1
|
Kimura K, Yanase T, Kato T. Histopathological, Immunohistochemical and In-Situ Hybridization Findings in Suckling Rats Experimentally Infected With Akabane Genogroups Ⅰ and Ⅱ, Aino and Peaton Viruses. J Comp Pathol 2021; 187:27-39. [PMID: 34503652 DOI: 10.1016/j.jcpa.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Akabane, Aino and Peaton viruses are closely related arthropod-borne viruses in the genus Orthobunyavirus of the family Peribunyaviridae that can cause congenital abnormalities in cattle, sheep and goats. East Asian Akabane virus strains are subdivided into genogroups Ⅰ and Ⅱ, and the former can also cause non-suppurative encephalomyelitis in post-natal animals. Specific detection of the infecting virus in tissues is essential for accurate diagnosis. Immunohistochemistry (IHC) has been used to identify viral antigen but cannot always detect specific viruses due to potential cross-reactivity of the primary antisera. We compared in-situ hybridization (ISH), based on the use of cocktail probe sets targeted at the RNA of each virus, with IHC for the detection of the specific viruses in tissues of suckling rats inoculated intracerebrally with Akabane (KM-1 or OBE-1 strains), Aino or Peaton viruses at 3 or 7 days of age. Most inoculated rats developed severe neurological signs and histopathological brain lesions including necrosis, spongy degeneration and non-suppurative inflammation. A rabbit polyclonal antiserum immunolabelled antigen of all three viruses within the lesions, whereas ISH specifically detected RNA of each individual virus. The distribution of viral RNA was comparable to that of viral antigens, but tended to be more widespread, especially in immature nervous tissue. Viral antigen and RNA were detected in skeletal muscle and heart of the rats infected with the KM-1 strain of Akabane virus but not with any of the other viruses. This study demonstrates the value of ISH detection of these viruses in a rat model and may prove useful for clarification of the pathogenesis of post-natal arbovirus infection.
Collapse
Affiliation(s)
- Kumiko Kimura
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tohru Yanase
- Kyushu Research Station, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Tomoko Kato
- Kyushu Research Station, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| |
Collapse
|
2
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
3
|
Collins ÁB, Mee JF, Kirkland PD. Pathogenicity and teratogenicity of Schmallenberg virus and Akabane virus in experimentally infected chicken embryos. Vet Microbiol 2018. [PMID: 29519522 DOI: 10.1016/j.vetmic.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Schmallenberg virus (SBV) and Akabane virus (AKAV) are teratogenic Simbu serogroup Orthobunyaviruses. Embryonated chicken egg models (ECE) have been used to study the pathogenicity and teratogenicity of Simbu viruses previously, however to date no such studies have been reported for SBV. Hence, the aims of this study were to investigate if ECE are susceptible to experimental SBV infection, and to evaluate the pathogenicity and teratogenicity of SBV and AKAV in ECE models. Two studies were conducted. In Study A, SBV (106.4 TCID50) was inoculated into the yolk-sac of 6-day-old and 8-day-old ECEs. In Study B, SBV and AKAV were inoculated into 7-day-old ECEs at a range of doses (102.0-106.0 TCID50). ECE were incubated at 37 °C until day 19, when they were submitted for pathological and virological examination. SBV infection in ECE at 6, 7 and 8 days of incubation resulted in stunted growth and musculoskeletal malformations (arthrogryposis, skeletal muscle atrophy, contracted toes, distorted and twisted legs). Mortality was greater in embryos inoculated with SBV (31%) compared to AKAV (19%), (P < 0.01), suggesting that SBV was more embryo-lethal. However, embryos infected with AKAV had a significantly higher prevalence of stunted growth (P < 0.05) and musculoskeletal malformations (P < 0.01), suggesting that AKAV was more teratogenic in this model. These studies demonstrate for the first time that the ECE model is a suitable in vivo small animal model to study SBV. Furthermore, these results are consistent with the clinico-pathological findings of natural SBV and AKAV infection in ruminants.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth MacArthur Agriculture Institute, Department of Primary Industries, NSW, Australia.
| |
Collapse
|
4
|
Peperkamp NH, Luttikholt SJ, Dijkman R, Vos JH, Junker K, Greijdanus S, Roumen MP, van Garderen E, Meertens N, van Maanen C, Lievaart K, van Wuyckhuise L, Wouda W. Ovine and Bovine Congenital Abnormalities Associated With Intrauterine Infection With Schmallenberg Virus. Vet Pathol 2014; 52:1057-66. [PMID: 25428409 DOI: 10.1177/0300985814560231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In December 2011, a previously unknown congenital syndrome of arthrogryposis and hydranencephaly in sheep and cattle appeared in the Netherlands as an emerging epizootic due to Schmallenberg virus (SBV). Gross lesions in 102 lambs and 204 calves included porencephaly, hydranencephaly, cerebellar dysplasia and dysplasia of the brainstem and spinal cord, a flattened skull with brachygnathia inferior, arthrogryposis, and vertebral column malformations. Microscopic lesions in the central nervous system showed rarefaction and cavitation in the white matter, as well as degeneration, necrosis, and loss of neurons in the gray matter. Brain and spinal cord lesions were more severe in lambs than in calves. Ovine and bovine cases examined early in the outbreak showed encephalomyelitis. SBV infection was confirmed by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) in brain samples in 46 of 102 lambs (45%) and in 32 of 204 calves (16%). Immunohistochemistry, performed on tissue samples from 18 RT-qPCR-positive lambs, confirmed the presence of bunyaviral antigen in neurons of the brain in 16 cases. SBV antibodies were detected by enzyme-linked immunosorbent assay in fetal blood in 56 of 61 sampled ovine cases (92%). In a virus neutralization test, all tested dams of affected newborns, 46 ewes and 190 cows, were seropositive. Compared with other teratogenic viral infections, the pathogenesis and lesions of SBV in sheep and cattle fetuses are similar to those of other ruminant orthobunyaviruses. However, the loss of spinal ventral motor neurons and their tracts, resulting in micromyelia, distinguishes SBV infection from other viral central nervous system lesions in newborn ruminants.
Collapse
Affiliation(s)
- N H Peperkamp
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - S J Luttikholt
- Department of Small Ruminant Health, GD Animal Health, Deventer, The Netherlands
| | - R Dijkman
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - J H Vos
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - K Junker
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - S Greijdanus
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - M P Roumen
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - E van Garderen
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - N Meertens
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| | - C van Maanen
- Department of Diagnostic Research and Epidemiology, GD Animal Health, Deventer, The Netherlands
| | - K Lievaart
- Department of Small Ruminant Health, GD Animal Health, Deventer, The Netherlands
| | - L van Wuyckhuise
- Department of Ruminant Health, GD Animal Health, Deventer, The Netherlands
| | - W Wouda
- Department of Pathology, GD Animal Health, Deventer, The Netherlands
| |
Collapse
|
5
|
Schatzberg SJ, Haley NJ, Barr SC, Parrish C, Steingold S, Summers BA, deLahunta A, Kornegay JN, Sharp NJH. Polymerase chain reaction (PCR) amplification of parvoviral DNA from the brains of dogs and cats with cerebellar hypoplasia. J Vet Intern Med 2003; 17:538-44. [PMID: 12892305 DOI: 10.1111/j.1939-1676.2003.tb02475.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cerebellar hypoplasia in cats is caused most commonly by an in utero or perinatal infection with feline panleukopenia virus (parvovirus). Cerebellar hypoplasia has been reported infrequently in dogs, but no viral etiology has been identified to date. DNA was extracted from archival, paraffin-embedded, cerebellar tissue from 8 cats and from 2 canine littermates with cerebellar hypoplasia, 2 canine littermates with cerebellar cortical abiotrophy, 6 dogs with congenital cerebellar vermal defects, 1 dog with congenital hydranencephaly, and 15 dogs and cats with various encephalitdes. The DNA extracted from each cerebellum was subject to polymerase chain reaction (PCR) amplification by 3 primer pairs specific for parvovirus DNA. Sequence analysis of PCR products from each of the 8 cats and 2 dogs with cerebellar hypoplasia confirmed their identity with parvoviral DNA. The 6 dogs with cerebellar vermal defects, 2 dogs with cortical abiotrophy, 1 dog with congenital hydranencephaly, and all control samples were PCR negative for parvovirus. Parvoviral structural proteins were not identified by immunohistochemistry in either dog with cerebellar hypoplasia. This study shows that parvoviral DNA can be amplified from feline and canine archival brain tissue and that cerebellar hypoplasia in dogs might be associated with in utero parvovirus infection.
Collapse
Affiliation(s)
- Scott J Schatzberg
- Department of Clinical Sciences, Cornell University Hospital for Animals, Cornell University, Ithaca, NY 14853-6401, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- J K Fazakerley
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, United Kingdom
| |
Collapse
|
7
|
Shapiro BL. Developmental instability of the cerebellum and its relevance to Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:11-34. [PMID: 11771737 DOI: 10.1007/978-3-7091-6262-0_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
It has been recognized for many years that cerebellar abnormalities are frequently observed in association with Down syndrome (DS). An important question to be asked about these and other findings in DS is whether their occurrence (i) is attributable to specific loci on the triplicated chromosome or chromosomal segment or (ii) derives from exaggerated responses secondary to the genetic imbalance resulting from trisomy (Ts). Recently, similar cerebellar alterations were observed in subjects with DS and in Ts65Dn mice (Baxter et al., 2000), mice segmentally trisomic for a portion of chromosome 16, which is homologous for loci on the long arm of human chromosome 21. It was concluded by these authors that the occurrence of similar cerebellar changes in DS and in the DS mouse model resulted from triplication of these homologous loci in the two trisomic organisms, i.e. cerebellar development is affected similarly by homologous loci in each species. They wrote that their study of Ts65Dn mice "correctly predicts an analagous pathology in humans". . . and that. . . "The candidate region of genes on chromosome 21 affecting cerebellar development in DS is therefore delimited to the subset of genes whose orthologs are at dosage imbalance in Ts65Dn mice, providing the first localization of genes affecting a neuroanatomical phenotype in DS." Findings described in this review suggest otherwise--that cerebellar findings in DS and in the Ts65Dn mouse are a result of exaggerated vulnerability in general of the cerebellum to disturbing events and that liability to expression of response(s) is exacerbated by trisomy. This conclusion is based on the following: (i) the cerebellum has an extended postnatal development; (ii) numerous genetic, environmental, epigenetic and metabolic conditions express cerebellar changes similar to those observed in Down syndrome; (iii) most if not all chromosomal imbalance syndromes express similar cerebellar abnormalities; (iv) the cerebellum is particularly sensitive to diverse toxic agents which may act prenatally, postnatally and/or in the mature organism; and (v) cerebellar abnormalities similar to those found in Ts65Dn mice have been described in Ts19 mice which have no segments homologous to any segment of human chromosome 21. An unavoidable conclusion from the review is that triplication of specific loci on 21q is an unlikely explanation for the cerebellar findings in DS. A simple positive control, in which the effect of triplication of loci other than those in question on a specific phenotype, should be used in experiments comparing human and experimental trisomies. As pointed out many years ago by Lorke and his coworkers (Lorke et al., 1989; Lorke, 1994; Lorke and Albrecht, 1994) similar phenotypic findings in the presence of different trisomies in the same species would suggest that the trisomic state itself rather than the gene content of a particular trisomy is responsible for the genesis of traits at issue.
Collapse
Affiliation(s)
- B L Shapiro
- Department of Oral Science, University of Minnesota, Minneapolis 55455, USA.
| |
Collapse
|
8
|
Yoshida K, Ohashi S, Kubo T, Tsuda T. Comparison of intertypic antigenicity of Aino virus isolates by dot immunobinding assay using neutralizing monoclonal antibodies. J Clin Microbiol 2000; 38:4211-4. [PMID: 11060092 PMCID: PMC87565 DOI: 10.1128/jcm.38.11.4211-4214.2000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing monoclonal antibodies (MAbs) against the Aino virus were prepared, and the neutralizing epitopes of the virus were defined by competitive binding assay. Seven continuous and overlapping neutralizing epitopes existed on the G1 glycoprotein of the Aino virus. Two antigenic domains were identified and were designated I and II, with domain II consisting of six epitopes. Dot immunobinding assays (DIAs) were performed with MAbs that recognized these seven neutralizing epitopes. DIAs were performed with 1 Australian strain and 21 isolates found in Japan between the years 1964 and 1995. The MAb response patterns of all isolates were divided into four groups. The Japanese isolates did not show large differences in antigenicity, but the antigenicity of the Australian strain collected in 1968 was significantly different from that of the Japanese strains; the Australian strain lacked reactivity to three epitopes and showed only low reactivity to one epitope.
Collapse
Affiliation(s)
- K Yoshida
- Laboratory of Clinical Virology, Kyushu Research Station, National Institute of Animal Health, 2702, Chuzan, Kagoshima 891-0105, Japan.
| | | | | | | |
Collapse
|
9
|
Noda Y, Uchinuno Y, Shirakawa H, Nagasue S, Nagano N, Ohe R, Narita M. Aino virus antigen in brain lesions of a naturally aborted bovine fetus. Vet Pathol 1998; 35:409-11. [PMID: 9754547 DOI: 10.1177/030098589803500511] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A bovine fetus aborted at 187 days of gestation was serologically and immunohistopathologically examined. Serum and cerebrospinal fluid samples had high titers of virus-neutralizing antibody for Aino virus. A severe necrotizing encephalopathy was noted. Aino virus antigen was demonstrated in neuroglial cells within the brain lesion. The destruction of developing neuronal cells appeared to be a significant feature of the pathogenesis of lesions due to Aino virus infection in the central nervous system.
Collapse
Affiliation(s)
- Y Noda
- Ryochiku Livestock Hygiene Service Center, Kurume, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|