1
|
Escobar-Alfonso S, Alvarez-Mira DM, Beltran-Leon M, Ramirez-Nieto G, Gomez AP. Avian Metapneumovirus Subtype B Circulation in Poultry and Wild Birds of Colombia. Pathogens 2024; 13:882. [PMID: 39452753 PMCID: PMC11509887 DOI: 10.3390/pathogens13100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The global poultry industry, as a leading producer of animal protein, faces significant challenges related to animal health and production due to high bird density and disease risks. A major concern is the Avian Respiratory Complex (ARC), a multifactorial health issue involving pathogens such as avian metapneumovirus (aMPV), an often-underdiagnosed component of the ARC. Wild birds are seen as reservoirs and spreaders of the virus. This study aimed to detect the presence and subtypes of aMPV in samples from breeders, broilers, laying hens, and wild birds in Colombia. A total of 273 samples, including swabs from the upper respiratory and reproductive tracts, were collected from commercial poultry and wild birds. Using nested RT-PCR targeting the G gene, aMPV subtype B was identified in 23 samples (8.42%). Sequencing revealed high genetic similarity to vaccine strains, classifying all viruses as vaccine-like. In the commercial birds, aMPV-B appeared in 21 samples, regardless of symptoms, often in tests for other ARC agents, indicating diagnostic bias. In the wild birds, two samples tested positive, suggesting potential transmission between wild and domestic birds. These findings highlight the need for broader diagnostics and further research into aMPV's impact on avian health.
Collapse
Affiliation(s)
- Santiago Escobar-Alfonso
- Laboratorio de Biología Molecular y Virología, Universidad Nacional de Colombia sede Bogotá, Cra 45 #26-85, Bogotá D.C. 111321, Colombia; (S.E.-A.); (M.B.-L.); (G.R.-N.)
- Laboratorio de Patología Aviar, Universidad Nacional de Colombia sede Bogotá, Cra 45 #26-85, Bogotá D.C. 111321, Colombia;
| | - Diana M. Alvarez-Mira
- Laboratorio de Patología Aviar, Universidad Nacional de Colombia sede Bogotá, Cra 45 #26-85, Bogotá D.C. 111321, Colombia;
| | - Magda Beltran-Leon
- Laboratorio de Biología Molecular y Virología, Universidad Nacional de Colombia sede Bogotá, Cra 45 #26-85, Bogotá D.C. 111321, Colombia; (S.E.-A.); (M.B.-L.); (G.R.-N.)
| | - Gloria Ramirez-Nieto
- Laboratorio de Biología Molecular y Virología, Universidad Nacional de Colombia sede Bogotá, Cra 45 #26-85, Bogotá D.C. 111321, Colombia; (S.E.-A.); (M.B.-L.); (G.R.-N.)
| | - Arlen P. Gomez
- Laboratorio de Biología Molecular y Virología, Universidad Nacional de Colombia sede Bogotá, Cra 45 #26-85, Bogotá D.C. 111321, Colombia; (S.E.-A.); (M.B.-L.); (G.R.-N.)
- Laboratorio de Patología Aviar, Universidad Nacional de Colombia sede Bogotá, Cra 45 #26-85, Bogotá D.C. 111321, Colombia;
| |
Collapse
|
2
|
Cui Y, Li S, Xu W, Li Y, Xie J, Wang D, Guo J, Zhou J, Feng X, Hou L, Liu J. A Receptor Integrin β1 Promotes Infection of Avian Metapneumovirus Subgroup C by Recognizing a Viral Fusion Protein RSD Motif. Int J Mol Sci 2024; 25:829. [PMID: 38255903 PMCID: PMC10815723 DOI: 10.3390/ijms25020829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin β1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Siting Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weiyin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yeqiu Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiali Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
4
|
A. Abd El-Ghany W. Avian Metapneumovirus Infection in Poultry Flocks: A Review of Current Knowledge. PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2023; 46:971-1002. [DOI: 10.47836/pjtas.46.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Avian metapneumovirus (aMPV) is one of the respiratory viruses that cause global economic losses in poultry production systems. Therefore, it was important to design a comprehensive review article that gives more information about aMPV infection regarding the distribution, susceptibility, transmission, pathogenesis, pathology, diagnosis, and prevention. The aMPV infection is characterized by respiratory and reproductive disorders in turkeys and chickens. The disease condition is turkey rhinotracheitis in turkeys and swollen head syndrome in chickens. Infection with aMPV is associated with worldwide economic losses, especially in complications with other infections or poor environmental conditions. The genus Metapneumovirus is a single-stranded enveloped RNA virus and contains A, B, C, and D subtypes. Meat and egg-type birds are susceptible to aMPV infection. The virus can transmit through aerosol, direct contact, mechanical, and vertical routes. The disease condition is characterized by respiratory manifestations, a decrease in egg production, growth retardation, increasing morbidity rate, and sometimes nervous signs and a high mortality rate, particularly in concurrent infections. Definitive diagnosis of aMPV is based mainly on isolation and identification methods, detection of the viral DNA, as well as seroconversion. Prevention of aMPV infection depends on adopting biosecurity measures and vaccination using inactivated, live attenuated, and recombinant or DNA vaccines.
Collapse
|
5
|
Graziosi G, Lupini C, Catelli E. Disentangling the role of wild birds in avian metapneumovirus (aMPV) epidemiology: A systematic review and meta-analysis. Transbound Emerg Dis 2022; 69:3285-3299. [PMID: 35960706 PMCID: PMC10086952 DOI: 10.1111/tbed.14680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 02/07/2023]
Abstract
Given the avian metapneumovirus (aMPV) disease burden in poultry worldwide and the evidence of a possible role played by wild birds in the virus epidemiology, the present study summarizes aMPV serological and molecular data on free-ranging avifauna available in the literature by conducting a systematic review and meta-analysis. A computerized literature research was performed on PubMed, Scopus, CAB Direct and Web of Science to identify relevant publications across the period 1990-2021, along with the screening of reference lists. A random-effect model was applied to calculate pooled prevalence estimates with 95% confidence intervals. The inconsistency index statistic (I2 ) was applied to assess between-study heterogeneity. Subgroup analyses for molecular studies only were performed according to geographical area of samplings, taxonomic order, genus and migration patterns of the birds surveyed. A total of 11 publications on molecular surveys and 6 on serological ones were retained for analysis. The pooled molecular prevalence was 6% (95% CI: 1-13%) and a high between-study heterogeneity was detected (I2 = 96%, p < .01). Moderator analyses showed statistically significant differences according to geographical area studied, taxonomic order and genus. Concerning serological prevalence, a pooled estimate of 14% (95% CI: 1-39%), along with a high between-study heterogeneity, was obtained (I2 = 98%, p < .01). Moderator analysis was not performed due to the scarcity of eligible serological studies included. Overall, molecular and serological evidence suggests that some wild bird taxa could play a role in aMPV epidemiology. Particularly, wild ducks, geese, gulls and pheasants, according to scientific contributions hereby considered, proved to be susceptible to aMPV, and due to host ecology, may act as a viral carrier or reservoir. Further surveys of wild birds are encouraged for a better comprehension of the poultry/wild bird interface in aMPV epidemiology and for better characterizing the virus host breadth.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, BO, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, BO, Italy
| |
Collapse
|
6
|
Al-Hasan BA, Alhatami AO, Abdulwahab HM, Bustani GS, Hameed MA, Jawad AH. First report of Avian metapneumovirus type B in Iraqi broiler flocks with swollen head syndrome. Vet World 2022; 15:16-21. [PMID: 35369601 PMCID: PMC8924383 DOI: 10.14202/vetworld.2022.16-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Swollen head syndrome (SHS) is a complex disease caused by various agents, including bacterial and viral pathogens, as well as environmental factors. Avian metapneumovirus (aMPV) is one of the most important causes of respiratory diseases and SHS in poultry and one of the most widespread viruses worldwide; however, it has not been recorded in Iraq. This study aimed at the molecular identification and subtyping of aMPV in poultry, with the objectives of investigating the prevalence of aMPV in infected broiler flocks with SHS and molecular typing using primers specific to the study of the prevalence of subtypes A, B, and C of aMPV. Materials and Methods: This study was performed on 67 broiler farms that reported typical SHS from September 2018 to August 2019. Swabs were collected from the trachea, infraorbital sinuses, and lung, then uploaded on FTA cards and subjected to an RNA extraction protocol. Results: aMPV was detected in 16 (23.8%) samples. Molecular typing using primers specific to the attachment glycoprotein (G) gene showed that all positive samples belonged to subtype B, as assessed using the real-time polymerase chain reaction technique. Conclusion: aMPV may be the main etiological factor causing SHS in poultry. Moreover, this was the first report of the prevalence of subtype B aMPV strains in broiler farms in Iraq.
Collapse
Affiliation(s)
- Baraa Akeel Al-Hasan
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abdullah O. Alhatami
- Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Najaf, Iraq
| | | | - Ghadeer Sabah Bustani
- Department of Physiology and Pharmacology, The Islamic University, Najaf, Iraq; Department of Physiology and Pharmacology, College of Nursing, Altoosi University College, Najaf, Iraq
| | - Muhammad Ali Hameed
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ameer Haider Jawad
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
7
|
Abstract
The paper briefly characterizes human metapneumovirus, a newly discovered pathogen of acute respiratory infections, and gives brief clinical, virological, and pathological data concerning a fatal outcome of a 51-year-old obese woman without severe background pathology. Metapneumovirus infection has been verified by real-time PCR. Morphological examination revealed the signs of subtotal diffuse alveolar damage, ciliary epithelial cell overgrowths, and binucleated macrophages. The changes revealed in the lungs are similar to those as previously described in paramyxovirus infections, but are accompanied by severe nonspecific changes that have been recently observed in swine influenza. Those in the brain meninges, kidneys, pancreas, and intestine may be suggestive of the generalization of the infection. It has been proposed that the properties of the virus may vary.
Collapse
Affiliation(s)
- V V Varyasin
- City Clinical Hospital Fifty-Two, Moscow Healthcare Department
| | - A V Zinserling
- Saint Petersburg Research Institute of Phthisiopulmonology, Medical Faculty, Saint Petersburg University, Saint Petersburg, Russia
| |
Collapse
|
8
|
Awad F, Baylis M, Jones RC, Ganapathy K. Evaluation of Flinders Technology Associates cards for storage and molecular detection of avian metapneumoviruses. Avian Pathol 2014; 43:125-9. [DOI: 10.1080/03079457.2014.885114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|