1
|
Differential Accumulation of Misfolded Prion Strains in Natural Hosts of Prion Diseases. Viruses 2021; 13:v13122453. [PMID: 34960722 PMCID: PMC8706046 DOI: 10.3390/v13122453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.
Collapse
|
2
|
Mammadova N, West Greenlee MH, Moore SJ, Hwang S, Lehmkuhl AD, Nicholson EM, Greenlee JJ. Evaluation of Antemortem Diagnostic Techniques in Goats Naturally Infected With Scrapie. Front Vet Sci 2020; 7:517862. [PMID: 33240943 PMCID: PMC7677257 DOI: 10.3389/fvets.2020.517862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) that affects sheep and goats. Sheep and goats can be infected with scrapie as lambs or kids via contact with the placenta or placental fluids, or from ingestion of prions shed in the environment and/or bodily fluids (e.g., saliva, urine, and feces). Like other TSEs, scrapie is generally not diagnosed before extensive and irreversible brain damage has occurred. Therefore, a reliable method to screen animals may facilitate diagnosis. Additionally, while natural scrapie in sheep has been widely described, naturally acquired goat scrapie is less well-characterized. The purpose of this study was to better understand natural goat scrapie in regard to disease phenotype (i.e., incubation period, clinical signs, neuroanatomical deposition patterns of PrPSc, and molecular profile as detected by Western blot) and to evaluate the efficacy of antemortem tests to detect scrapie-positive animals in a herd of goats. Briefly, 28 scrapie-exposed goats were removed from a farm depopulated due to previous diagnoses of scrapie on the premises and observed daily for 30 months. Over the course of the observation period, antemortem biopsies of recto-anal mucosa-associated lymphoid tissue (RAMALT) were taken and tested using immunohistochemistry and real-time quaking-induced conversion (RT-QuIC), and retinal thickness was measured in vivo using optical coherence tomography (OCT). Following the observation period, immunohistochemistry and Western blot were performed to assess neuroanatomical deposition patterns of PrPSc and molecular profile. Our results demonstrate that antemortem rectal biopsy was 77% effective in identifying goats naturally infected with scrapie and that a positive antemortem rectal biopsy was associated with the presence of clinical signs of neurologic disease and a positive dam status. We report that changes in retinal thickness are not detectable over the course of the observation period in goats naturally infected with scrapie. Finally, our results indicate that the accumulation of PrPSc in central nervous system (CNS) and non-CNS tissues is consistent with previous reports of scrapie in sheep and goats.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Aaron D Lehmkuhl
- National Veterinary Services Laboratories (NVSL) Diagnostic Bacteriology and Pathology Laboratory, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
3
|
Experimental Study Using Multiple Strains of Prion Disease in Cattle Reveals an Inverse Relationship between Incubation Time and Misfolded Prion Accumulation, Neuroinflammation, and Autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1461-1473. [PMID: 32259521 DOI: 10.1016/j.ajpath.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Proteinopathies result from aberrant folding and accumulation of specific proteins. Currently, there is a lack of knowledge about the factors that influence disease progression, making this a key challenge for the development of therapies for proteinopathies. Because of the similarities between transmissible spongiform encephalopathies (TSEs) and other protein misfolding diseases, TSEs can be used to understand other proteinopathies. Bovine spongiform encephalopathy (BSE) is a TSE that occurs in cattle and can be subdivided into three strains: classic BSE and atypical BSEs (H and L types) that have shorter incubation periods. The NACHT, LRR, and PYD domains-containing protein 3 inflammasome is a critical component of the innate immune system that leads to release of IL-1β. Macroautophagy is an intracellular mechanism that plays an essential role in protein clearance. In this study, the retina was used as a model to investigate the relationship between disease incubation period, prion protein accumulation, neuroinflammation, and changes in macroautophagy. We demonstrate that atypical BSEs present with increased prion protein accumulation, neuroinflammation, and decreased autophagy. This work suggests a relationship between disease time course, neuroinflammation, and the autophagic stress response, and may help identify novel therapeutic biomarkers that can delay or prevent the progression of proteinopathies.
Collapse
|
4
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
5
|
Nichols TA, Fischer JW, Spraker TR, Kong Q, VerCauteren KC. CWD prions remain infectious after passage through the digestive system of coyotes (Canis latrans). Prion 2016; 9:367-75. [PMID: 26636258 PMCID: PMC4964857 DOI: 10.1080/19336896.2015.1086061] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chronic wasting disease (CWD) is a geographically expanding prion disease of wild and captive cervids in North America. Disease can be transmitted directly, animal to animal, or indirectly via the environment. CWD contamination can occur residually in the environment via soil, water, and forage following deposition of bodily fluids such as urine, saliva, and feces, or by the decomposition of carcasses. Recent work has indicated that plants may even take up prions into the stems and leaves. When a carcass or gut pile is present in the environment, a large number of avian and mammalian species visit and consume the carrion. Additionally, predators like coyotes, likely select for disease-compromised cervids. Natural cross-species CWD transmission has not been documented, however, passage of infectious prion material has been observed in the feces of crows. In this study we evaluated the ability of CWD-infected brain material to pass through the gastrointestinal tract of coyotes (Canis latrans) following oral ingestion, and be infectious in a cervidized transgenic mouse model. Results from this study indicate that coyotes can pass infectious prions via their feces for at least 3 days post ingestion, demonstrating that mammalian scavengers could contribute to the translocation and contamination of CWD in the environment.
Collapse
Affiliation(s)
- Tracy A Nichols
- a National Wildlife Research Center; United States Department of Agriculture ; Animal and Plant Health Inspection Service; Wildlife Services ; Fort Collins , CO USA
| | - Justin W Fischer
- a National Wildlife Research Center; United States Department of Agriculture ; Animal and Plant Health Inspection Service; Wildlife Services ; Fort Collins , CO USA
| | - Terry R Spraker
- b Colorado State University Diagnostic Laboratory; College of Veterinary Medicine; Colorado State University ; Fort Collins , CO USA.,c Department of Microbiology, Immunology and Pathology ; College of Veterinary Medicine and Biomedical Sciences; Colorado State University Prion Research Center ; Fort Collins , CO USA
| | - Qingzhong Kong
- d National Prion Disease Pathology Surveillance Center; Institute of Pathology; Case Western Reserve University ; Cleveland , OH USA
| | - Kurt C VerCauteren
- a National Wildlife Research Center; United States Department of Agriculture ; Animal and Plant Health Inspection Service; Wildlife Services ; Fort Collins , CO USA
| |
Collapse
|
6
|
West Greenlee MH, Lind M, Kokemuller R, Mammadova N, Kondru N, Manne S, Smith J, Kanthasamy A, Greenlee J. Temporal Resolution of Misfolded Prion Protein Transport, Accumulation, Glial Activation, and Neuronal Death in the Retinas of Mice Inoculated with Scrapie. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2302-9. [PMID: 27521336 PMCID: PMC5012505 DOI: 10.1016/j.ajpath.2016.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
Currently, there is a lack of pathological landmarks to describe the progression of prion disease in vivo. Our goal was to use an experimental model to determine the temporal relationship between the transport of misfolded prion protein (PrP(Sc)) from the brain to the retina, the accumulation of PrP(Sc) in the retina, the response of the surrounding retinal tissue, and loss of neurons. Retinal samples from mice inoculated with RML scrapie were collected at 30, 60, 90, 105, and 120 days post inoculation (dpi) or at the onset of clinical signs of disease (153 dpi). Retinal homogenates were tested for prion seeding activity. Antibody staining was used to assess accumulation of PrP(Sc) and the resulting response of retinal tissue. Loss of photoreceptors was used as a measure of neuronal death. PrP(Sc) seeding activity was first detected in all samples at 60 dpi. Accumulation of PrP(Sc) and coincident activation of retinal glia were first detected at 90 dpi. Activation of microglia was first detected at 105 dpi, but neuronal death was not detectable until 120 dpi. Our results demonstrate that by using the retina we can resolve the temporal separation between several key events in the pathogenesis of prion disease.
Collapse
Affiliation(s)
- M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa; Virus and Prion Disease Unit, National Animal Disease Center, US Department of Agriculture, Ames, Iowa.
| | - Melissa Lind
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Robyn Kokemuller
- Virus and Prion Disease Unit, National Animal Disease Center, US Department of Agriculture, Ames, Iowa
| | - Najiba Mammadova
- Virus and Prion Disease Unit, National Animal Disease Center, US Department of Agriculture, Ames, Iowa
| | - Naveen Kondru
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Sireesha Manne
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Jodi Smith
- Virus and Prion Disease Unit, National Animal Disease Center, US Department of Agriculture, Ames, Iowa
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Justin Greenlee
- Virus and Prion Disease Unit, National Animal Disease Center, US Department of Agriculture, Ames, Iowa
| |
Collapse
|
7
|
Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:1117-26. [PMID: 26888899 DOI: 10.1128/jcm.02700-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/06/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni;n= 323), and nasal brush samples were collected from a subpopulation of these animals (n= 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both thePRNPgenotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.
Collapse
|
8
|
West Greenlee MH, Smith JD, Platt EM, Juarez JR, Timms LL, Greenlee JJ. Changes in retinal function and morphology are early clinical signs of disease in cattle with bovine spongiform encephalopathy. PLoS One 2015; 10:e0119431. [PMID: 25756286 PMCID: PMC4355414 DOI: 10.1371/journal.pone.0119431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal, transmissible protein misfolding diseases known as transmissible spongiform encephalopathies (TSEs). All TSEs are caused by accumulation of misfolded prion protein (PrPSc) throughout the central nervous system (CNS), which results in neuronal loss and ultimately death. Like other protein misfolding diseases including Parkinson's disease and Alzheimer's disease, TSEs are generally not diagnosed until the onset of disease after the appearance of unequivocal clinical signs. As such, identification of the earliest clinical signs of disease may facilitate diagnosis. The retina is the most accessible part of the central nervous system, and retinal pathology in TSE affected animals has been previously reported. Here we describe antemortem changes in retinal function and morphology that are detectable in BSE inoculated animals several months (up to 11 months) prior to the appearance of any other signs of clinical disease. We also demonstrate that differences in the severity of these clinical signs reflect the amount of PrPSc accumulation in the retina and the resulting inflammatory response of the tissue. These results are the earliest reported clinical signs associated with TSE infection and provide a basis for understanding the pathology and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- M. Heather West Greenlee
- Department of Biomedical Sciences and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
- * E-mail:
| | - Jodi D. Smith
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| | - Ekundayo M. Platt
- Department of Genetics and Cell Biology and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
| | - Jessica R. Juarez
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Leo L. Timms
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| |
Collapse
|
9
|
Prion amplification and hierarchical Bayesian modeling refine detection of prion infection. Sci Rep 2015; 5:8358. [PMID: 25665713 PMCID: PMC5389033 DOI: 10.1038/srep08358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/19/2015] [Indexed: 12/05/2022] Open
Abstract
Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15–100%) than IHC of obex (brain stem, 76.56%, CI 57.00–91.46%) or retropharyngeal lymph node (90.06%, CI 74.13–98.70%) tissues, or both (98.99%, CI 90.01–100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50–32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.
Collapse
|
10
|
Aguilar-Calvo P, García C, Espinosa JC, Andreoletti O, Torres JM. Prion and prion-like diseases in animals. Virus Res 2014; 207:82-93. [PMID: 25444937 DOI: 10.1016/j.virusres.2014.11.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/06/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
Abstract
Transmissible spongiform encephalopaties (TSEs) are fatal neurodegenerative diseases characterized by the aggregation and accumulation of the misfolded prion protein in the brain. Other proteins such as β-amyloid, tau or Serum Amyloid-A (SAA) seem to share with prions some aspects of their pathogenic mechanism; causing a variety of so called prion-like diseases in humans and/or animals such as Alzheimer's, Parkinson's, Huntington's, Type II diabetes mellitus or amyloidosis. The question remains whether these misfolding proteins have the ability to self-propagate and transmit in a similar manner to prions. In this review, we describe the prion and prion-like diseases affecting animals as well as the recent findings suggesting the prion-like transmissibility of certain non-prion proteins.
Collapse
Affiliation(s)
| | - Consolación García
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - Olivier Andreoletti
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, École Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076 Toulouse Cedex, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain.
| |
Collapse
|
11
|
Monello RJ, Powers JG, Hobbs NT, Spraker TR, Watry MK, Wild MA. Survival and population growth of a free-ranging elk population with a long history of exposure to chronic wasting disease. J Wildl Manage 2014. [DOI: 10.1002/jwmg.665] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryan J. Monello
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| | - Jenny G. Powers
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| | - N. Thompson Hobbs
- Natural Resource Ecology Laboratory and Graduate Degree Program in Ecology; Colorado State University; Fort Collins CO 80523
| | - Terry R. Spraker
- Colorado State Diagnostic Laboratory; College of Veterinary Medicine; Colorado State University; Fort Collins CO 80523
| | - Mary Kay Watry
- Rocky Mountain National Park; National Park Service; Estes Park CO 80517
| | - Margaret A. Wild
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| |
Collapse
|
12
|
Fischer JW, Phillips GE, Nichols TA, Vercauteren KC. Could avian scavengers translocate infectious prions to disease-free areas initiating new foci of chronic wasting disease? Prion 2013; 7:263-6. [PMID: 23822910 DOI: 10.4161/pri.25621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mechanisms for the spread of transmissible spongiform encephalopathy diseases, including chronic wasting disease (CWD) in North American cervids, are incompletely understood, but primary routes include horizontal and environmental transmission. Birds have been identified as potential vectors for a number of diseases, where they ingest or are exposed to infected material and later shed the disease agent in new areas after flying substantial distances. We recently identified American crows (Corvus brachyrhynchos) as having the potential to translocate infectious prions in their feces. Our results suggest that this common, migratory North American scavenger is capable of translocating infectious prions to disease-free areas, potentially seeding CWD infection where no other initial source of pathogen establishment is forthcoming. Here we speculate on the role avian scavengers, like American crows, might play in the spatial dissemination of CWD. We also consider the role mammalian scavengers may play in dispersing prions.
Collapse
Affiliation(s)
- Justin W Fischer
- United States Department of Agriculture; Animal and Plant Health Inspection Service; Wildlife Services; National Wildlife Research Center; Fort Collins, CO USA
| | | | | | | |
Collapse
|
13
|
Nichols TA, Spraker TR, Gidlewski T, Powers JG, Telling GC, VerCauteren KC, Zabel MD. Detection of prion protein in the cerebrospinal fluid of elk (Cervus canadensis nelsoni) with chronic wasting disease using protein misfolding cyclic amplification. J Vet Diagn Invest 2012; 24:746-9. [PMID: 22621952 DOI: 10.1177/1040638712448060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cerebrospinal fluid (CSF) has been examined as a possible source for preclinical diagnosis of prion diseases in hamsters and sheep. The present report describes the detection of chronic wasting disease (CWD) in the CSF of elk and evaluates its usefulness as an antemortem test for CWD. The CSF from 6 captive and 31 free-ranging adult elk was collected at necropsy and evaluated for the presence of the abnormal isoform of the prion protein that has been associated with CWD (PrP(CWD)) via protein misfolding cyclic amplification. Additionally, the obex from each animal was examined by immunohistochemistry (IHC). Four out of 6 captive animals were CWD-positive and euthanized due to signs of terminal CWD. The remaining 2 were CWD negative. None of the 31 free-range animals showed overt signs of CWD, but 12 out of 31 tested positive for CWD by IHC. Protein misfolding cyclic amplification detected PrP(CWD) from 3 of the 4 captive animals showing clinical signs of CWD and none of the nonclinical animals that were CWD positive by IHC. The data suggests that CWD prions can be detected in the CSF of elk, but only relatively late in the course of the disease.
Collapse
Affiliation(s)
- Tracy A Nichols
- National Wildlife Research Center, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 4101 La Porte Avenue, Fort Collins, CO 80521, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bessen RA, Robinson CJ, Seelig DM, Watschke CP, Lowe D, Shearin H, Martinka S, Babcock AM. Transmission of chronic wasting disease identifies a prion strain causing cachexia and heart infection in hamsters. PLoS One 2011; 6:e28026. [PMID: 22174765 PMCID: PMC3236201 DOI: 10.1371/journal.pone.0028026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/30/2011] [Indexed: 01/20/2023] Open
Abstract
Chronic wasting disease (CWD) is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrPSc, prion infection of the central and peripheral neuroendocrine system, and PrPSc deposition in cardiac muscle. There was also prominent PrPSc deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the ‘wasting’ or WST strain of hamster CWD.
Collapse
Affiliation(s)
- Richard A Bessen
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Imran M, Mahmood S. An overview of animal prion diseases. Virol J 2011; 8:493. [PMID: 22044871 PMCID: PMC3228711 DOI: 10.1186/1743-422x-8-493] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/01/2011] [Indexed: 11/10/2022] Open
Abstract
Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases.
Collapse
Affiliation(s)
- Muhammad Imran
- 1Centre for Research in Endocrinology and Reproductive Sciences (CRERS), Department of Physiology and Cell Biology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| | | |
Collapse
|