1
|
Jiang Y, Xiao H, Sun L, Zhang Y, Liu S, Luo B. LMP2A suppresses the role of AHR pathway through ERK signal pathway in EBV-associated gastric cancer. Virus Res 2021; 297:198399. [PMID: 33753181 DOI: 10.1016/j.virusres.2021.198399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the function of the aryl hydrocarbon receptor (AHR) pathway in Epstein-Barr Virus (EBV)-associated gastric cancer (EBVaGC) and to explore the relationship between EBV and AHR expression. METHODS The expression of AHR in EBVaGC and EBV negative GC (EBVnGC) tissues was detected by immunohistochemistry (IHC). Real-time qPCR (RT-qPCR) and Western blot analysis were used to examine the expression of AHR, cytochrome P450 1A1 (CYP1A1), and cytochrome P450 1B1 (CYP1B1) in gastric cancer cells. The cell proliferation and migration assay were tested by CCK8 and transwell analysis. EBV-encoded latent membrane protein 2A (LMP2A) was over-expressed in SGC7901 cells and silenced in AGS-EBV cells to further identify its role in EBV positive GC cells. RESULTS It was found that EBV infection inhibited the expression of AHR in gastric cancer tissues and cell lines. We also found that the activation of AHR pathway can promote cell proliferation and migration. However, the function was restricted in EBVaGC cell lines compared with EBVnGC. LMP2A can suppress AHR expression and pathway activation by activating phosphorylation of extracellular signal-regulated kinase (ERK) in EBV positive GC cell lines. CONCLUSION EBV-encoded LMP2A regulated the function of the AHR pathway by activating the ERK signal pathway in EBV positive GC cell lines.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Department of Medical Affairs of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China
| | - Lingling Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Department of Clinical Laboratory, Central Hospital of Zibo, 19 Gongqingtuan Road, ZiBo, 255036, China
| | - Shuzhen Liu
- Department of Medical Affairs of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China
| |
Collapse
|
2
|
Shan A, Leng L, Li J, Luo XM, Fan YJ, Yang Q, Xie QH, Chen YS, Ni CS, Guo LM, Tang H, Chen X, Tang NJ. TCDD-induced antagonism of MEHP-mediated migration and invasion partly involves aryl hydrocarbon receptor in MCF7 breast cancer cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122869. [PMID: 33027880 DOI: 10.1016/j.jhazmat.2020.122869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Evidence has shown that the activation of AhR (aryl hydrocarbon receptor) can promote cancer cell metastasis. However, limited studies have been carried out on mixed exposure to endocrine-disrupting chemicals (EDCs), especially in human breast cancer. Therefore, using MCF7 human breast cancer cells, we investigated the effects of coexposure to MEHP (mono 2-ethylhexyl phthalate) and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) on cell migration and invasion, as well as the roles of AhR and the MMP/slug pathway. Our data suggest that MEHP or TCDD can induce migration and invasion in MCF7 cells, and the promotion is partly AhR dependent. We also observed that MEHP antagonized TCDD to reduce AhR-mediated CYP1A1 expression. Subsequently, we revealed that MEHP recruited AhR to dioxin response element (DRE) sequences and decreased TCDD-induced AhR-DRE binding in CYP1A1 genes. Overall, MEHP is a potential AHR agonist, capable of decreasing TCDD-induced AhR-DRE binding in CYP1A1 genes. The antagonizing effect of coexposure led to the inhibition of the epithelial-mesenchymal transition (EMT) in MCF7 cells. Our study provides new evidence for the potential mechanisms involved in EDCs exposure and their interactions in EMT.
Collapse
Affiliation(s)
- Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Ling Leng
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Cell Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Xiu-Mei Luo
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Ya-Jiao Fan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Qun-Hui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yang-Sheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chun-Sheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Li-Ming Guo
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Hua Tang
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
3
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
4
|
Zhu P, Zhou K, Lu S, Bai Y, Qi R, Zhang S. Modulation of aryl hydrocarbon receptor inhibits esophageal squamous cell carcinoma progression by repressing COX2/PGE2/STAT3 axis. J Cell Commun Signal 2020; 14:175-192. [PMID: 31925646 DOI: 10.1007/s12079-019-00535-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with poor prognosis. Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor and emerging evidence shows it is associated with tumor initiation and promotion. However, the relationship between AHR and ESCC is not clear and it is meaningful to explore whether AHR could be a therapeutic target. In the present study, immunohistochemistry was performed to determine AHR expression levels in ESCC tissues. Knockdown of AHR expression in ESCC cell lines genetically and modulation of AHR by 3, 3'-diindolylmethane (DIM) pharmacologically both in vitro and in vivo were utilized to examine the corresponding alterations in cell growth, migration and invasion. Our study indicated that AHR expression levels were elevated in ESCC and associated with poor prognosis. Both knockdown and modulation of AHR inhibited tumor progression through down-regulating expression levels of PCNA, Bcl-2, Cyclin D1, MMP1, MMP2, MMP9 and up-regulating expression levels of Bax, Cleaved-Caspase 3. Our findings also indicated that repressing COX2/PGE2/STAT3 axis exerted inhibitory effects on ESCC both in vitro and in vivo assays. Taken together, AHR plays the key role in ESCC progression and targeting AHR as a therapeutic strategy with DIM is deserved for further exploration.
Collapse
Affiliation(s)
- Peiyao Zhu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Kun Zhou
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Shilong Lu
- Department of Otolaryngology, Dermatology, Pathology, University of Colorado Anschutz Medical Campus, 12700 E 19th Avenue, Aurora, CO, 80045, USA
| | - Yu Bai
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
5
|
Liu Y, Wei Y, Zhang S, Yan X, Zhu H, Xu L, Zhao B, Xie HQ, Yan B. Regulation of Aryl Hydrocarbon Receptor Signaling Pathway and Dioxin Toxicity by Novel Agonists and Antagonists. Chem Res Toxicol 2020; 33:614-624. [PMID: 31878777 DOI: 10.1021/acs.chemrestox.9b00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dioxins, mostly through activation of aryl hydrocarbon receptor (AhR), are potent toxic substances widely distributed in the environment, while moderated suppression of AhR also exhibits anti-tumor effects. Therefore, the proper modulation of AhR activity may counteract AhR-mediated toxicities and certain diseases. In this investigation, we identified several novel AhR moderate agonists and antagonists using chemical biology approaches. The mechanisms and mode of interactions with AhR by these hits were also revealed using both experimental and computational studies. The newly identified AhR moderate agonists and antagonists were predicted to bind to AhR and modulate AhR signaling. The structure-activity relationships of moderate agonists and antagonists and their unique binding features with AhR have created a solid framework for further optimization of the next generation of AhR modulators.
Collapse
Affiliation(s)
- Yin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongyi Wei
- Institute of Environmental Research at Greater Bay, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta , Ministry of Education , Guangzhou 510006 , China.,School of Environmental Science and Engineering , Shandong University , Qingdao 266237 , China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiliang Yan
- School of Environmental Science and Engineering , Shandong University , Qingdao 266237 , China.,The Rutgers Center for Computational and Integrative Biology , Camden , New Jersey 08102 , United States
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology , Camden , New Jersey 08102 , United States
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay, Guangzhou University, Key Laboratory for Water Quality and Conservation of the Pearl River Delta , Ministry of Education , Guangzhou 510006 , China.,School of Environmental Science and Engineering , Shandong University , Qingdao 266237 , China
| |
Collapse
|
6
|
Deuster E, Mayr D, Hester A, Kolben T, Zeder-Göß C, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. Correlation of the Aryl Hydrocarbon Receptor with FSHR in Ovarian Cancer Patients. Int J Mol Sci 2019; 20:ijms20122862. [PMID: 31212758 PMCID: PMC6628023 DOI: 10.3390/ijms20122862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
Expression of the aryl hydrocarbon receptor (AhR) has been described in various tumor entities from different organs. However, its role in ovarian cancer has not been thoroughly investigated. We aimed to elucidate the prognostic impact of AhR, its correlation with the follicle-stimulating hormone receptor (FSHR), and their functional role in ovarian cancer. By immunohistochemistry, AhR staining was analyzed in a subset of 156 samples of ovarian cancer patients. AhR staining was assessed in the nucleus and the cytoplasm using the semi-quantitative immunoreactive score (IRS), and the scores were grouped into high- and low-level expression. AhR expression was detected in all histological subtypes, with clear cell ovarian cancer displaying the highest staining intensity. Low cytoplasmic expression of AhR was associated with longer overall survival (median 183.46 vs. 85.07 months; p = 0.021). We found a positive correlation between AhR and FSHR (p = 0.005). Ovarian cancer patients with high cytoplasmic AhR and concurrent FSHR expression had the worst outcome (median 69.72 vs. 43.32 months; p = 0.043). Consequently, low cytoplasmic AhR expression seems to be associated with improved survival in ovarian cancer patients. Our data suggest that AhR and FSHR levels correlate with each other, and their concurrent expression was observed in ovarian cancer patients with the worst outcome. Further investigation of the interaction of both receptors and their functional role might better predict the impact of endocrine therapy in ovarian cancer.
Collapse
Affiliation(s)
- Eileen Deuster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Christine Zeder-Göß
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
7
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. Aryl-Hydrocarbon Receptor as a Potential Target for Anticancer Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bianchi-Smiraglia A, Bagati A, Fink EE, Affronti HC, Lipchick BC, Moparthy S, Long MD, Rosario SR, Lightman SM, Moparthy K, Wolff DW, Yun DH, Han Z, Polechetti A, Roll MV, Gitlin II, Leonova KI, Rowsam AM, Kandel ES, Gudkov AV, Bergsagel PL, Lee KP, Smiraglia DJ, Nikiforov MA. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J Clin Invest 2018; 128:4682-4696. [PMID: 30198908 PMCID: PMC6159960 DOI: 10.1172/jci70712] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.
Collapse
Affiliation(s)
| | | | | | - Hayley C. Affronti
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Brittany C. Lipchick
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sudha Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark D. Long
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Spencer R. Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Shivana M. Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kalyana Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Wolff
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Zhannan Han
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew V. Roll
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Aryn M. Rowsam
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | | | - Kelvin P. Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mikhail A. Nikiforov
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
9
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
10
|
Safe S, Cheng Y, Jin UH. The Aryl Hydrocarbon Receptor (AhR) as a Drug Target for Cancer Chemotherapy. CURRENT OPINION IN TOXICOLOGY 2017; 2:24-29. [PMID: 28459113 DOI: 10.1016/j.cotox.2017.01.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is overexpressed in some patients with different tumor types, and the receptor can be a negative or positive prognostic factor. There is also evidence from both in vivo and in vitro cell culture models that the AhR can exhibit tumor-specific pro-oncogenic and tumor suppressor-like functions and therefore can be treated with AhR antagonists or agonists, respectively. Successful clinical applications of AhR ligands will require the synthesis and development of selective AhR modulators (SAhRMs) with tumor-specific AhR agonist or antagonist activity, and some currently available compounds such as indole-3-carbinol and diindolylmethane-(DIM) and synthetic AhR antagonists are potential drug candidates. There is also evidence that some AhR-active pharmaceuticals, including tranilast, flutamide, hydroxytamoxifen and omeprazole or their derivatives, may be effective AhR-dependent anticancer agents for single or combination cancer chemotherapies for treatment of breast and pancreatic cancers.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843
| | - Yating Cheng
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843
| | - Un-Ho Jin
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
11
|
Li CH, Liu CW, Tsai CH, Peng YJ, Yang YH, Liao PL, Lee CC, Cheng YW, Kang JJ. Cytoplasmic aryl hydrocarbon receptor regulates glycogen synthase kinase 3 beta, accelerates vimentin degradation, and suppresses epithelial-mesenchymal transition in non-small cell lung cancer cells. Arch Toxicol 2016; 91:2165-2178. [PMID: 27752740 PMCID: PMC5399057 DOI: 10.1007/s00204-016-1870-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, has been studied extensively in carcinogenesis through the genomic pathway. In recent years, AHR has also been reported to exert positive or negative effects on epithelial–mesenchymal transition (EMT), the crucial step in tumor malignant progression. However, the detailed mechanism remains controversial. Analysis of AHR-expression levels in non-small cell lung cancer cell lines and lung cancer tissues revealed an inverse correlation between AHR protein levels and tumor cell invasion and metastasis. Overexpression of wild-type AHR in H1299 cells (AHR poorly expressed, potently invasive) not only accelerated mesenchymal vimentin degradation, but also prevented cell invasion in vitro and in vivo. In the absence of AHR agonists, the overexpressed AHR protein was predominantly localized in the cytoplasm, where it interacted with vimentin and functioned as an E3 ubiquitin ligase. A 6-h incubation with the proteasome inhibitor MG-132 fully rescued vimentin from AHR-mediated proteasomal degradation. In AHR-overexpressing H1299 cells, either vimentin degradation or invasive suppression could be reversed when glycogen synthase kinase 3 beta (GSK3β) was inactivated by CHIR-99021 treatment. In contrast, silencing of AHR in A549 cells (AHR highly expressed, weakly invasive) resulted in the downregulation of epithelial biomarkers (E-cadherin and claudin-1), augmentation of mesenchymal vimentin level, and GSK3β Ser-9 hyper-phosphorylation, which led to enhanced invasiveness. This work demonstrates that cytoplasmic, resting AHR protein may act as an EMT suppressor via a non-genomic pathway. Depletion of cytoplasmic AHR content represents a potential switch for EMT, thereby leading to the scattering of tumor cells.
Collapse
Affiliation(s)
- Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Wei Liu
- School of Pharmacy, Taipei Medicine University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Chi-Hao Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Section 1, Taipei 10, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsuan Yang
- Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Section 1, Taipei 10, Taiwan
| | - Po-Lin Liao
- Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Section 1, Taipei 10, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medicine University, 250 Wu-Hsing Street, Taipei, Taiwan.
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Section 1, Taipei 10, Taiwan.
| |
Collapse
|
12
|
Su HH, Lin HT, Suen JL, Sheu CC, Yokoyama KK, Huang SK, Cheng CM. Aryl hydrocarbon receptor-ligand axis mediates pulmonary fibroblast migration and differentiation through increased arachidonic acid metabolism. Toxicology 2016; 370:116-126. [PMID: 27697457 DOI: 10.1016/j.tox.2016.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary fibroblast migration and differentiation are critical events in fibrogenesis; meanwhile, fibrosis characterizes the pathology of many respiratory diseases. The role of aryl hydrocarbon receptor (AhR), a unique cellular chemical sensor, has been suggested in tissue fibrosis, but the mechanisms through which the AhR-ligand axis influences the fibrotic process remain undefined. In this study, the potential impact of the AhR-ligand axis on pulmonary fibroblast migration and differentiation was analyzed using human primary lung fibroblasts HFL-1 and CCL-202 cells. Boyden chamber-based cell migration assay showed that activated AhR in HFL-1cells significantly enhanced cell migration in response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), and a known AhR antagonist, CH223191, inhibited its migratory activity. Furthermore, the calcium mobilization and subsequent upregulated expression of arachidonic acid metabolizing enzymes, including cyclooxygenase2 (COX-2) and 5-lipoxygenase (5-LOX), were observed in TCDD-treated HFL-1 cells, concomitant with elevated levels of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) secretion. Also, significantly increased expression of α-smooth muscle actin α-SMA), a fibroblast differentiation marker, was also noted in TCDD-treated HFL-1 cells (p<0.05), resulting in a dynamic change in cytoskeleton protein levels and an increase in the nuclear translocation of the myocardin-related transcription factor. Moreover, the enhanced levels of α-SMA expression and fibroblast migration induced by TCDD, PGE2 and LTB4 were abrogated by selective inhibitors for COX-2 and 5-LOX. Knockdown of AhR by siRNA completely diminished intracellular calcium uptake and reduced α-SMA protein verified by promoter-reporter assays and chromatin immunoprecipitation. Taken together, our results suggested the importance of the AhR-ligand axis in fibroblast migration and differentiation through its capacity in enhancing arachidonic acid metabolism.
Collapse
Affiliation(s)
- Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ting Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Research Resources and Development, Kaohsiung Medical University, Taiwan
| | - Chau Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Infectious Diseases and Cancer, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Science and Engineering, Department of Pharmacological Science, Tokushima Bunri University, Sanuki, Japan; Department of Molecular Prevention Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shau-Ku Huang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.
| | - Chih Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Ochieng J, Nangami GN, Ogunkua O, Miousse IR, Koturbash I, Odero-Marah V, McCawley LJ, Nangia-Makker P, Ahmed N, Luqmani Y, Chen Z, Papagerakis S, Wolf GT, Dong C, Zhou BP, Brown DG, Colacci AM, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Al-Temaimi R, Al-Mulla F, Bisson WH, Eltom SE. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis 2015; 36 Suppl 1:S128-59. [PMID: 26106135 DOI: 10.1093/carcin/bgv034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
Collapse
Affiliation(s)
- Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Gladys N Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Lisa J McCawley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yunus Luqmani
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Silvana Papagerakis
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Chenfang Dong
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Binhua P Zhou
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
| | - Rabeah Al-Temaimi
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Fahd Al-Mulla
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sakina E Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| |
Collapse
|
14
|
Li Y, Wang K, Jiang YZ, Chang XW, Dai CF, Zheng J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation. Cell Oncol (Dordr) 2014; 37:429-37. [PMID: 25404385 DOI: 10.1007/s13402-014-0206-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, mediates a broad spectrum of biological processes, including ovarian growth and ovulation. Recently, we found that an endogenous AhR ligand (ITE) can inhibit ovarian cancer proliferation and migration via the AhR. Here, we tested whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an exogenous AhR ligand) may exert similar anti-ovarian cancer activities using human ovarian cancer and non-cancerous human ovarian surface epithelial cells. METHODS Two human ovarian cancer cell lines (SKOV-3 and OVCAR-3) and one human ovarian surface epithelial cell line (IOSE-385) were used. Cell proliferation and migration activities were determined using crystal violet and FluoroBlok insert system assays, respectively. AhR protein expression was assessed by Western blotting. Expression of cytochrome P450, family 1, member A1 (CYP1A1) and member B1 (CYP1B1) mRNA was assessed by qPCR. Small interfering RNAs (siRNAs) were used to knock down AhR expression. RESULTS We found that TCDD dose-dependently suppressed OVCAR-3 cell proliferation, with a maximum effect (~70% reduction) at 100 nM. However, TCDD did not affect SKOV-3 and IOSE-385 cell proliferation and migration. The estimated IC50 of TCDD for inhibiting OVCAR-3 cell proliferation was 4.6 nM. At 10 nM, TCDD time-dependently decreased AhR protein levels, while it significantly increased CYP1A1 and CYP1B1 mRNA levels in SKOV-3, OVCAR-3 and IOSE-385 cells, indicating activation of AhR signaling. siRNA-mediated AhR knockdown readily blocked TCDD-mediated suppression of OVCAR-3 cell proliferation. CONCLUSION Our data indicate that TCDD can suppress human ovarian cancer cell proliferation via the AhR signaling pathway and that TCDD exhibits an anti-proliferative activity in at least a subset of human ovarian cancer cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, 202 S. Park St., Madison, WI, 53715, USA
| | | | | | | | | | | |
Collapse
|
15
|
Safe S, Lee SO, Jin UH. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 2013; 135:1-16. [PMID: 23771949 PMCID: PMC3748760 DOI: 10.1093/toxsci/kft128] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | | | |
Collapse
|