1
|
Pennel K, Dutton L, Melissourgou-Syka L, Roxburgh C, Birch J, Edwards J. Novel radiation and targeted therapy combinations for improving rectal cancer outcomes. Expert Rev Mol Med 2024; 26:e14. [PMID: 38623751 PMCID: PMC11140547 DOI: 10.1017/erm.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.
Collapse
Affiliation(s)
- Kathryn Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Louise Dutton
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Lydia Melissourgou-Syka
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- CRUK Scotland Institute, Glasgow, G611BD, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, University of Glasgow, Glasgow, G4 0SF, UK
| | - Joanna Birch
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
2
|
Lin SH, Willers H, Krishnan S, Sarkaria JN, Baumann M, Lawrence TS. Moving Beyond the Standard of Care: Accelerate Testing of Radiation-Drug Combinations. Int J Radiat Oncol Biol Phys 2021; 111:1131-1139. [PMID: 34454045 PMCID: PMC9159468 DOI: 10.1016/j.ijrobp.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
Radiation therapy is a major treatment modality used in > 60% of cancer patients as definitive local treatment for inoperable locoregionally confined tumors and as palliative therapy. Although cytotoxic chemotherapy enhances the effectiveness of treatment, the benefit over radiation therapy alone is modest. There is a need to enhance the effectiveness of local tumor control over what sequentially or concurrently administered cytotoxic chemotherapy provides. Although many biological pathways are known to enhance the effectiveness of radiation therapy, there is currently a paucity of drugs approved for use in combination. Several clinical trials have tested the effectiveness of combining targeted agents or immunotherapies with radiation therapy, but the results of these trials have been negative, likely stemming from the relative lack of preclinical evidence using appropriate experimental standardization or model systems. Accelerating the identification of agents tested in an appropriate clinical context and experimental systems or models would greatly enhance the potential to bring forward early testing of drugs that would not only be safe but also more effective. This article provides an overview of the opportunities and challenges of developing therapeutics to combine with radiation therapy, and some guidance toward preclinical and early clinical testing to improve the chance that advanced phase testing of drug-radiation combinations would be successful in the long term.
Collapse
Affiliation(s)
- Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, Florida
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota
| | | | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Antognelli C, Palumbo I, Piattoni S, Calzuola M, Del Papa B, Talesa VN, Aristei C. Exploring the radiosensitizing potential of AZD8931: a pilot study on the human LoVo colorectal cancer cell line. Int J Radiat Biol 2020; 96:1504-1512. [PMID: 32910714 DOI: 10.1080/09553002.2020.1820610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM To explore the radiosensitizing effect of AZD8931, a novel equipotent and reversible inhibitor of signaling by EGFR (HER1), HER2 and HER3 receptors, focusing on cell cycle progression, apoptosis and clonogenic capacity in the human LoVo colorectal cancer (CRC) cell line, also in comparison with the EGFR-blocking monoclonal antibody Cetuximab or the EGFR tyrosine kinase selective small molecular inhibitor Gefitinib. MATERIALS AND METHODS Cells were pretreated with EGFR inhibitors for 5 consecutive days and then exposed or not to ionizing radiation (IR) (2 Gy daily for 3 consecutive days). Cell proliferation, cell cycle progression and apoptosis were evaluated by flow cytometry and enzyme-linked immunosorbent assay (ELISA), clonogenic potential and radiosensitivity were studied by colony formation assay. RESULTS AZD8931 induced cell cycle arrest and apoptosis more effectively than Gefitinib and Cetuximab and, more importantly, it was significantly more potent than Gefitinib and Cetuximab in radiosensitizing cells. This radiosensitizing action by AZD8931 mainly occurred by markedly reducing cell cycle progression into S phase, the most radioresistant phase of cell cycle, secondly by inducing apoptosis and reducing clonogenic survival. CONCLUSIONS Our results show that AZD8931 increases IR efficacy in LoVo cells, suggesting that it works as a potent radiosensitizer, even more efficient than Gefitinib and Cetuximab, opening new pathways of investigation for further in vitro and in vivo studies aimed at confirming its potential to improve local radiotherapy in CRC.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Isabella Palumbo
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Simonetta Piattoni
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Monica Calzuola
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Cynthia Aristei
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
5
|
Janakiraman H, Zhu Y, Becker SA, Wang C, Cross A, Curl E, Lewin D, Hoffman BJ, Warren GW, Hill EG, Timmers C, Findlay VJ, Camp ER. Modeling rectal cancer to advance neoadjuvant precision therapy. Int J Cancer 2020; 147:1405-1418. [PMID: 31989583 DOI: 10.1002/ijc.32876] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023]
Abstract
Progress in rectal cancer therapy has been hindered by the lack of effective disease-specific preclinical models that account for the unique molecular profile and biology of rectal cancer. Thus, we developed complementary patient-derived xenograft (PDX) and subsequent in vitro tumor organoid (PDTO) platforms established from preneoadjuvant therapy rectal cancer specimens to advance personalized care for rectal cancer patients. Multiple endoscopic samples were obtained from 26 Stages 2 and 3 rectal cancer patients prior to receiving 5FU/RT and implanted subcutaneously into NSG mice to generate 15 subcutaneous PDXs. Second passaged xenografts demonstrated 100% correlation with the corresponding human cancer histology with maintained mutational profiles. Individual rectal cancer PDXs reproduced the 5FU/RT response observed in the corresponding human cancers. Similarly, rectal cancer PDTOs reproduced significant heterogeneity in cellular morphology and architecture. PDTO in vitro 5FU/RT treatment response replicated the clinical 5FU/RT neoadjuvant therapy pathologic response observed in the corresponding patient tumors (p < 0.05). The addition of cetuximab to the 5FU/RT regiment was significantly more sensitive in the rectal cancer PDX and PDTOs with wild-type KRAS compared to mutated KRAS (p < 0.05). Considering the close relationship between the patient's cancer and the corresponding PDX/PDTO, rectal cancer patient-derived research platforms represent powerful translational research resources as population-based tools for biomarker discovery and experimental therapy testing. In addition, our findings suggest that cetuximab may enhance RT effectiveness by improved patient selection based on mutational profile in addition to KRAS or by developing a protocol using PDTOs to identify sensitive patients.
Collapse
Affiliation(s)
- Harinarayanan Janakiraman
- Department of Surgery, Medical University of South Carolina, Charleston, SC.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Yun Zhu
- Department of Surgery, Medical University of South Carolina, Charleston, SC.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Scott A Becker
- Department of Surgery, Medical University of South Carolina, Charleston, SC.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Cindy Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Ashley Cross
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Emily Curl
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - David Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Brenda J Hoffman
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Graham W Warren
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Cynthia Timmers
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC.,Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Victoria J Findlay
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Ernest R Camp
- Department of Surgery, Medical University of South Carolina, Charleston, SC.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
6
|
Liu T, Wang H, Yu H, Bi M, Yan Z, Hong S, Li S. The Long Non-coding RNA HOTTIP Is Highly Expressed in Colorectal Cancer and Enhances Cell Proliferation and Invasion. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:612-618. [PMID: 31945724 PMCID: PMC6965499 DOI: 10.1016/j.omtn.2019.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) are associated with a spectrum of biological processes such as gene regulation on transcriptional and post-transcriptional levels. The HOXA transcript at the distal tip (HOTTIP) lncRNA plays an important role in carcinogenesis; however, the underlying role of HOTTIP in colorectal carcinoma (CRC) remains unknown. The aim of the present study was to evaluate the expression and function of HOTTIP in CRC. In the present study, we analyzed HOTTIP expression levels of CRC patients in tumor and adjacent normal tissue by real-time quantitative PCR. Knockdown of HOTTIP by RNA interference was performed to explore its roles in cell proliferation, migration, and invasion. Our results found that HOTTIP was upregulated in human primary CRC tissues. Knockdown of HOTTIP inhibited CRC cell proliferation, migration, and invasion. Above all, knockdown of HOTTIP could represent a rational therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Helei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haiyao Yu
- Changchun Food and Drug Inspection Center, Changchun, Jilin 130021, China
| | - Miaomiao Bi
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Zhenkun Yan
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: role of EGFR-RAS-FOXM1-β- catenin signaling axis. Oncotarget 2017; 8:21754-21769. [PMID: 28423516 PMCID: PMC5400621 DOI: 10.18632/oncotarget.15567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
Here we showed that the addition of the COX-2 inhibitor celecoxib improved the antitumor efficacy in colorectal cancer (CRC) of the monoclonal anti-EGFR antibody cetuximab. The addition of celecoxib augmented the efficacy of cetuximab to inhibit cell proliferation and to induce apoptosis in CRC cells. Moreover, the combination of celecoxib and cetuximab was more effective than either treatment alone in reducing the tumor volume in a mouse xenograft model. The combined treatment enhanced the inhibition of EGFR signaling and altered the subcellular distribution of β-catenin. Moreover, knockdown of FOXM1 showed that this transcription factor participates in this enhanced antitumoral response. Besides, the combined treatment decreased β-catenin/FOXM1 interaction and reduced the cancer stem cell subpopulation in CRC cells, as indicated their diminished capacity to form colonospheres. Notably, the inmunodetection of FOXM1 in the nuclei of tumor cells in human colorectal adenocarcinomas was significantly associated with response of patients to cetuximab. In summary, our study shows that the addition of celecoxib enhances the antitumor efficacy of cetuximab in CRC due to impairment of EGFR-RAS-FOXM1-β-catenin signaling axis. Results also support that FOXM1 could be a predictive marker of response of mCRC patients to cetuximab therapy.
Collapse
|
8
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
9
|
Huang X, Liu T, Wang Q, Zhu W, Meng H, Guo L, Wei T, Zhang J. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations. Glycobiology 2017; 27:713-725. [DOI: 10.1093/glycob/cwx046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/29/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
|
10
|
Vassileva V, Rajkumar V, Mazzantini M, Robson M, Badar A, Sharma S, Årstad E, Hochhauser D, Lythgoe MF, Kinghorn J, Boxer GM, Pedley RB. Significant Therapeutic Efficacy with Combined Radioimmunotherapy and Cetuximab in Preclinical Models of Colorectal Cancer. J Nucl Med 2015; 56:1239-45. [PMID: 26045312 DOI: 10.2967/jnumed.115.157362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/19/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Despite extensive efforts to improve the clinical management of patients with colorectal cancer, approved treatments for advanced disease offer limited survival benefit. Therefore, the identification of novel treatment strategies is essential. We evaluated the preclinical efficacy of combination radioimmunotherapy, using a humanized (131)I-labeled anti-carcinoembryonic antigen antibody ((131)I-huA5B7), with cetuximab in colorectal cancer (CRC). METHODS Three human CRC cell lines--SW1222, LoVo, and LS174T--were used to generate subcutaneous xenografts, and stably luciferase-transfected SW1222 cells were used to establish a model of hepatic metastases in immunocompromised mice. Imaging and biodistribution studies were conducted to confirm the selective tumor localization of (131)I-huA5B7. Efficacy was evaluated on the basis of tumor growth delay and survival, along with markers of DNA damage response, cell cycle, proliferation, and apoptosis. RESULTS Selective tumor targeting was achieved with (131)I-huA5B7 alone or in combination with cetuximab without observable toxicity. Compared with monotherapy, combining cetuximab with radioimmunotherapy significantly and synergistically reduced tumor growth and prolonged survival of mice in 2 of the subcutaneous and in the metastatic tumor model. Evidence of DNA damage, G2/M arrest, significantly decreased proliferation, and increased apoptosis were observed with radioimmunotherapy and the combination therapy. However, a significant decrease in DNA-protein kinase expression with the combination regimen suggests that the addition of cetuximab suppressed DNA repair. CONCLUSION Our results demonstrate enhanced therapeutic efficacy with the combination of cetuximab and radioimmunotherapy in CRC, which could potentially translate into successful clinical outcomes. This strategy could improve the treatment of residual disease postoperatively and ultimately prevent or delay recurrence. Furthermore, other carcinoembryonic antigen-expressing malignancies could also benefit from this approach.
Collapse
Affiliation(s)
- Vessela Vassileva
- Department of Oncology, UCL Cancer Institute, University College London, London, United
| | - Vineeth Rajkumar
- Department of Oncology, UCL Cancer Institute, University College London, London, United
| | - Mario Mazzantini
- Department of Oncology, UCL Cancer Institute, University College London, London, United
| | - Mathew Robson
- Department of Oncology, UCL Cancer Institute, University College London, London, United
| | - Adam Badar
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, University College London, London, United Kingdom; and
| | - Surinder Sharma
- Department of Oncology, UCL Cancer Institute, University College London, London, United
| | - Erik Årstad
- Department of Chemistry and Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Daniel Hochhauser
- Department of Oncology, UCL Cancer Institute, University College London, London, United
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, University College London, London, United Kingdom; and
| | - Jane Kinghorn
- Translational Research Office, University College London
| | - Geoffrey M Boxer
- Department of Oncology, UCL Cancer Institute, University College London, London, United
| | | |
Collapse
|
11
|
Ma H, Bi J, Liu T, Ke Y, Zhang S, Zhang T. Icotinib hydrochloride enhances the effect of radiotherapy by affecting DNA repair in colorectal cancer cells. Oncol Rep 2014; 33:1161-70. [PMID: 25572529 DOI: 10.3892/or.2014.3699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/27/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the efficacy and mechanism of the radiosensitisation of icotinib hydrochloride (IH), a novel oral epidermal growth factor receptor-tyrosine kinase activity inhibitor, by evaluating the changes in tumour cell double-strand breaks (DSBs) repair, cell cycle and apoptosis following a combination of IH and radiotherapy (RT) in human colorectal adenocarcinoma cell lines. The HT29 and HCT116 human CRC cell lines were treated with IH and/or radiation. Effects on cell viability and cell cycle progression were measured by MTT, a clonogenic survival assay, and flow cytometry. Immunofluorescent staining and western blot analysis were applied to detect the expression of γ-H2AX and 53BP1 in the different treatment groups. Finally, the in vivo effect on the growth of CRC xenografts was assessed in athymic nude mice. IH inhibited the proliferation and enhanced the radiosensitivity in HT29 and HCT116 CRC cells lines. IH combined with radiation increased cell cycle arrest in the G2/M phase compared to the other treatments in the HT29 cell line (P<0.05). Similarly, cell cycle arrest occurred in the HCT116 cell line, although this increase did not result in significant differences in the RT group (P>0.05). IH combined with radiation significantly inhibited the expression of γ-H2AX and 53BP1 based on results of immunofluorescent staining and western blot analysis. In vivo, IH plus radiation significantly inhibited the tumour growth compared to either agent independently. In conclusion, IH significantly increased the radiosensitivity of HT29 and HCT116 cells in vitro and in vivo. Radiation combined with EGFR blockade inhibited tumour proliferation, increased apoptosis, prolonged G2/M arrest and significantly enhanced DNA injury in colorectal cancer. These data support the clinical trials of biologically targeted and conventional therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Hong Ma
- Cancer Center of Wuhan Union Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianping Bi
- Cancer Center of Wuhan Union Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Liu
- Cancer Center of Wuhan Union Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yang Ke
- Cancer Center of Wuhan Union Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Sheng Zhang
- Cancer Center of Wuhan Union Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Zhang
- Cancer Center of Wuhan Union Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2014; 31:65-75. [PMID: 25117005 DOI: 10.1016/j.semcancer.2014.07.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany.
| |
Collapse
|