1
|
Harvey W, Hutto EH, Chilton JA, Chamanza R, Mysore JV, Parry NM, Dick E, Wojcinski ZW, Piaia A, Garcia B, Flandre TD, Pardo ID, Cramer S, Wright JA, Bradley AE. Infectious diseases of non-human primates. SPONTANEOUS PATHOLOGY OF THE LABORATORY NON-HUMAN PRIMATE 2023:15-69. [DOI: 10.1016/b978-0-12-813088-9.00020-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Bolon B, Everitt JI. Selected Resources for Pathology Evaluation of Nonhuman Primates in Nonclinical Safety Assessment. Toxicol Pathol 2022; 50:725-732. [PMID: 35481786 DOI: 10.1177/01926233221091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Humans and nonhuman primates (NHPs) share numerous anatomical and physiological characteristics, thereby explaining the importance of NHPs as essential animal models for translational medicine and nonclinical toxicity testing. Researchers, toxicologic pathologists, toxicologists, and regulatory reviewers must be familiar with normal and abnormal NHP biological traits when designing, performing, and interpreting data sets from NHP studies. The current compilation presents a list of essential books, journal articles, and websites that provide context to safety assessment and research scientists working with NHP models. The resources used most frequently by the authors have been briefly annotated to permit readers to rapidly ascertain their applicability to particular research endeavors. The references are aimed primarily for toxicologic pathologists working with cynomolgus and rhesus macaques and common marmosets in efficacy and safety assessment studies.
Collapse
Affiliation(s)
| | - Jeffrey I Everitt
- Duke University, Department of Pathology, Durham, North Carolina, USA
| |
Collapse
|
3
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
4
|
Saravanan C, Flandre T, Hodo CL, Lewis AD, Mecklenburg L, Romeike A, Turner OC, Yen HY. Research Relevant Conditions and Pathology in Nonhuman Primates. ILAR J 2021; 61:139-166. [PMID: 34129672 DOI: 10.1093/ilar/ilab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Biomedical research involving animal models continues to provide important insights into disease pathogenesis and treatment of diseases that impact human health. In particular, nonhuman primates (NHPs) have been used extensively in translational research due to their phylogenetic proximity to humans and similarities to disease pathogenesis and treatment responses as assessed in clinical trials. Microscopic changes in tissues remain a significant endpoint in studies involving these models. Spontaneous, expected (ie, incidental or background) histopathologic changes are commonly encountered and influenced by species, genetic variations, age, and geographical origin of animals, including exposure to infectious or parasitic agents. Often, the background findings confound study-related changes, because numbers of NHPs used in research are limited by animal welfare and other considerations. Moreover, background findings in NHPs can be exacerbated by experimental conditions such as treatment with xenobiotics (eg, infectious morphological changes related to immunosuppressive therapy). This review and summary of research-relevant conditions and pathology in rhesus and cynomolgus macaques, baboons, African green monkeys, common marmosets, tamarins, and squirrel and owl monkeys aims to improve the interpretation and validity of NHP studies.
Collapse
Affiliation(s)
- Chandra Saravanan
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, Massachusetts 02139, USA
| | - Thierry Flandre
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Carolyn L Hodo
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, New Jersey, USA
| | - Hsi-Yu Yen
- Covance Preclinical Services GmbH, Münster 48163, Germany
| |
Collapse
|
5
|
Walker D, Arends MJ, Morrison LR. Brunner's gland hyperplasia in a geriatric chimpanzee (Pan troglodytes), an infrequently reported lesion. J Med Primatol 2020; 49:349-351. [PMID: 32584460 DOI: 10.1111/jmp.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022]
Abstract
Benign duodenal tumours have very rarely been reported in captive non-human primates and are also rare in human beings. Brunner's gland hyperplasia has not been fully described in a non-human primate. Here, we report Brunner's gland hyperplasia in a geriatric chimpanzee, which was an incidental finding during post-mortem examination.
Collapse
Affiliation(s)
- David Walker
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Linda R Morrison
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Colman K. Impact of the Genetics and Source of Preclinical Safety Animal Models on Study Design, Results, and Interpretation. Toxicol Pathol 2016; 45:94-106. [DOI: 10.1177/0192623316672743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been long established that not only the species but also the strain and supplier of rodents used in preclinical safety studies can have a significant impact on the outcome of studies due to variability in their genetic background and thus spontaneous pathologic findings. In addition, local husbandry, housing, and other environmental conditions may have effects on the development and expression of comorbidities, particularly in longer-term or chronic studies. More recently, similar effects related to the source, including genetic and environmental variability, have been recognized in cynomolgus macaques ( Macaca fascicularis). The increased use of cynomolgus macaques from various sources of captive-bred animals (including nonnative, U.S./European Union-based breeding facilities or colonies) can affect study design and study results and outcome. It is important to acknowledge and understand the impact of this variability on the results and interpretation of research studies. This review includes recent examples where variability of preclinical animal models (rats and monkeys) affected the postmortem observations highlighting its relevance to study design or interpretation in safety studies.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Pharmaceuticals Corp., East Hanover, New Jersey, USA
| |
Collapse
|
7
|
Survey and Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets (Callithrix jacchus). PLoS One 2016; 11:e0160116. [PMID: 27501144 PMCID: PMC4976964 DOI: 10.1371/journal.pone.0160116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
Common marmosets (Callithrix jacchus) are frequently used for biomedical research but can be afflicted with diarrhea—a serious and potentially lethal health problem. Enteropathogenic Escherichia coli (EPEC) is thought to be the causative pathogen of hemorrhagic typhlocolitis in common marmosets, but the actual incidence of the disease and the relationship between EPEC and hematochezia are unknown. This study investigated the prevalence of EPEC infection in common marmosets and the association between EPEC and hematochezia. A total of 230 stool or rectal swab samples were collected from 230 common marmosets (98 clinically healthy, 85 diarrhea, and 47 bloody stool samples) and tested by culture-based detection and PCR amplification of VT1, VT2, LT, ST, eae, and bfp genes. Healthy animals were divided into three groups (n = 4 each for high and low concentration groups and n = 2 as negative control), and those in the experimental groups were perorally inoculated with a 2-ml of suspension of EPEC R811 strain adjusted to 5 × 108 (high concentration) and 5 × 104 (low concentration) CFU/ ml. Two animals in each group were examined 3 and 14 days post-inoculation (DPI). EPEC was detected in 10 of 98 clinically healthy samples (10.2%), 17 of 85 diarrhea samples (20%), and all 47 bloody stool samples (100%), with a significant difference detected between presence of EPEC and sample status (P < 0.01). Acute hematochezia was observed in all animals of the high-concentration group but not in other groups at 1 or 2 DPI. A histopathological examination revealed the attachment of gram-negative bacilli to epithelial apical membranes and desquamated epithelial cells in the cecum of animals in the high-concentration group at 3 DPI. These findings suggest that EPEC is a causative agent of hemorrhagic typhlocolitis in common marmosets.
Collapse
|
8
|
Beck AP, Magden ER, Buchl SJ, Baze WB. Malignant Neoplasia of the Sex Skin in 2 Chimpanzees (Pan troglodytes). Comp Med 2016; 66:154-161. [PMID: 27053571 PMCID: PMC4825966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
This report describes 2 cases of spontaneous malignant neoplasia within the sex skin of aged female chimpanzees. In both cases, the initial presentation resembled nonhealing traumatic wounds to the sex skin, with different degrees of infection, ulceration, and tissue necrosis. Histopathology of the lesions confirmed the diagnosis of squamous cell carcinoma in one case and of adenocarcinoma with metastasis in the other. Advanced age and previous trauma likely contributed to the development of the neoplasias in both cases; long-term sun exposure may also have contributed to the development of the squamous cell carcinoma. To our knowledge, these 2 cases represent the first reports of sex skin neoplasia in chimpanzees.
Collapse
Affiliation(s)
- Amanda P Beck
- Michaele E. Keeling Center for Comparative Medicine and Research, Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA; Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Elizabeth R Magden
- Michaele E. Keeling Center for Comparative Medicine and Research, Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Stephanie J Buchl
- Michaele E. Keeling Center for Comparative Medicine and Research, Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Wallace B Baze
- Michaele E. Keeling Center for Comparative Medicine and Research, Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
9
|
Chum HH, Long CT, McKeon GP, Chang AG, Luong RH, Albertelli MA. Abdominal lipomatosis with secondary self-strangulation of masses in an adult rhesus macaque (Macaca mulatta). Comp Med 2014; 64:404-8. [PMID: 25402181 PMCID: PMC4236789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/02/2014] [Accepted: 06/06/2014] [Indexed: 06/04/2023]
Abstract
An 10-y-old, intact male rhesus macaque (Macaca mulatta) presented for bilateral scrotal swelling and a distended abdomen. A soft mass in the left upper quadrant of the abdomen was palpated. A barium study did not reveal any gastrointestinal abnormalities. Exploratory laparotomy revealed a large (1.25 kg, 15.0 × 13.0 × 9.5 cm), red and tan, soft, circumscribed, spherical mass within the greater omentum and 10 to 20 smaller (diameter, 1 to 4 cm), soft to firm masses in the mesentery and greater omentum. The resected mass was a self-strangulating abdominal lipoma, a pedunculated neoplasm composed of white adipocytes arising from peritoneal adipose tissue undergoing secondary coagulation necrosis after strangulation of the blood supply due to twisting of the mass around the peduncle. The smaller masses were histologically consistent with simple or self-strangulating pedunculated abdominal lipomas. The macaque presented again 9 mo later with a firm, 5.0-cm mass in the midabdomen, with intestinal displacement visible on radiographs. Given this animal's medical history and questionable prognosis, euthanasia was elected. Necropsy revealed numerous, multifocal to coalescing, 1.0- to 15.0-cm, pale tan to yellow, circumscribed, soft to firm, spherical to ellipsoid, pedunculated masses that were scattered throughout the mesentery, greater omentum, lesser omentum, and serosal surfaces of the gastrointestinal tract. All of the masses were pedunculated abdominal lipomas, and most demonstrated coagulation necrosis due to self-strangulation of the blood supply. To our knowledge, this report is the first to describe abdominal lipomatosis with secondary self-strangulation of masses in a rhesus macaque.
Collapse
Affiliation(s)
- Helen H Chum
- Office of Laboratory Animal Care, University of California Berkeley, Berkeley, California, USA.
| | - C Tyler Long
- Department of Laboratory Animal Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Gabriel P McKeon
- Department of Laboratory Animal Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Angela G Chang
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Richard H Luong
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Megan A Albertelli
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Mansfield KG, Sasseville VG, Westmoreland SV. Molecular Localization Techniques in the Diagnosis and Characterization of Nonhuman Primate Infectious Diseases. Vet Pathol 2013; 51:110-26. [DOI: 10.1177/0300985813509386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Molecular localization techniques remain important diagnostic and research tools for the pathologist evaluating nonhuman primate tissues. In situ hybridization and immunohistochemistry protocols have been developed for many important pathogens of nonhuman primates, including RNA and DNA viruses, prions, and bacterial, protozoal, and fungal pathogens. Such techniques will remain critical in defining the impact and relevance of novel agents on animal health and disease. A comparative pathology perspective often provides valuable insight to the best strategy for reagent development and can also facilitate interpretation of molecular localization patterns. Such a perspective is grounded in a firm understanding of microbe-host pathobiology. This review summarizes current molecular localization protocols used in the diagnosis of selected primate infectious diseases.
Collapse
Affiliation(s)
- K. G. Mansfield
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - S. V. Westmoreland
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| |
Collapse
|