1
|
Zolezzi DM, Larsen DB, Zamorano AM, Graven-Nielsen T. Facilitation of Early and Middle Latency SEP after tDCS of M1: No Evidence of Primary Somatosensory Homeostatic Plasticity. Neuroscience 2024; 551:143-152. [PMID: 38735429 DOI: 10.1016/j.neuroscience.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Homeostatic plasticity is a mechanism that stabilizes cortical excitability within a physiological range. Most homeostatic plasticity protocols have primed and tested the homeostatic response of the primary motor cortex (M1). This study investigated if a homeostatic response could be recorded from the primary sensory cortex (S1) after inducing homeostatic plasticity in M1. In 31 healthy participants, homeostatic plasticity was induced over M1 with a priming and testing block of transcranial direct current stimulation (tDCS) in two different sessions (anodal and cathodal). S1 excitability was assessed by early (N20, P25) and middle-latency (N33-P45) somatosensory evoked potentials (SEP) extracted from 4 electrodes (CP5, CP3, P5, P3). Baseline and post-measures (post-priming, 0-min, 10-min, and 20-min after homeostatic induction) were taken. Anodal M1 homeostatic plasticity induction significantly facilitated the N20-P25, P45 peak, and N33-P45 early SEP components up to 20-min post-induction, without any indication of a homeostatic response (i.e., reduced SEP). Cathodal homeostatic induction did not induce any significant effect on early or middle latency SEPs. M1 homeostatic plasticity induction by anodal stimulation protocol to the primary motor cortex did not induce a homeostatic response in SEPs.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis B Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Anna M Zamorano
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Li X, Zhao H, Wang M, Li L, Wang X, Ma Z, Du H, Li R. Thalamic segmentation based on diffusion tensor imaging in patients with trigeminal neuralgia. Brain Res 2024; 1830:148832. [PMID: 38412884 DOI: 10.1016/j.brainres.2024.148832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Classical trigeminal neuralgia (CTN) refers to episodic pain that is strictly confined to the trigeminal distribution area, and the thalamus is an important component of the trigeminal sensory pathway. Probabilistic tracking imaging algorithm was used to identify specific connections between the thalamus and the cortex, in order to identify structural changes in the thalamus of patients with CTN and perform thalamic segmentation. A total of 32 patients with CTN and 32 healthy controls underwent DTI-MRI scanning (3.0 T). Differences in fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) between the groups were studied. Correlation analysis was performed with clinical course and pain level. Compared to the healthy controls, patients in the CTN group had significantly reduced FA, increased AD, RD and MD in somatosensory subregion of the bilateral thalamus, increased RD in frontal subregion, increased RD and MD in motor subregion. Correlation analysis showed that patient history was positively correlated with pain grading, and that medical history was positively correlated with significantly reduced FA in somatosensory subregion, negatively correlated with increased RD and MD in motor subregion. We used DTI-based probabilistic fiber tracking to discover altered structural connectivity between the thalamus and cerebral cortex in patients with CTN and to obtain a thalamic segmentation atlas, which will help to further understand the pathophysiology of CTN and serve as a future reference for thalamic deep brain stimulation electrode implantation for the treatment of intractable pain.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Radiological Image, Jining Medical University, Jining 272011, China
| | - Hang Zhao
- Department of Radiology, Jining No. 1 People's Hospital, Jining 272011, China
| | - Min Wang
- Department of Radiology, Jining No. 1 People's Hospital, Jining 272011, China
| | - Li Li
- Department of Radiological Image, Jining Medical University, Jining 272011, China
| | - Xiulin Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zitang Ma
- Department of Radiology, Jining No. 1 People's Hospital, Jining 272011, China
| | - Hai Du
- Department of Radiology, Ordos Central Hospital, Ordos 017000, China.
| | - Rui Li
- Department of Radiology, Jining No. 1 People's Hospital, Jining 272011, China.
| |
Collapse
|
3
|
Puledda F, Viganò A, Sebastianelli G, Parisi V, Hsiao FJ, Wang SJ, Chen WT, Massimini M, Coppola G. Electrophysiological findings in migraine may reflect abnormal synaptic plasticity mechanisms: A narrative review. Cephalalgia 2023; 43:3331024231195780. [PMID: 37622421 DOI: 10.1177/03331024231195780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND The cyclical brain disorder of sensory processing accompanying migraine phases lacks an explanatory unified theory. METHODS We searched Pubmed for non-invasive neurophysiological studies on migraine and related conditions using transcranial magnetic stimulation, electroencephalography, visual and somatosensory evoked potentials. We summarized the literature, reviewed methods, and proposed a unified theory for the pathophysiology of electrophysiological abnormalities underlying migraine recurrence. RESULTS All electrophysiological modalities have determined specific changes in brain dynamics across the different phases of the migraine cycle. Transcranial magnetic stimulation studies show unbalanced recruitment of inhibitory and excitatory circuits, more consistently in aura, which ultimately results in a substantially distorted response to neuromodulation protocols. Electroencephalography investigations highlight a steady pattern of reduced alpha and increased slow rhythms, largely located in posterior brain regions, which tends to normalize closer to the attacks. Finally, non-painful evoked potentials suggest dysfunctions in habituation mechanisms of sensory cortices that revert during ictal phases. CONCLUSION Electrophysiology shows dynamic and recurrent functional alterations within the brainstem-thalamus-cortex loop varies continuously and recurrently in migraineurs. Given the central role of these structures in the selection, elaboration, and learning of sensory information, these functional alterations suggest chronic, probably genetically determined dysfunctions of the synaptic short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Fu-Jung Hsiao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| |
Collapse
|
4
|
Alpay B, Cimen B, Akaydin E, Bolay H, Sara Y. Levcromakalim provokes an acute rapid-onset migraine-like phenotype without inducing cortical spreading depolarization. J Headache Pain 2023; 24:93. [PMID: 37488480 PMCID: PMC10367339 DOI: 10.1186/s10194-023-01627-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Migraine headache attacks and accompanying sensory augmentation can be induced by several agents including levcromakalim (LVC), that is also capable of provoking aura-like symptoms in migraineurs. We investigated whether single LVC injection causes acute migraine-like phenotype in rats and induces/modulates cortical spreading depolarization (CSD), a rodent model of migraine aura. METHODS Wistar rats were administered LVC (1 mg/kg, i.p.) and compared to control (CTRL, vehicle, i.p.) and nitroglycerin (NTG, 10 mg/kg, i.p.) groups. Von Frey filaments were used to examine the periorbital and hind paw mechanical allodynia. Dark-light box (DLB), elevated plus maze (EPM), and open field arena (OFA) were used to evaluate light sensitivity and anxiety-related behaviors. The effects of LVC on CSD parameters, somatosensory evoked potentials, and baseline dural EEG (electroencephalography) were investigated. Possible CSD-induced c-fos expression was studied with Western Blot. Blood-brain barrier integrity in cortex was examined with Evans blue assay. RESULTS LVC and NTG administration robustly reduced periorbital mechanical thresholds in rats and induced anxiety-like behaviors and photophobia within 30 and 120 min, respectively. LVC induced migraine-like phenotype recovered in 2 h while NTG group did not fully recover before 4 h. Both LVC and NTG did not provoke DC (direct current) shift, EEG alterations or cortical c-fos expression characteristic to CSD. LVC did not induce de novo CSD and affect KCl (potassium chloride)-induced CSD parameters except for an increase in propagation failure. However, NTG significantly increased both CSD susceptibility and propagation failure. Somatosensory evoked potential (SSEP) configurations were not altered in both LVC and NTG groups, but SSEP latencies were prolonged after CSD. Acute LVC or NTG injection did not increase cortical BBB permeability. CONCLUSIONS Single LVC administration induced the fastest manifestation and recovery of acute migraine-like phenotype which was not mediated by CSD waves in the cerebral cortex. We suppose LVC triggered rapid-onset migraine-like symptoms are probably related to functional alterations in the trigeminal nociceptive system and K+ channel opening properties of LVC. Understanding the neurobiological mechanisms of this nociceptive window, may provide a novel target in migraine treatment.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| |
Collapse
|
5
|
Jiang W, Isenhart R, Liu CY, Song D. A C-shaped miniaturized coil for transcranial magnetic stimulation in rodents. J Neural Eng 2023; 20:026022. [PMID: 36863013 PMCID: PMC10037933 DOI: 10.1088/1741-2552/acc097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) is a non-invasive technique widely used for neuromodulation. Animal models are essential for investigating the underlying mechanisms of TMS. However, the lack of miniaturized coils hinders the TMS studies in small animals, since most commercial coils are designed for humans and thus incapable of focal stimulation in small animals. Furthermore, it is difficult to perform electrophysiological recordings at the TMS focal point using conventional coils.Approach.We designed, fabricated, and tested a novel miniaturized TMS coil (4-by-7 mm) that consisted of a C-shaped iron powder core and insulated copper wires (30 turns). The resulting magnetic and electric fields were characterized with experimental measurements and finite element modeling. The efficacy of this coil in neuromodulation was validated with electrophysiological recordings of single-unit activities (SUAs), somatosensory evoked potentials (SSEPs), and motor evoked potentials (MEPs) in rats (n= 32) following repetitive TMS (rTMS; 3 min, 10 Hz).Main results.This coil could generate a maximum magnetic field of 460 mT and an electric field of 7.2 V m-1in the rat brain according to our simulations. With subthreshold rTMS focally delivered over the sensorimotor cortex, mean firing rates of primary somatosensory and motor cortical neurons significantly increased (154±5% and 160±9% from the baseline level, respectively); MEP and SSEP amplitude significantly increased (136±9%) and decreased (74±4%), respectively.Significance.This miniaturized C-shaped coil enabled focal TMS and concurrent electrophysiological recording/stimulation at the TMS focal point. It provided a useful tool to investigate the neural responses and underlying mechanisms of TMS in small animal models. Using this paradigm, we for the first time observed distinct modulatory effects on SUAs, SSEPs, and MEPs with the same rTMS protocol in anesthetized rats. These results suggested that multiple neurobiological mechanisms in the sensorimotor pathways were differentially modulated by rTMS.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Robert Isenhart
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States of America
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Coppola G, Ambrosini A. What has neurophysiology revealed about migraine and chronic migraine? HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:117-133. [PMID: 38043957 DOI: 10.1016/b978-0-12-823356-6.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Since the first electroencephalographic recordings obtained by Golla and Winter in 1959, researchers have used a variety of neurophysiological techniques to determine the mechanisms underlying recurrent migraine attacks. Neurophysiological methods have shown that the brain during the interictal phase of an episodic migraine is characterized by a general hyperresponsiveness to sensory stimuli, a malfunction of the monoaminergic brainstem circuits, and by functional alterations of the thalamus and thalamocortical loop. All of these alterations vary plastically during the phases of the migraine cycle and interictally with the days following the attack. Both episodic migraineurs recorded during an attack and chronic migraineurs are characterized by a general increase in the cortical amplitude response to peripheral sensory stimuli; this is an electrophysiological hallmark of a central sensitization process that is further reinforced through medication overuse. Considering the large-scale functional involvement and the main roles played by the brainstem-thalamo-cortical network in selection, elaboration, and learning of relevant sensory information, future research should move from searching for one specific primary site of dysfunction at the macroscopic level, to the chronic, probably genetically determined, molecular dysfunctions at the synaptic level, responsible for short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - I.C.O.T., Latina, Italy
| | | |
Collapse
|
7
|
Abdulhussein MA, An X, Alsakaa AA, Ming D. Lack of habituation in migraine patients and Evoked Potential types: Analysis study from EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2095958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, Kufa University, Najaf, Iraq
| | - Xingwei An
- Tianjin International Joint Research Centre for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Akeel A. Alsakaa
- Department of Computer Science, University of Kerbala, Karbala, Iraq
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Sebastianelli G, Abagnale C, Casillo F, Cioffi E, Parisi V, Di Lorenzo C, Serrao M, Porcaro C, Schoenen J, Coppola G. Bimodal sensory integration in migraine: A study of the effect of visual stimulation on somatosensory evoked cortical responses. Cephalalgia 2022; 42:654-662. [PMID: 35166155 DOI: 10.1177/03331024221075073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Merging of sensory information is a crucial process for adapting the behaviour to the environment in all species. It is not known if this multisensory integration might be dysfunctioning interictally in migraine without aura, where sensory stimuli of various modalities are processed abnormally when delivered separately. To investigate this question, we compared the effects of a concomitant visual stimulation on conventional low-frequency somatosensory evoked potentials and embedded high-frequency oscillations between migraine patients and healthy volunteers. METHODS We recorded somatosensory evoked potentials in 19 healthy volunteers and in 19 interictal migraine without aura patients before, during, and 5 min after (T2) simultaneous synchronous pattern-reversal visual stimulation. At each time point, we measured amplitude and habituation of the N20-P25 low-frequency-somatosensory evoked potentials component and maximal peak-to-peak amplitude of early and late bursts of high-frequency oscillations. RESULTS In healthy volunteers, the bimodal stimulation significantly reduced low-frequency-somatosensory evoked potentials habituation and tended to reduce early high-frequency oscillations that reflect thalamocortical activity. By contrast, in migraine without aura patients, bimodal stimulation significantly increased low-frequency-somatosensory evoked potentials habituation and early high-frequency oscillations. At T2, all visual stimulation-induced changes of somatosensory processing had vanished. CONCLUSION These results suggest a malfunctioning multisensory integration process, which could be favoured by an abnormal excitability level of thalamo-cortical loops.
Collapse
Affiliation(s)
- Gabriele Sebastianelli
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Chiara Abagnale
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Francesco Casillo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Ettore Cioffi
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Cherubino Di Lorenzo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Mariano Serrao
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital. University of Liège, Liège, Belgium
| | - Gianluca Coppola
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| |
Collapse
|
9
|
Coppola G, Magis D, Casillo F, Sebastianelli G, Abagnale C, Cioffi E, Di Lenola D, Di Lorenzo C, Serrao M. Neuromodulation for Chronic Daily Headache. Curr Pain Headache Rep 2022; 26:267-278. [PMID: 35129825 PMCID: PMC8927000 DOI: 10.1007/s11916-022-01025-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 11/29/2022]
Abstract
Purpose of Review We reviewed the literature that explored the use of central and peripheral neuromodulation techniques for chronic daily headache (CDH) treatment. Recent Findings Although the more invasive deep brain stimulation (DBS) is effective in chronic cluster headache (CCH), it should be reserved for extremely difficult-to-treat patients. Percutaneous occipital nerve stimulation has shown similar efficacy to DBS and is less risky in both CCH and chronic migraine (CM). Non-invasive transcutaneous vagus nerve stimulation is a promising add-on treatment for CCH but not for CM. Transcutaneous external trigeminal nerve stimulation may be effective in treating CM; however, it has not yet been tested for cluster headache. Transcranial magnetic and electric stimulations have promising preventive effects against CM and CCH. Summary Although the precise mode of action of non-invasive neuromodulation techniques remains largely unknown and there is a paucity of controlled trials, they should be preferred to more invasive techniques for treating CDH.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.
| | - Delphine Magis
- Headache and Pain Multimodal Treatment Centre (CMTCD), Department of Neurology, Neuromodulation Centre, CHR East Belgium, Verviers, Belgium
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
10
|
Hsiao FJ, Chen WT, Pan LLH, Liu HY, Wang YF, Chen SP, Lai KL, Coppola G, Wang SJ. Dynamic brainstem and somatosensory cortical excitability during migraine cycles. J Headache Pain 2022; 23:21. [PMID: 35123411 PMCID: PMC8903675 DOI: 10.1186/s10194-022-01392-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Background Migraine has complex pathophysiological characteristics and episodic attacks. To decipher the cyclic neurophysiological features of migraine attacks, in this study, we compared neuronal excitability in the brainstem and primary somatosensory (S1) region between migraine phases for 30 consecutive days in two patients with episodic migraine. Methods Both patients underwent EEG recording of event-related potentials with the somatosensory and paired-pulse paradigms for 30 consecutive days. The migraine cycle was divided into the following phases: 24–48 h before headache onset (Pre2), within 24 h before headache onset (Pre1), during the migraine attack (Ictal), within 24 h after headache offset (Post1), and the interval of ˃48 h between the last and next headache phase (Interictal). The normalised current intensity in the brainstem and S1 and gating ratio in the S1 were recorded and examined. Results Six migraine cycles (three for each patient) were analysed. In both patients, the somatosensory excitability in the brainstem (peaking at 12–14 ms after stimulation) and S1 (peaking at 18–19 ms after stimulation) peaked in the Pre1 phase. The S1 inhibitory capability was higher in the Ictal phase than in the Pre1 phase. Conclusion This study demonstrates that migraine is a cyclic excitatory disorder and that the neural substrates involved include the somatosensory system, starting in the brainstem and spanning subsequently to the S1 before the migraine occurs. Further investigations with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan. .,Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan.
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shihpai Rd Sec 2, Taipei, 112, Taiwan.
| |
Collapse
|
11
|
Barbanti P, Brighina F, Egeo G, Di Stefano V, Silvestro M, Russo A. Migraine as a Cortical Brain Disorder. Headache 2020; 60:2103-2114. [PMID: 32851650 DOI: 10.1111/head.13935] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Migraine is an exclusively human chronic disorder with ictal manifestations characterized by a multifaceted clinical complexity pointing to a cerebral cortical involvement. The present review is aimed to cover the clinical, neuroimaging, and neurophysiological literature on the role of the cerebral cortex in migraine pathophysiology. OVERVIEW Converging clinical scenarios, advanced neuroimaging data, and experimental neurophysiological findings, indicate that fluctuating excitability, plasticity, and metabolism of cortical neurons represent the pathophysiological substrate of the migraine cycle. Abnormal cortical responsivity and sensory processing coupled to a mismatch between the brain's energy reserve and workload may ignite the trigeminovascular system, leading to the migraine attack through the activation of subcortical brain trigeminal and extra-trigeminal structures, and driving its propagation and maintenance. DISCUSSION The brain cortex emerges as the crucial player in migraine, a disorder lying at the intersection between neuroscience and daily life. Migraine disorder stems from an imbalance in inhibitory/excitatory cortical circuits, responsible for functional changes in the activity of different cortical brain regions encompassing the neurolimbic-pain network, and secondarily allowing a demodulation of subcortical areas, such as hypothalamus, amygdala, and brainstem nuclei, in a continuous mutual crosstalk.
Collapse
Affiliation(s)
- Piero Barbanti
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Filippo Brighina
- Headache Center and Neurophysiology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gabriella Egeo
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - Vincenzo Di Stefano
- Headache Center and Neurophysiology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marcello Silvestro
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Russo
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
12
|
The visual system as target of non-invasive brain stimulation for migraine treatment: Current insights and future challenges. PROGRESS IN BRAIN RESEARCH 2020. [PMID: 33008507 DOI: 10.1016/bs.pbr.2020.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The visual network is crucially implicated in the pathophysiology of migraine. Several lines of evidence indicate that migraine is characterized by an altered visual cortex excitability both during and between attacks. Visual symptoms, the most common clinical manifestation of migraine aura, are likely the result of cortical spreading depression originating from the extrastriate area V3A. Photophobia, a clinical hallmark of migraine, is linked to an abnormal sensory processing of the thalamus which is converged with the non-image forming visual pathway. Finally, visual snow is an increasingly recognized persistent visual phenomenon in migraine, possibly caused by increased perception of subthreshold visual stimuli. Emerging research in non-invasive brain stimulation (NIBS) has vastly developed into a diversity of areas with promising potential. One of its clinical applications is the single-pulse transcranial magnetic stimulation (sTMS) applied over the occipital cortex which has been approved for treating migraine with aura, albeit limited evidence. Studies have also investigated other NIBS techniques, such as repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS), for migraine prophylaxis but with conflicting results. As a dynamic brain disorder with widespread pathophysiology, targeting migraine with NIBS is challenging. Furthermore, unlike the motor cortex, evidence suggests that the visual cortex may be less plastic. Controversy exists as to whether the same fundamental principles of NIBS, based mainly on findings in the motor cortex, can be applied to the visual cortex. This review aims to explore existing literature surrounding NIBS studies on the visual system of migraine. We will first provide an overview highlighting the direct implication of the visual network in migraine. Next, we will focus on the rationale behind using NIBS for migraine treatment, including its effects on the visual cortex, and the shortcomings of currently available evidence. Finally, we propose a broader perspective of how novel approaches, the concept of brain networks and the integration of multimodal imaging with computational modeling, can help refine current NIBS methods, with the ultimate goal of optimizing a more individualized treatment for migraine.
Collapse
|
13
|
Coppola G, Di Lenola D, Abagnale C, Ferrandes F, Sebastianelli G, Casillo F, Di Lorenzo C, Serrao M, Evangelista M, Schoenen J, Pierelli F. Short-latency afferent inhibition and somato-sensory evoked potentials during the migraine cycle: surrogate markers of a cycling cholinergic thalamo-cortical drive? J Headache Pain 2020; 21:34. [PMID: 32299338 PMCID: PMC7164277 DOI: 10.1186/s10194-020-01104-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Short-latency afferent inhibition (SAI) consists of motor cortex inhibition induced by sensory afferents and depends on the excitatory effect of cholinergic thalamocortical projections on inhibitory GABAergic cortical networks. Given the electrophysiological evidence for thalamo-cortical dysrhythmia in migraine, we studied SAI in migraineurs during and between attacks and searched for correlations with somatosensory habituation, thalamocortical activation, and clinical features. Methods SAI was obtained by conditioning the transcranial magnetic stimulation-induced motor evoked potential (MEP) with an electric stimulus on the median nerve at the wrist with random stimulus intervals corresponding to the latency of individual somatosensory evoked potentials (SSEP) N20 plus 2, 4, 6, or 8 ms. We recruited 30 migraine without aura patients, 16 between (MO), 14 during an attack (MI), and 16 healthy volunteers (HV). We calculated the slope of the linear regression between the unconditioned MEP amplitude and the 4-conditioned MEPs as a measure of SAI. We also measured SSEP amplitude habituation, and high-frequency oscillations (HFO) as an index of thalamo-cortical activation. Results Compared to HV, SAI, SSEP habituation and early SSEP HFOs were significantly reduced in MO patients between attacks, but enhanced during an attack. There was a positive correlation between degree of SAI and amplitude of early HFOs in HV, but not in MO or MI. Conclusions The migraine cycle-dependent variations of SAI and SSEP HFOs are further evidence that facilitatory thalamocortical activation (of GABAergic networks in the motor cortex for SAI), likely to be cholinergic, is reduced in migraine between attacks, but increased ictally.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Fabio Ferrandes
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Maurizio Evangelista
- Università Cattolica del Sacro Cuore/CIC, Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital. University of Liège, Boulevard du Douzième de Ligne 1, 4000, Liège, Belgium
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.,IRCCS - Neuromed, via Atinense, 18, 86077, Pozzilli, IS, Italy
| |
Collapse
|
14
|
Abstract
We describe a model of neurological disease based on dysfunctional brain oscillators. This is not a new model, but it is not one that is widely appreciated by clinicians. The value of this model lies in the predictions it makes and the utility it provides in translational applications, in particular for neuromodulation devices. Specifically, we provide a perspective on devices that provide input to sensory receptors and thus stimulate endogenous sensory networks. Current forms of clinically applied neuromodulation, including devices such as (implanted) deep brain stimulators (DBS) and various, noninvasive methods such as transcranial magnetic stimulation (TMS) and transcranial current methods (tACS, tDCS), have been studied extensively. The potential strength of neuromodulation of a sensory organ is access to the same pathways that natural environmental stimuli use and, importantly, the modulatory signal will be transformed as it travels through the brain, allowing the modulation input to be consistent with regional neuronal dynamics. We present specific examples of devices that rely on sensory neuromodulation and evaluate the translational potential of these approaches. We argue that sensory neuromodulation is well suited to, ideally, repair dysfunctional brain oscillators, thus providing a broad therapeutic approach for neurological diseases.
Collapse
|
15
|
Abstract
Attention related electrophysiological waves, such as P300, often deviate from norm in various populations of neuropsychiatric patients. For example, the amplitude is often smaller and the latency is often longer in major depressive disorder, in bipolar disorder and in schizophrenia. On the other hand, in other neuropsychiatric populations, it is often possible to note the opposite phenomena of larger P300 amplitude and shorter latency in comparison with norm, but only for a specific subset of stimuli. This is often reported in various anxiety disorders, substance abuse and various chronic pain syndromes. These findings in the various clinical populations, on their commonalities and differences, are presented in this work. The prevalence of these two types of deviations in the electrophysiological markers of attention, shared by multiple neuropsychiatric populations, raise interesting questions regarding the role of attention deviation and regulation in neuropsychiatry. We present these questions and outline a possible hypothesis in this regard. Furthermore, such potential sensitivity of the attention-related markers to clinical dynamics suggests they could be candidates for monitoring and, potentially, early-sensing of clinical dynamics. Therefore, we discuss the potential usability of such markers.
Collapse
|
16
|
Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm (Vienna) 2019; 127:551-566. [DOI: 10.1007/s00702-019-02089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
|
17
|
Alaydin HC, Vuralli D, Keceli Y, Can E, Cengiz B, Bolay H. Reduced Short‐Latency Afferent Inhibition Indicates Impaired Sensorimotor Integrity During Migraine Attacks. Headache 2019; 59:906-914. [DOI: 10.1111/head.13554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Halil Can Alaydin
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Doga Vuralli
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Algology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Yeliz Keceli
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Ezgi Can
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Bulent Cengiz
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Clinical Neurophysiology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Hayrunnisa Bolay
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Algology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| |
Collapse
|
18
|
Zhu B, Coppola G, Shoaran M. Migraine classification using somatosensory evoked potentials. Cephalalgia 2019; 39:1143-1155. [DOI: 10.1177/0333102419839975] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective The automatic detection of migraine states using electrophysiological recordings may play a key role in migraine diagnosis and early treatment. Migraineurs are characterized by a deficit of habituation in cortical information processing, causing abnormal changes of somatosensory evoked potentials. Here, we propose a machine learning approach to utilize somatosensory evoked potential-based biomarkers for migraine classification in a noninvasive setting. Methods Forty-two migraine patients, including 29 interictal and 13 ictal, were recruited and compared with 15 healthy volunteers of similar age and gender distribution. The right median nerve somatosensory evoked potentials were collected from all subjects. State-of-the-art machine learning algorithms including random forest, extreme gradient-boosting trees, support vector machines, K-nearest neighbors, multilayer perceptron, linear discriminant analysis, and logistic regression were used for classification and were built upon somatosensory evoked potential features in time and frequency domains. A feature selection method was employed to assess the contribution of features and compare it with previous clinical findings, and to build an optimal feature set by removing redundant features. Results Using a set of relevant features and different machine learning models, accuracies ranging from 51.2% to 72.4% were achieved for the healthy volunteers-ictal-interictal classification task. Following model and feature selection, we successfully separated the three groups of subjects with an accuracy of 89.7% for the healthy volunteers-ictal, 88.7% for healthy volunteers-interictal, 80.2% for ictal-interictal, and 73.3% for healthy volunteers-ictal-interictal classification tasks, respectively. Conclusion Our proposed model suggests the potential use of somatosensory evoked potentials as a prominent and reliable signal in migraine classification. This non-invasive somatosensory evoked potential-based classification system offers the potential to reliably separate migraine patients in ictal and interictal states from healthy controls.
Collapse
Affiliation(s)
- Bingzhao Zhu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Gianluca Coppola
- Research Unit of Neurophysiology of Vision and Neurophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| | - Mahsa Shoaran
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Muzyka IM, Estephan B. Somatosensory evoked potentials. HANDBOOK OF CLINICAL NEUROLOGY 2019; 160:523-540. [DOI: 10.1016/b978-0-444-64032-1.00035-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Shahaf G, Kuperman P, Bloch Y, Yariv S, Granovsky Y. Monitoring Migraine Cycle Dynamics with an Easy-to-Use Electrophysiological Marker-A Pilot Study. SENSORS 2018; 18:s18113918. [PMID: 30441751 PMCID: PMC6263618 DOI: 10.3390/s18113918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 11/22/2022]
Abstract
Migraine attacks can cause significant discomfort and reduced functioning for days at a time, including the pre-ictal and post-ictal periods. During the inter-ictsal period, however, migraineurs seem to function normally. It is puzzling, therefore, that event-related potentials of migraine patients often differ in the asymptomatic and inter-ictal period. Part of the electrophysiological dynamics demonstrated in the migraine cycle are attention related. In this pilot study we evaluated an easy-to-use new marker, the Brain Engagement Index (BEI), for attention monitoring during the migraine cycle. We sampled 12 migraine patients for 20 days within one calendar month. Each session consisted of subjects’ reports of stress level and migraine-related symptoms, and a 5 min EEG recording, with a 2-electrode EEG device, during an auditory oddball task. The first minute of the EEG sample was analyzed. Repetitive samples were also obtained from 10 healthy controls. The brain engagement index increased significantly during the pre-ictal (p ≈ 0.001) and the ictal (p ≈ 0.020) periods compared with the inter-ictal period. No difference was observed between the pre-ictal and ictal periods. Control subjects demonstrated intermediate Brain Engagement Index values, that is, higher than inter-ictal, yet lower than pre-ictal. Our preliminary results demonstrate the potential advantage of the use of a simple EEG system for improved prediction of migraine attacks. Further study is required to evaluate the efficacy of the Brain Engagement Index in monitoring the migraine cycle and the possible effects of interventions.
Collapse
Affiliation(s)
| | - Pora Kuperman
- The Laboratory of Clinical Neurophysiology, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Yuval Bloch
- The Emotion-Cognition Research Center, Shalvata Mental Health Care Center, Hod-Hasharon 45100, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.
| | - Shahak Yariv
- Department of Psychiatry, Emek Medical Center, Afula 1834111, Israel.
| | - Yelena Granovsky
- The Laboratory of Clinical Neurophysiology, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
- Department of Neurology, Rambam Medical Center, Haifa 3655306, Israel.
| |
Collapse
|
21
|
Younis S, Hougaard A, Noseda R, Ashina M. Current understanding of thalamic structure and function in migraine. Cephalalgia 2018; 39:1675-1682. [PMID: 30079744 DOI: 10.1177/0333102418791595] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To review and discuss the literature on the role of thalamic structure and function in migraine. DISCUSSION The thalamus holds an important position in our understanding of allodynia, central sensitization and photophobia in migraine. Structural and functional findings suggest abnormal functional connectivity between the thalamus and various cortical regions pointing towards an altered pain processing in migraine. Pharmacological nociceptive modulation suggests that the thalamus is a potential drug target. CONCLUSION A critical role for the thalamus in migraine-related allodynia and photophobia is well established. Additionally, the thalamus is most likely involved in the dysfunctional pain modulation and processing in migraine, but further research is needed to clarify the exact clinical implications of these findings.
Collapse
Affiliation(s)
- Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
|
23
|
Zanini S, Del Piero I, Martucci L, Restuccia D. High frequency oscillations after median nerve stimulations in healthy children and adolescents. Int J Dev Neurosci 2017; 61:68-72. [PMID: 28690102 DOI: 10.1016/j.ijdevneu.2017.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022] Open
Abstract
The aim of the present research was to address somatosensory high frequency oscillations (400-800Hz) in healthy children and adolescents in comparison with healthy adults. We recorded somatosensory evoked potentials following median nerve stimulation in nineteen resting healthy children/adolescents and in nineteen resting healthy adults with eyes closed. We administered six consecutive stimulation blocks (500 sweeps each). The presynaptic component of high frequency oscillations amplitudes was smaller in healthy children/adolescents than in healthy adults (no difference between groups was found as far as the postsynaptic component was concerned). Healthy children/adolescents had smaller presynaptic component than the postsynaptic one (the postsynaptic component amplitude was 145% of the presynaptic one), while healthy adults showed the opposite (reduction of the postsynaptic component to 80% of the presynaptic one). No habituation phenomena concerning high frequency oscillation amplitudes were registered in neither healthy children/adolescents nor healthy adults. These findings suggest that healthy children/adolescents present with significantly different pattern of somatosensory high frequency oscillations compared with healthy adults' ones. This different pattern is reasonably expression of higher cortical excitability of the developing brain cortex.
Collapse
Affiliation(s)
- Sergio Zanini
- Scientific Institute Eugenio Medea, Via Cialdini 29, 33037 Pasian di Prato, Udine, Italy.
| | - Ivana Del Piero
- Scientific Institute Eugenio Medea, Via Cialdini 29, 33037 Pasian di Prato, Udine, Italy.
| | - Lucia Martucci
- Scientific Institute Eugenio Medea, Via Cialdini 29, 33037 Pasian di Prato, Udine, Italy.
| | - Domenico Restuccia
- Department of Neurosciences, Catholic University of the Sacred Heart, Policlinico A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy.
| |
Collapse
|
24
|
McDiarmid TA, Bernardos AC, Rankin CH. Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev 2017; 80:286-305. [PMID: 28579490 DOI: 10.1016/j.neubiorev.2017.05.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/29/2017] [Indexed: 02/03/2023]
Abstract
Abnormalities in the simplest form of learning, habituation, have been reported in a variety of neuropsychiatric disorders as etiologically diverse as Autism Spectrum Disorder, Fragile X syndrome, Schizophrenia, Parkinson's Disease, Huntington's Disease, Attention Deficit Hyperactivity Disorder, Tourette's Syndrome, and Migraine. Here we provide the first comprehensive review of what is known about alterations in this form of non-associative learning in each disorder. Across several disorders, abnormal habituation is predictive of symptom severity, highlighting the clinical significance of habituation and its importance to normal cognitive function. Abnormal habituation is discussed within the greater framework of learning theory and how it may relate to disease phenotype either as a cause, symptom, or therapy. Important considerations for the design and interpretation of habituation experiments are outlined with the hope that these will aid both clinicians and basic researchers investigating how this simple form of learning is altered in disease.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Aram C Bernardos
- Graduate Program in Neuroscience, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Rm F221, 2211 Wesbrook Mall, Vancouver, British Columbia, V6T 2B5, Canada.
| |
Collapse
|
25
|
Misra UK, Kalita J, Tripathi G, Bhoi SK. Role of β endorphin in pain relief following high rate repetitive transcranial magnetic stimulation in migraine. Brain Stimul 2017; 10:618-623. [DOI: 10.1016/j.brs.2017.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/03/2023] Open
|
26
|
Coppola G, Di Renzo A, Tinelli E, Lepre C, Di Lorenzo C, Di Lorenzo G, Scapeccia M, Parisi V, Serrao M, Colonnese C, Schoenen J, Pierelli F. Thalamo-cortical network activity between migraine attacks: Insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain 2016; 17:100. [PMID: 27778244 PMCID: PMC5078119 DOI: 10.1186/s10194-016-0693-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 10/18/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Resting state magnetic resonance imaging allows studying functionally interconnected brain networks. Here we were aimed to verify functional connectivity between brain networks at rest and its relationship with thalamic microstructure in migraine without aura (MO) patients between attacks. METHODS Eighteen patients with untreated MO underwent 3 T MRI scans and were compared to a group of 19 healthy volunteers (HV). We used MRI to collect resting state data among two selected resting state networks, identified using group independent component (IC) analysis. Fractional anisotropy (FA) and mean diffusivity (MD) values of bilateral thalami were retrieved from a previous diffusion tensor imaging study on the same subjects and correlated with resting state ICs Z-scores. RESULTS In comparison to HV, in MO we found significant reduced functional connectivity between the default mode network and the visuo-spatial system. Both HV and migraine patients selected ICs Z-scores correlated negatively with FA values of the thalamus bilaterally. CONCLUSIONS The present results are the first evidence supporting the hypothesis that an abnormal resting within networks connectivity associated with significant differences in baseline thalamic microstructure could contribute to interictal migraine pathophysiology.
Collapse
Affiliation(s)
- Gianluca Coppola
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy.
| | - Antonio Di Renzo
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy
| | - Emanuele Tinelli
- Department of Neurology and Psychiatry, Neuroradiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Chiara Lepre
- Department of Medico-Surgical Sciences and Biotechnologies, Neurology Section, "Sapienza" University of Rome, Rome, Italy
| | | | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology, Psychiatric Clinic, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Scapeccia
- Department of Neurology and Psychiatry, Neuroradiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Parisi
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy
| | - Claudio Colonnese
- Department of Neurology and Psychiatry, Neuroradiology Section, "Sapienza" University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, (IS), Italy
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-CHR Citadelle, University of Liège, Liège, Belgium
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy
- IRCCS Neuromed, Pozzilli, (IS), Italy
| |
Collapse
|
27
|
Kalita J, Bhoi SK, Misra UK. Effect of high rate rTMS on somatosensory evoked potential in migraine. Cephalalgia 2016; 37:1222-1230. [DOI: 10.1177/0333102416675619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Sensitization and impaired habituation of cortical neurons have been reported in migraineurs. Repetitive transcranial magnetic stimulation (rTMS) may change these phenomena and be the basis of therapeutic response. We report the effect of 10 Hz rTMS on sensitization and habituation of median somatosensory evoked potential (SEP) in migraineurs, and correlate these changes with clinical response. Methods Migraineurs having four or more episodes of headache per month were included and their clinical details were noted. Three sessions of 10 Hz rTMS, 600 pulses in 412.4 seconds were delivered on the left frontal cortex corresponding to the hot spot of right abductor digiti minimi, on alternate days. Median SEP was done before and 30 minutes after the third rTMS session. Sensitization (block I N20 amplitude) and impaired habituation (if N20 amplitude of block 2 or 3 were not suppressed compared to block I) were noted. The reduction in frequency and severity of headache in the next month were noted and correlated with SEP changes. Results Ninety-four migraineurs were included; 56 received true rTMS and 38 sham stimulation. Following stimulation, reduction in N20 amplitude of block 1 correlated with a reduction in frequency and severity of headache at one month. The impaired habituation significantly improved in the true rTMS group compared to sham stimulation, and correlated with a reduction in the severity of headache but not with frequency. Conclusion In migraineurs, 10 Hz rTMS improves habituation and may be the biological basis of headache relief.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sanjeev K Bhoi
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Usha K Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
28
|
Coppola G, Di Lorenzo C, Serrao M, Parisi V, Schoenen J, Pierelli F. Pathophysiological targets for non-pharmacological treatment of migraine. Cephalalgia 2016; 36:1103-1111. [PMID: 26637237 DOI: 10.1177/0333102415620908] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Migraine is the most prevalent neurological disorder worldwide and ranked sixth among all diseases in years lived with disability. Overall preventive anti-migraine therapies have an effect in one patient out of two at the most, many of them being endowed with disabling adverse effects. No new disease-modifying drugs have come into clinical practice since the application to migraine of topiramate and botulinum toxin, the latter for its chronic form. There is thus clearly a need for more effective treatments that are devoid of, or have acceptable side effects. In recent years, scientific progress in migraine research has led to substantial changes in our understanding of the pathophysiology of migraine and paved the way for novel non-drug pathophysiological-targeted treatment strategies. Overview Several such non-drug therapies have been tested in migraine, such as oxidative phosphorylation enhancers, diets and non-invasive central or peripheral neurostimulation. All of them are promising for preventive migraine treatment and are quasi-devoid of side effects. Their advantage is that they can in theory be selected for individual patients according to their pathophysiological profile and they can (and probably should) be combined with the classical pharmacological armamentarium. Conclusion We will review here how knowledge of the functional anatomy and physiology of migraine mechanisms holds the key for more specific and effective non-pharmacological treatments.
Collapse
Affiliation(s)
- Gianluca Coppola
- 1 G.B. Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Italy
| | | | - Mariano Serrao
- 3 "Sapienza" University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Italy
| | - Vincenzo Parisi
- 1 G.B. Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Italy
| | - Jean Schoenen
- 4 Liège University, Headache Research Unit. University Department of Neurology, Belgium
| | - Francesco Pierelli
- 3 "Sapienza" University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Italy.,5 IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
29
|
Porcaro C, Di Lorenzo G, Seri S, Pierelli F, Tecchio F, Coppola G. Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks. Cephalalgia 2016; 37:915-926. [DOI: 10.1177/0333102416657146] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. Methods Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1–400 Hz and 450–750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. Results Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. Conclusions This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.
Collapse
Affiliation(s)
- Camillo Porcaro
- LET’S-ISTC-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology, Psychiatric Chair, Department of Systems Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
- Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Fondazione Policlinico ‘Tor Vergata’, Rome, Italy
| | - Stefano Seri
- The Wellcome Trust Laboratory for MEG Studies, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Francesco Pierelli
- Sapienza University of Rome Polo Pontino, Latina and IRCCS Neuromed, Pozzilli (IS), Italy
| | - Franca Tecchio
- LET’S-ISTC-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
| | - Gianluca Coppola
- G.B. Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| |
Collapse
|
30
|
Shahaf G. Migraine as dysfunctional drive reduction: Insight from electrophysiology. Med Hypotheses 2016; 91:62-66. [DOI: 10.1016/j.mehy.2016.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/11/2016] [Indexed: 11/24/2022]
|
31
|
Diagnosis, pathophysiology and management of chronic migraine: a proposal of the Belgian Headache Society. Acta Neurol Belg 2015; 115:1-17. [PMID: 24968722 DOI: 10.1007/s13760-014-0313-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022]
Abstract
Chronic migraine (CM) is a disabling neurological condition affecting 0.5-2 % of the population. In the current third edition of the International Classification of Headache Disorders, medication overuse is no longer an exclusion criterion and CM is diagnosed in patients suffering from at least 15 headache days per month of which at least eight are related to migraine. CM is difficult to treat, and preventive treatment options are limited. We provide a pathogenetic model for CM, integrating the latest findings from neurophysiological and neuroimaging studies. On behalf of the Belgian Headache Society, we present a management algorithm for CM based on the international literature and adapted to the Belgian situation. Pharmacological treatment options are discussed, and recent data on transcranial and invasive neuromodulation studies in CM are reviewed. An integrated multimodal treatment programme may be beneficial to refractory patients, but at present, this approach is only supported by a limited number of observational studies and quite variable between centres.
Collapse
|
32
|
|
33
|
Disease duration of episodic migraine correlates with modified amplitudes and habituation of contingent negative variation. J Neural Transm (Vienna) 2014; 122:877-85. [DOI: 10.1007/s00702-014-1345-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/23/2014] [Indexed: 01/27/2023]
|
34
|
Kirimoto H, Tamaki H, Matsumoto T, Sugawara K, Suzuki M, Oyama M, Onishi H. Effect of Transcranial Static Magnetic Field Stimulation Over the Sensorimotor Cortex on Somatosensory Evoked Potentials in Humans. Brain Stimul 2014; 7:836-40. [DOI: 10.1016/j.brs.2014.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022] Open
|
35
|
Cosentino G, Fierro B, Brighina F. From different neurophysiological methods to conflicting pathophysiological views in migraine: A critical review of literature. Clin Neurophysiol 2014; 125:1721-30. [DOI: 10.1016/j.clinph.2014.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 01/15/2023]
|
36
|
de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 2014; 10:144-55. [PMID: 24535465 DOI: 10.1038/nrneurol.2014.14] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes.
Collapse
Affiliation(s)
| | - Anna Ambrosini
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | - Armando Perrotta
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Francesco Pierelli
- Headache Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Magis D, Vigano A, Sava S, d'Elia TS, Schoenen J, Coppola G. Pearls and pitfalls: electrophysiology for primary headaches. Cephalalgia 2014; 33:526-39. [PMID: 23671250 DOI: 10.1177/0333102413477739] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Primary headaches are functional neurological diseases characterized by a dynamic cyclic pattern over time (ictal/pre-/interictal). Electrophysiological recordings can non-invasively assess the activity of an underlying nervous structure or measure its response to various stimuli, and are therefore particularly appropriate for the study of primary headaches. Their interest, however, is chiefly pathophysiological, as interindividual, and to some extent intraindividual, variations preclude their use as diagnostic tools. AIM OF THE WORK This article will review the most important findings of electrophysiological studies in primary headache pathophysiology, especially migraine on which numerous studies have been published. RESULTS In migraine, the most reproducible hallmark is the interictal lack of neuronal habituation to the repetition of various types of sensory stimulations. The mechanism subtending this phenomenon remains uncertain, but it could be the consequence of a thalamocortical dysrythmia that results in a reduced cortical preactivation level. In tension-type headache as well as in cluster headache, there seems to be an impairment of central pain-controlling mechanisms but the studies are scarce and their outcomes are contradictory. The discrepancies between studies might be as a result of methodological differences as well as patients' dissimilarities, which are also discussed. CONCLUSIONS AND PERSPECTIVES Electrophysiology is complementary to functional neuroimaging and will undoubtedly remain an important tool in headache research. One of its upcoming applications is to help select neurostimulation techniques and protocols that correct best the functional abnormalities detectable in certain headache disorders.
Collapse
Affiliation(s)
- Delphine Magis
- Headache Research Unit, University Department of Neurology, CHR Citadelle, Liege 4000, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Xiang J, deGrauw X, Korman AM, Allen JR, O'Brien HL, Kabbouche MA, Powers SW, Hershey AD. Neuromagnetic abnormality of motor cortical activation and phases of headache attacks in childhood migraine. PLoS One 2013; 8:e83669. [PMID: 24386250 PMCID: PMC3873943 DOI: 10.1371/journal.pone.0083669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
The cerebral cortex serves a primary role in the pathogenesis of migraine. This aberrant brain activation in migraine can be noninvasively detected with magnetoencephalography (MEG). The objective of this study was to investigate the differences in motor cortical activation between attacks (ictal) and pain free intervals (interictal) in children and adolescents with migraine using both low- and high-frequency neuromagnetic signals. Thirty subjects with an acute migraine and 30 subjects with a history of migraine, while pain free, were compared to age- and gender-matched controls using MEG. Motor cortical activation was elicited by a standardized, validated finger-tapping task. Low-frequency brain activation (1∼50 Hz) was analyzed with waveform measurements and high-frequency oscillations (65–150 Hz) were analyzed with wavelet-based beamforming. MEG waveforms showed that the ictal latency of low-frequency brain activation was significantly delayed as compared with controls, while the interictal latency of brain activation was similar to that of controls. The ictal amplitude of low-frequency brain activation was significantly increased as compared with controls, while the interictal amplitude of brain activation was similar to that of controls. The ictal source power of high-frequency oscillations was significantly stronger than that of the controls, while the interictal source power of high-frequency oscillations was significantly weaker than that of controls. The results suggest that aberrant low-frequency brain activation in migraine during a headache attack returned to normal interictally. However, high-frequency oscillations changed from ictal hyper-activation to interictal hypo-activation. Noninvasive assessment of cortical abnormality in migraine with MEG opens a new window for developing novel therapeutic strategies for childhood migraine by maintaining a balanced cortical excitability.
Collapse
Affiliation(s)
- Jing Xiang
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Xinyao deGrauw
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Abraham M. Korman
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Janelle R. Allen
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Hope L. O'Brien
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Marielle A. Kabbouche
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Scott W. Powers
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Andrew D. Hershey
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Migraine has traditionally been categorized as a pain disorder, focusing on headache as its central feature. This narrow view does not account for the complex array of premonitory and postrdromal symptoms that occur in the hours before and after headache. This review outlines evidence that supports a broader view of migraine as a pathological brain state. RECENT FINDINGS Studies of the clinical features of a migraine attack, in combination with imaging and electrophysiological studies, provide evidence that migraine involves widespread changes in brain function and connectivity. These changes parallel those seen in other brain states such as sleep. Neurochemical mediators, including adenosine, and nonsynaptic signalling mechanisms involving astrocytes may play a role in the migraine state. SUMMARY Consideration of a migraine attack as a brain state provides an expanded framework for understanding all of its symptoms, and the underlying alterations in the activity of multiple brain networks. Mechanisms driving the transition to the migraine state may represent novel targets for acute and preventive therapies.
Collapse
|
40
|
Coppola G, Tinelli E, Lepre C, Iacovelli E, Di Lorenzo C, Di Lorenzo G, Serrao M, Pauri F, Fiermonte G, Bianco F, Pierelli F. Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol 2013; 21:287-e13. [DOI: 10.1111/ene.12296] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
- G. Coppola
- Department of Neurophysiology of Vision and Neurophthalmology; G.B. Bietti Foundation IRCCS; Rome Italy
| | - E. Tinelli
- Neuroradiology Section; Department of Neurology and Psychiatry; ‘Sapienza’ University of Rome; Rome Italy
| | - C. Lepre
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | - E. Iacovelli
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | | | - G. Di Lorenzo
- Laboratory of Psychophysiology; Psychiatric Clinic; Department of Systems Medicine; University of Rome ‘Tor Vergata’; Rome Italy
| | - M. Serrao
- Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome Polo Pontino; Latina Italy
| | - F. Pauri
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | - G. Fiermonte
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | - F. Bianco
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | | |
Collapse
|
41
|
Restuccia D, Vollono C, Virdis D, Piero ID, Martucci L, Zanini S. Patterns of habituation and clinical fluctuations in migraine. Cephalalgia 2013; 34:201-10. [DOI: 10.1177/0333102413508241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Habituation deficit, suggesting a deregulation of cortical excitability, represents a typical hallmark of interictal stages of migraine. We previously demonstrated that several neurophysiological markers of altered cortical excitability are significantly correlated to spontaneous clinical fluctuations of migraine. We therefore aimed at verifying whether clinical fluctuations are correlated to specific patterns of somatosensory evoked potential (SEP) habituation. Methods We analyzed habituation after median nerve stimulation of both high-frequency oscillations (HFOs) and N20 SEP in 25 migraine patients and 18 healthy volunteers. Subjects underwent six consecutive series of 500 stimuli. Results Migraine patients as a whole showed a significant habituation deficit of the N20 response. Moreover, spontaneously worsening patients show a clear potentiation of this wave in the last block of stimuli, whereas in spontaneously improving patients the N20 amplitude remained stable. Presynaptic HFOs were smaller in worsening patients and larger in improving ones, but they did not undergo habituation in patients as well as in healthy subjects. Conclusions Potentiation of the N20 response in spontaneously worsening migraineurs confirms that the reduction of the thalamocortical drive plays a major role in migraine pathogenesis. Moreover, the stable pattern we observed in spontaneously improving patients suggests that compensatory mechanisms can also play an important role. The normal response to repeated stimuli of HFOs in migraineurs might indicate that, although its initial amount depends on clinical conditions, high-frequency thalamocortical drive remains stable during the stimulation and probably reflects the activity of a buffer mechanism.
Collapse
|
42
|
Coppola G, Iacovelli E, Bracaglia M, Serrao M, Di Lorenzo C, Pierelli F. Electrophysiological correlates of episodic migraine chronification: evidence for thalamic involvement. J Headache Pain 2013; 14:76. [PMID: 24016158 PMCID: PMC3844625 DOI: 10.1186/1129-2377-14-76] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/05/2013] [Indexed: 12/20/2022] Open
Abstract
Background Episodic migraine is characterized by decreased high-frequency somatosensory oscillations (HFOs), reflecting thalamo-cortical activity, and deficient habituation of low-frequency (LF-) somatosensory evoked potentials (SSEPs) to repetitive sensory stimulation between attacks. Here, we study conventional LF-SSEPs and HFOs in episodic migraineurs who developed chronic migraine (CM). Methods Thirty-four episodic (15 interictally [MOii], 19 ictally [MOi]) and 19 CM patients underwent right median nerve SSEPs. The patient groups were compared to a group of 20 healthy volunteers (HV) of comparable age and gender distribution. We measured the N20-P25 LF-SSEP 1st amplitude block and habituation, and, after applying a band-pass filter (450–750 Hz), maximal peak-to-peak latency and the amplitudes of the early and late HFOs. Results Reduced early HFOs, lower 1st block LF-SSEPs and deficient habituation characterize MOii. Initially higher SSEP amplitudes and late normal habituation characterize both CM and MOi patients. After the digital filtration, both patient groups showed shortened latency peaks and normalization of early HFO amplitudes with increased late HFOs. When data of MO and CM patients were combined, the monthly number of days with headache negatively correlated with the LF-SSEP slope (r = −0.385, p = 0.006), which in turn negatively correlated with the 1st amplitude block (r = 0.568, p < 0.001). Conclusions Our results show abnormalities in chronic migraine that are also reported during attacks in episodic migraineurs, namely early response sensitization and late habituation. The HFO analysis suggests that this sensory sensitization may be explained by an increase in the strength of the connections between the thalamus and cortex compared to episodic migraine between attacks. Whether this electro-functional behaviour is primary or secondary to daily headache, thus reflecting an electrophysiological fingerprint of the somatosensory system central sensitization process, remains to be determined.
Collapse
Affiliation(s)
- Gianluca Coppola
- G,B, Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology G,B, Bietti Foundation-IRCCS, Via Livenza 3, Rome 00198, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Abnormal sensorimotor plasticity in migraine without aura patients. Pain 2013; 154:1738-1742. [DOI: 10.1016/j.pain.2013.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 11/20/2022]
|
44
|
Coppola G, Di Lorenzo C, Schoenen J, Pierelli F. Habituation and sensitization in primary headaches. J Headache Pain 2013; 14:65. [PMID: 23899115 PMCID: PMC3733593 DOI: 10.1186/1129-2377-14-65] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/21/2013] [Indexed: 11/20/2022] Open
Abstract
The phenomena of habituation and sensitization are considered most useful for studying the neuronal substrates of information processing in the CNS. Both were studied in primary headaches, that are functional disorders of the brain characterized by an abnormal responsivity to any kind of incoming innocuous or painful stimuli and it's cycling pattern over time (interictal, pre-ictal, ictal). The present review summarizes available data on stimulus responsivity in primary headaches obtained with clinical neurophysiology. In migraine, the majority of electrophysiological studies between attacks have shown that, for a number of different sensory modalities, the brain is characterised by a lack of habituation of evoked responses to repeated stimuli. This abnormal processing of the incoming information reaches its maximum a few days before the beginning of an attack, and normalizes during the attack, at a time when sensitization may also manifest itself. An abnormal rhythmic activity between thalamus and cortex, namely thalamocortical dysrhythmia, may be the pathophysiological mechanism subtending abnormal information processing in migraine. In tension-type headache (TTH), only few signs of deficient habituation were observed only in subgroups of patients. By contrast, using grand-average responses indirect evidence for sensitization has been found in chronic TTH with increased nociceptive specific reflexes and evoked potentials. Generalized increased sensitivity to pain (lower thresholds and increased pain rating) and a dysfunction in supraspinal descending pain control systems may contribute to the development and/or maintenance of central sensitization in chronic TTH. Cluster headache patients are characterized during the bout and on the headache side by a pronounced lack of habituation of the brainstem blink reflex and a general sensitization of pain processing. A better insight into the nature of these ictal/interictal electrophysiological dysfunctions in primary headaches paves the way for novel therapeutic targets and may allow a better understanding of the mode of action of available therapies.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation IRCCS, Via Livenza 3, 00198, Rome, Italy
| | | | - Jean Schoenen
- Headache Research Unit, University Department of Neurology & GIGA-Neurosciences, Liège University, Liège, Belgium
| | | |
Collapse
|
45
|
Xiang J, deGrauw X, Korostenskaja M, Korman AM, O'Brien HL, Kabbouche MA, Powers SW, Hershey AD. Altered cortical activation in adolescents with acute migraine: a magnetoencephalography study. THE JOURNAL OF PAIN 2013; 14:1553-63. [PMID: 23792072 DOI: 10.1016/j.jpain.2013.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. PERSPECTIVE This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This methodology analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future.
Collapse
Affiliation(s)
- Jing Xiang
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Neurology, University of Cincinnati, College of Medicine, Cincinnati, Ohio.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Porcaro C, Coppola G, Pierelli F, Seri S, Di Lorenzo G, Tomasevic L, Salustri C, Tecchio F. Multiple frequency functional connectivity in the hand somatosensory network: An EEG study. Clin Neurophysiol 2013; 124:1216-24. [DOI: 10.1016/j.clinph.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/12/2012] [Accepted: 12/08/2012] [Indexed: 01/01/2023]
|
47
|
Restuccia D, Vollono C, del Piero I, Martucci L, Zanini S. Different levels of cortical excitability reflect clinical fluctuations in migraine. Cephalalgia 2013; 33:1035-47. [PMID: 23575822 DOI: 10.1177/0333102413482199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In a previous study we demonstrated that high-frequency oscillations (HFOs) elicited by median nerve stimulation are significantly correlated to clinical fluctuations of migraine. We aimed at verifying whether clinical fluctuations and HFO changes are correlated to N20 somatosensory evoked potential (SEP) recovery cycle, which is likely to reflect the functional refractoriness of primary somatosensory cortex neurons. METHODS We analysed both HFOs and N20 SEP recovery cycle to paired stimulation in 21 migraine patients and 18 healthy volunteers. RESULTS Shortened recovery cycle correlated with low-amplitude HFOs as well as with clinical worsening. By contrast, prolonged recovery cycle correlated with enhanced HFOs, as well as with spontaneous clinical improvement. CONCLUSIONS In our migraine patients the strict relationship between presynaptic HFO amplitude and N20 recovery function suggests that changes of both parameters might be caused by modifications of the thalamo-cortical drive. Our findings suggest that the thalamo-cortical drive during interictal stages could fluctuate from abnormally high to abnormally low levels, depending on mechanisms which reduce cortical excitability in spontaneously improving patients, and increase cortical excitability in spontaneously worsening ones.
Collapse
|
48
|
Coppola G, Parisi V, Di Lorenzo C, Serrao M, Magis D, Schoenen J, Pierelli F. Lateral inhibition in visual cortex of migraine patients between attacks. J Headache Pain 2013; 14:20. [PMID: 23565983 PMCID: PMC3620512 DOI: 10.1186/1129-2377-14-20] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background The interictal deficit of habituation to repetitive visual stimuli in migraine patients could be due to deficient intracortical inhibition and/or to low cortical pre-activation levels. Which of these abnormalities contributes more to the habituation deficit cannot be determined with the common methods used to record transient visual responses. We investigated lateral inhibition in the visual cortex during the migraine cycle and in healthy subjects by using differential temporal modulations of radial windmill-dartboard (WD) or partial-windmill (PW) visual patterns. Methods Transient (TR-VEP) and steady-state visual-evoked potentials (SS-VEP) were recorded in 65 migraine patients (21 without and 22 with aura between attacks; 22 patients during an attack) and in 21 healthy volunteers (HV). Three stimulations were used in each subject: classic checkerboard pattern (contrast-reversion 3.1Hz), WD and PW (contrast-reversion ~4Hz). For each randomly presented stimulation protocol, 600 sweeps were acquired and off-line partitioned in 6 blocks of 100. Fourier analysis allowed data to extract in SS-VEP the fundamental (1H) and the second harmonic (2H) components that reflect respectively short-(WD) and long- range lateral inhibition (attenuation of 2H in WD compared to PW). Results Compared to HV, migraineurs recorded interictally had significantly less habituation of the N1-P1 TR-VEP component over subsequent blocks and they tended to have a smaller 1st block amplitude. 1H amplitude in the 1st block of WD SS-VEP was significantly greater than in HV and habituated in successive blocks, contrasting with an amplitude increase in HV. Both the interictal TR-VEP and SS-VEP abnormalities normalized during an attack. There was no significant between group difference in the PW 2H amplitude and its attenuation. When data of HV and migraine patients were combined, the habituation slope of WD-VEP 1H was negatively correlated with that of TR-VEP N1-P1 and with number of days since the last migraine attack. Conclusion These results are in favour of a migraine cycle-dependent imbalance between excitation and inhibition in the visual cortex. We hypothesize that an interictal hypoactivity of monaminergic pathways may cause a functional disconnection of the thalamus in migraine leading to an abnormal intracortical short-range lateral inhibition that could contribute to the habituation deficit observed during stimulus repetition.
Collapse
Affiliation(s)
- Gianluca Coppola
- Departmen of Neurophysiology of Vision and Neuroophtalmology, G,B, Bietti Foundation IRCCS, Via Livenza 3-00198, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
de Tommaso M, Stramaglia S, Marinazzo D, Trotta G, Pellicoro M. Functional and effective connectivity in EEG alpha and beta bands during intermittent flash stimulation in migraine with and without aura. Cephalalgia 2013; 33:938-47. [DOI: 10.1177/0333102413477741] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: This research was a case-control study to evaluate functional and effective connectivity patterns in ongoing electroencephalography (EEG) under repetitive photic stimulation in the interictal phase of migraine patients with and without aura compared to nonmigraine controls. Methods: EEG was recorded by six scalp electrodes from 19 migraine without aura patients (MO), 19 migraine with aura patients (MA) and 11 healthy subjects (control group (N)). Flash stimuli were presented at 9–27 Hz frequencies. Phase synchronization after Hilbert transform and Granger causality were evaluated filtering the EEG in alpha and beta bands. Results: Phase synchronization increased in alpha band in MO, and decreased in beta band in MA, with respect to controls. The intensity of directed interactions in beta band, revealed by Granger causality, increased in MA compared to both MO patients and controls. Discussion: There were clear differences in ongoing EEG under visual stimulation, which emerged between the two forms of migraine, probably subtended by increased cortical activation in migraine with aura, and compensatory phenomena of reduced connectivity and functional networks segregation, occurring in patients not experiencing aura symptoms. Further investigation may confirm whether the clinical manifestation of aura symptoms is subtended by a peculiar neuronal connectivity pattern.
Collapse
Affiliation(s)
- Marina de Tommaso
- Dipartimento di Neuroscienze e Organi di senso, Università degli Studi di Bari Aldo Moro, Italy
| | | | - Daniele Marinazzo
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Belgium
| | - Gabriele Trotta
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro and INFN, Italy
| | - Mario Pellicoro
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro and INFN, Italy
| |
Collapse
|
50
|
|