1
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
2
|
Kim KR, Kim DH, Jung MJ, Sihn DM, Jeong SW, Kim JH. Canine oral melanoma with suspected pulmonary metastasis: Combination of immunotherapy and tyrosine kinase inhibitor treatment. VET MED-CZECH 2023; 68:477-482. [PMID: 38303994 PMCID: PMC10828778 DOI: 10.17221/90/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 02/03/2024] Open
Abstract
This case report follows a 10-year-old castrated male Miniature Schnauzer dog presented with a history of incomplete surgical resection of an oral malignant melanoma (amelanotic type) on the right mandible. Melanoma vaccine therapy was administered due to incomplete surgical resection, however, new masses were detected on the contralateral mandible and suspected pulmonary metastasis occurred at 2 weeks and 7 months, respectively, following the first melanoma vaccination. At the time of detecting the pulmonary metastasis, targeted chemotherapy was initiated with the owner's consent using imatinib (10 mg/kg/day, p.o.), a tyrosine kinase inhibitor (TKI). The patient did not show any significant adverse events related to both anticancer treatments. Three months following the first dose of imatinib, the absence of the suspected pulmonary metastatic nodules on radiography indicated complete remission. In conclusion, this report describes the achievement of clinical remission of suspected pulmonary metastatic oral malignant melanoma and an extension of survival time in a dog given a combination treatment of immunotherapy and tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Kyung-Ryung Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Min-Jung Jung
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dong-Min Sihn
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Soon-Wuk Jeong
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Hyun Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Smedley RC, Bongiovanni L, Bacmeister C, Clifford CA, Christensen N, Dreyfus JM, Gary JM, Pavuk A, Rowland PH, Swanson C, Tripp C, Woods JP, Bergman PJ. Diagnosis and histopathologic prognostication of canine melanocytic neoplasms: A consensus of the Oncology-Pathology Working Group. Vet Comp Oncol 2022; 20:739-751. [PMID: 35522017 PMCID: PMC9796073 DOI: 10.1111/vco.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022]
Abstract
One of the primary objectives of the Oncology Pathology Working Group (OPWG) is for oncologists and pathologists to collaboratively generate consensus documents to standardize aspects of and provide guidelines for veterinary oncologic pathology. Consensus is established through review of relevant peer-reviewed literature relative to a subgroup's particular focus. In this article, the authors provide a critical review of the current literature for the diagnosis of, and histopathologic prognostication for, canine cutaneous and oral/lip melanocytic neoplasms, suggest guidelines for reporting, provide recommendations for clinical interpretation, and discuss future directions. This document represents the opinions of the working group and the authors and does not constitute a formal endorsement by the American College of Veterinary Pathologists, American College of Veterinary Internal Medicine or the Veterinary Cancer Society.
Collapse
Affiliation(s)
- Rebecca C. Smedley
- Veterinary Diagnostic LaboratoryMichigan State UniversityLansingMichiganUSA
| | - Laura Bongiovanni
- Faculty of Veterinary MedicineUniversity of TeramoTeramoItaly,Faculty of Veterinary Medicine, Department of Biomolecular SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Craig A. Clifford
- Oncology ServiceHope Veterinary Specialists/BluePearlMalvernPennsylvaniaUSA
| | - Neil Christensen
- Oncology ServiceVeterinary Specialty Hospital Hong KongWan ChaiHong Kong,Veterinary Medical Teaching HospitalUniversity of WisconsinMadisonWisconsinUSA
| | - Jennifer M. Dreyfus
- Anatomic PathologyDreyfus Veterinary Pathology ConsultingMadisonWisconsinUSA,School of Veterinary MedicineUniversity of WisconsinMadisonWisconsinUSA
| | - Joy M. Gary
- NeuropathologyStageBioFrederickMarylandUSA,Comparative Biomedical Training Program, Molecular Pathology UnitNCI, NIHBethesdaMarylandUSA
| | - Alana Pavuk
- Anatomic PathologyAntech DiagnosticsDurhamNorth CarolinaUSA
| | | | - Christine Swanson
- Oncology ServiceBluePearl Specialty and Emergency Pet HospitalGrand RapidsMichiganUSA
| | - Chelsea Tripp
- Oncology ServiceBridge Animal Referral CenterEdmondsWashingtonUSA
| | - J. Paul Woods
- Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | | |
Collapse
|
4
|
Diagnosis and Prognosis of Canine Melanocytic Neoplasms. Vet Sci 2022; 9:vetsci9040175. [PMID: 35448673 PMCID: PMC9030435 DOI: 10.3390/vetsci9040175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Canine melanocytic neoplasms have a highly variable biological behavior ranging from benign cutaneous melanocytomas to malignant oral melanomas that readily metastasize to lymph nodes and internal organs. This review focuses on the diagnosis and prognosis of canine melanocytic neoplasms. While pigmented melanocytic neoplasms can be diagnosed with fine-needle aspirates, an accurate prognosis requires surgical biopsy. However, differentiating amelanotic spindloid melanomas from soft tissue sarcomas is challenging and often requires immunohistochemical labeling with a diagnostic cocktail that contains antibodies against Melan-A, PNL-2, TRP-1, and TRP-2 as the current gold standard. For questionable cases, RNA expression analysis for TYR, CD34, and CALD can further differentiate these two entities. The diagnosis of amelanotic melanomas will be aided by submitting overlying and/or lateral flanking epithelium to identify junctional activity. Wide excision of lateral flanking epithelium is essential, as lentiginous spread is common for malignant mucosal melanomas. Combining histologic features (nuclear atypia, mitotic count, degree of pigmentation, level of infiltration, vascular invasion; tumor thickness and ulceration) with the Ki67 index provides the most detailed prognostic assessment. Sentinel lymph nodes should be evaluated in cases of suspected malignant melanomas using serial sectioning of the node combined with immunohistochemical labeling for Melan-A and PNL-2.
Collapse
|
5
|
Conrad D, Kehl A, Beitzinger C, Metzler T, Steiger K, Pfarr N, Fischer K, Klopfleisch R, Aupperle-Lellbach H. Molecular Genetic Investigation of Digital Melanoma in Dogs. Vet Sci 2022; 9:vetsci9020056. [PMID: 35202309 PMCID: PMC8874500 DOI: 10.3390/vetsci9020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Canine digital melanoma, in contrast to canine oral melanoma, is still largely unexplored at the molecular genetic level. The aim of this study was to detect mutant genes in digital melanoma. Paraffin-embedded samples from 86 canine digital melanomas were examined for the BRAF V595E variant by digital droplet PCR (ddPCR), and for exon 11 mutations in c-kit. Furthermore, exons 2 and 3 of KRAS and NRAS were analysed by Sanger sequencing. Copy number variations (CNV) of KITLG in genomic DNA were analysed from nine dogs. The BRAF V595E variant was absent and in c-kit, a single nucleotide polymorphism was found in 16/70 tumours (23%). The number of copies of KITLG varied between 4 and 6. KRAS exon 2 codons 12 and 13 were mutated in 22/86 (25.6%) of the melanomas examined. Other mutually exclusive RAS mutations were found within the hotspot loci, i.e., KRAS exon 3 codon 61: 2/55 (3.6%); NRAS exon 2 codons 12 and 13: 2/83 (2.4%); and NRAS exon 3 codon 61: 9/86 (10.5%). However, no correlation could be established between histological malignancy criteria, survival times and the presence of RAS mutations. In summary, canine digital melanoma differs from molecular genetic data of canine oral melanoma and human melanoma, especially regarding the proportion of RAS mutations.
Collapse
Affiliation(s)
- David Conrad
- Department of Pathology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany;
- Correspondence:
| | - Alexandra Kehl
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.K.); (C.B.)
| | - Christoph Beitzinger
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.K.); (C.B.)
| | - Thomas Metzler
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Konrad Fischer
- School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany;
| | - Robert Klopfleisch
- Department of Pathology, Freie Universität Berlin, 14163 Berlin, Germany;
| | | |
Collapse
|
6
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|