (aging conditions). Information concerning those clinical trials was extracted from national and international databases (United States, EU, China, Japan, and World Health Organization). Mesenchymal stem cell preparations were in development for two main aging conditions: physical frailty and facial skin aging. With regard to physical frailty, positive results have been obtained in phase II studies with intravenous Lomecel-B (an allogeneic bone marrow stem cell preparation), and a phase I/II study with an allogeneic preparation of umbilical cord-derived stem cells was recently completed. With regard to facial skin aging, positive results have been obtained with an autologous preparation of adipose-derived stem cells. A further sixteen clinical trials for physical frailty and facial skin aging are currently underway. Reducing physical frailty with intravenous mesenchymal stem cell administration can increase healthy life expectancy and decrease costs to the public health system. However, intravenous administration runs the risk of entrapment of the stem cells in the lungs (and could raise safety concerns). In addition to aesthetic purposes, clinical research on facial skin aging allows direct evaluation of tissue regeneration using sophisticated and precise methods. Therefore, research on both conditions is complementary, which facilitates a global vision.
Collapse
Affiliation(s)
- Ricardo P. Garay
- Pharmacology and Therapeutics, Craven, 91360 Villemoisson-sur-Orge, France
- CNRS, National Centre of Scientific Research, Paris, France
- *Correspondence: Ricardo P. Garay,
| |
Collapse
|
7
|
Díez-Villanueva P, Jiménez-Méndez C, Bonanad C, Ortiz-Cortés C, Barge-Caballero E, Goirigolzarri J, Esteban-Fernández A, Pérez-Rivera A, Cobo M, Sanz-García A, Formiga F, Ariza-Solé A, Martínez-Sellés M, Alfonso F. Sex differences in the impact of frailty in elderly outpatients with heart failure. Front Cardiovasc Med 2022; 9:1000700. [PMID: 36172583 PMCID: PMC9510708 DOI: 10.3389/fcvm.2022.1000700] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Frailty is common among patients with heart failure (HF). Our aim was to address the role of frailty in the management and prognosis of elderly men and women with HF. Methods and results Prospective multicenter registry that included 499 HF outpatients ≥75 years old. Mean age was 81.4 ± 4.3 years, and 193 (38%) were women. Compared with men, women were older (81.9 ± 4.3 vs. 81.0 ± 4.2 years, p = 0.03) and had higher left ventricular ejection fraction (46 vs. 40%, p < 0.001) and less ischemic heart disease (30 vs. 57%, p < 0.001). Women had a higher prevalence of frailty (22 vs. 10% with Clinical Frailty Scale, 34 vs. 15% with FRAIL, and 67% vs. 46% with the mobility visual scale, all p-values < 0.001) and other geriatric conditions (Barthel index ≤90: 14.9 vs. 6.2%, p = 0.003; malnutrition according to Mini Nutritional Assessment Short Formulary ≤11: 55% vs. 42%, p = 0.007; Pfeiffer cognitive test's errors: 1.6 ± 1.7 vs. 1.0 ± 1.6, p < 0.001; depression according to Yesavage test; p < 0.001) and lower comorbidity (Charlson index ≥4: 14.1% vs. 22.1%, p = 0.038). Women also showed worse self-reported quality of life (6.5 ± 2.1 vs. 6.9 ± 1.9, on a scale from 0 to 10, p = 0.012). In the univariate analysis, frailty was an independent predictor of mortality in men [Hazard ratio (HR) 3.18, 95% confidence interval (CI) 1.29–7.83, p = 0.012; HR 4.53, 95% CI 2.08–9.89, p < 0.001; and HR 2.61, 95% CI 1.23–5.43, p = 0.010, according to FRAIL, Clinical Frailty Scale, and visual mobility scale, respectively], but not in women. In the multivariable analysis, frailty identified by the visual mobility scale was an independent predictor of mortality (HR 1.95, 95% CI 1.04–3.67, p = 0.03) and mortality/readmission (HR 2.06, 95% CI 1.05–4.04, p = 0.03) in men. Conclusions In elderly outpatients with HF frailty is more common in women than in men. However, frailty is only associated with mortality in men.
Collapse
Affiliation(s)
- Pablo Díez-Villanueva
- Cardiology Department, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, CIBERCV, IIS-IP, Madrid, Spain
- *Correspondence: Pablo Díez-Villanueva
| | - César Jiménez-Méndez
- Cardiology Department, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, CIBERCV, IIS-IP, Madrid, Spain
| | - Clara Bonanad
- Cardiology Department, Hospital Clínico Universitario de Valencia, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain
| | - Carolina Ortiz-Cortés
- Cardiology Department, Hospital Universitario San Pedro de Alcántara, Cáceres, Spain
| | - Eduardo Barge-Caballero
- Cardiology Department, Complejo Hospitalario Universitario de a Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Angel Pérez-Rivera
- Cardiology Department, Hospital Universitario de Burgos, Universidad Isabel I, Burgos, Spain
| | - Marta Cobo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Ancor Sanz-García
- Unidad de Análisis de Datos, Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Francesc Formiga
- Servicio de Medicina Interna, Hospital Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Ariza-Solé
- Cardiology Department, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Martínez-Sellés
- Cardiology Department, Hospital Universitario Gregorio Marañón, CIBERCV, Universidad Europea, Universidad Complutense, Madrid, Spain
| | - Fernando Alfonso
- Cardiology Department, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, CIBERCV, IIS-IP, Madrid, Spain
| |
Collapse
|