1
|
Gallardo VJ, Gómez-Galván JB, Asskour L, Torres-Ferrús M, Alpuente A, Caronna E, Pozo-Rosich P. A study of differential microRNA expression profile in migraine: the microMIG exploratory study. J Headache Pain 2023; 24:11. [PMID: 36797674 PMCID: PMC9936672 DOI: 10.1186/s10194-023-01542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Several studies have described potential microRNA (miRNA) biomarkers associated with migraine, but studies are scarcely reproducible primarily due to the heterogeneous variability of participants. Increasing evidence shows that disease-related intrinsic factors together with lifestyle (environmental factors), influence epigenetic mechanisms and in turn, diseases. Hence, the main objective of this exploratory study was to find differentially expressed miRNAs (DE miRNA) in peripheral blood mononuclear cells (PBMC) of patients with migraine compared to healthy controls in a well-controlled homogeneous cohort of non-menopausal women. METHODS Patients diagnosed with migraine according to the International Classification of Headache Disorders (ICHD-3) and healthy controls without familial history of headache disorders were recruited. All participants completed a very thorough questionnaire and structured-interview in order to control for environmental factors. RNA was extracted from PBMC and a microarray system (GeneChip miRNA 4.1 Array chip, Affymetrix) was used to determine the miRNA profiles between study groups. Principal components analysis and hierarchical clustering analysis were performed to study samples distribution and random forest (RF) algorithms were computed for the classification task. To evaluate the stability of the results and the prediction error rate, a bootstrap (.632 + rule) was run through all the procedure. Finally, a functional enrichment analysis of selected targets was computed through protein-protein interaction networks. RESULTS After RF classification, three DE miRNA distinguished study groups in a very homogeneous female cohort, controlled by factors such as demographics (age and BMI), life-habits (physical activity, caffeine and alcohol consumptions), comorbidities and clinical features associated to the disease: miR-342-3p, miR-532-3p and miR-758-5p. Sixty-eight target genes were predicted which were linked mainly to enriched ion channels and signaling pathways, neurotransmitter and hormone homeostasis, infectious diseases and circadian entrainment. CONCLUSIONS A 3-miRNA (miR-342-3p, miR-532-3p and miR-758-5p) novel signature has been found differentially expressed between controls and patients with migraine. Enrichment analysis showed that these pathways are closely associated with known migraine pathophysiology, which could lead to the first reliable epigenetic biomarker set. Further studies should be performed to validate these findings in a larger and more heterogeneous sample.
Collapse
Affiliation(s)
- V. J. Gallardo
- grid.430994.30000 0004 1763 0287Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J. B. Gómez-Galván
- grid.430994.30000 0004 1763 0287Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L. Asskour
- grid.430994.30000 0004 1763 0287Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M. Torres-Ferrús
- grid.430994.30000 0004 1763 0287Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.411083.f0000 0001 0675 8654Neurology Department, Headache Unit, Vall d’Hebron University Hospital, Barcelona, Spain
| | - A. Alpuente
- grid.430994.30000 0004 1763 0287Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.411083.f0000 0001 0675 8654Neurology Department, Headache Unit, Vall d’Hebron University Hospital, Barcelona, Spain
| | - E. Caronna
- grid.430994.30000 0004 1763 0287Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.411083.f0000 0001 0675 8654Neurology Department, Headache Unit, Vall d’Hebron University Hospital, Barcelona, Spain
| | - P. Pozo-Rosich
- grid.430994.30000 0004 1763 0287Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.411083.f0000 0001 0675 8654Neurology Department, Headache Unit, Vall d’Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
2
|
Harder AV, Terwindt GM, Nyholt DR, van den Maagdenberg AM. Migraine genetics: Status and road forward. Cephalalgia 2023; 43:3331024221145962. [PMID: 36759319 DOI: 10.1177/03331024221145962] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Migraine is considered a multifactorial genetic disorder. Different platforms and methods are used to unravel the genetic basis of migraine. Initially, linkage analysis in multigenerational families followed by Sanger sequencing of protein-coding parts (exons) of genes in the genomic region shared by affected family members identified high-effect risk DNA mutations for rare Mendelian forms of migraine, foremost hemiplegic migraine. More recently, genome-wide association studies testing millions of DNA variants in large groups of patients and controls have proven successful in identifying many dozens of low-effect risk DNA variants for the more common forms of migraine with the number of associated DNA variants increasing steadily with larger sample sizes. Currently, next-generation sequencing, utilising whole exome and whole genome sequence data, and other omics data are being used to facilitate their functional interpretation and the discovery of additional risk factors. Various methods and analysis tools, such as genetic correlation and causality analysis, are used to further characterise genetic risk factors. FINDINGS We describe recent findings in genome-wide association studies and next-generation sequencing analysis in migraine. We show that the combined results of the two most recent and most powerful migraine genome-wide association studies have identified a total of 178 LD-independent (r2 < 0.1) genome-wide significant single nucleotide polymorphisms (SNPs), of which 99 were unique to Hautakangas et al., 11 were unique to Choquet et al., and 68 were identified by both studies. When considering that Choquet et al. also identified three SNPs in a female-specific genome-wide association studies then these two recent studies identified 181 independent SNPs robustly associated with migraine. Cross-trait and causal analyses are beginning to identify and characterise specific biological factors that contribute to migraine risk and its comorbid conditions. CONCLUSION This review provides a timely update and overview of recent genetic findings in migraine.
Collapse
Affiliation(s)
- Aster Ve Harder
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Arn Mjm van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
A review of migraine genetics: gathering genomic and transcriptomic factors. Hum Genet 2021; 141:1-14. [PMID: 34686893 DOI: 10.1007/s00439-021-02389-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023]
Abstract
Migraine is a common and complex neurologic disorder that affects approximately 15-18% of the general population. Although the cause of migraine is unknown, some genetic studies have focused on unravelling rare and common variants underlying the pathophysiological mechanisms of this disorder. This review covers the advances in the last decade on migraine genetics, throughout the history of genetic methodologies used, including recent application of next-generation sequencing techniques. A thorough review of the literature interweaves the genomic and transcriptomic factors that will allow a better understanding of the mechanisms underlying migraine pathophysiology, concluding with the clinical utility landscape of genetic information and future consideration to creating a new frontier toward advancing the field of personalized medicine.
Collapse
|
4
|
Aczél T, Körtési T, Kun J, Urbán P, Bauer W, Herczeg R, Farkas R, Kovács K, Vásárhelyi B, Karvaly GB, Gyenesei A, Tuka B, Tajti J, Vécsei L, Bölcskei K, Helyes Z. Identification of disease- and headache-specific mediators and pathways in migraine using blood transcriptomic and metabolomic analysis. J Headache Pain 2021; 22:117. [PMID: 34615455 PMCID: PMC8493693 DOI: 10.1186/s10194-021-01285-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent data suggest that gene expression profiles of peripheral white blood cells can reflect changes in the brain. We aimed to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) and changes of plasma metabolite levels of migraineurs in a self-controlled manner during and between attacks. METHODS Twenty-four patients with migraine were recruited and blood samples were collected in a headache-free (interictal) period and during headache (ictal) to investigate disease- and headache-specific alterations. Control samples were collected from 13 age- and sex-matched healthy volunteers. RNA was isolated from PBMCs and single-end 75 bp RNA sequencing was performed using Illumina NextSeq 550 instrument followed by gene-level differential expression analysis. Functional analysis was carried out on information related to the role of genes, such as signaling pathways and biological processes. Plasma metabolomic measurement was performed with the Biocrates MxP Quant 500 Kit. RESULTS We identified 144 differentially-expressed genes in PBMCs between headache and headache-free samples and 163 between symptom-free patients and controls. Network analysis revealed that enriched pathways included inflammation, cytokine activity and mitochondrial dysfunction in both headache and headache-free samples compared to controls. Plasma lactate, succinate and methionine sulfoxide levels were higher in migraineurs while spermine, spermidine and aconitate were decreased during attacks. CONCLUSIONS It is concluded that enhanced inflammatory and immune cell activity, and oxidative stress can play a role in migraine susceptibility and headache generation.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Tamás Körtési
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Herczeg
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Farkas
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gellért B Karvaly
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Bernadett Tuka
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary.
| |
Collapse
|
5
|
Kogelman LJA, Falkenberg K, Buil A, Erola P, Courraud J, Laursen SS, Michoel T, Olesen J, Hansen TF. Changes in the gene expression profile during spontaneous migraine attacks. Sci Rep 2021; 11:8294. [PMID: 33859262 PMCID: PMC8050061 DOI: 10.1038/s41598-021-87503-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Migraine attacks are delimited, allowing investigation of changes during and outside attack. Gene expression fluctuates according to environmental and endogenous events and therefore, we hypothesized that changes in RNA expression during and outside a spontaneous migraine attack exist which are specific to migraine. Twenty-seven migraine patients were assessed during a spontaneous migraine attack, including headache characteristics and treatment effect. Blood samples were taken during attack, two hours after treatment, on a headache-free day and after a cold pressor test. RNA-Sequencing, genotyping, and steroid profiling were performed. RNA-Sequences were analyzed at gene level (differential expression analysis) and at network level, and genomic and transcriptomic data were integrated. We found 29 differentially expressed genes between 'attack' and 'after treatment', after subtracting non-migraine specific genes, that were functioning in fatty acid oxidation, signaling pathways and immune-related pathways. Network analysis revealed mechanisms affected by changes in gene interactions, e.g. 'ion transmembrane transport'. Integration of genomic and transcriptomic data revealed pathways related to sumatriptan treatment, i.e. '5HT1 type receptor mediated signaling pathway'. In conclusion, we uniquely investigated intra-individual changes in gene expression during a migraine attack. We revealed both genes and pathways potentially involved in the pathophysiology of migraine and/or migraine treatment.
Collapse
Affiliation(s)
- Lisette J A Kogelman
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark.
| | - Katrine Falkenberg
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Alfonso Buil
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
| | - Pau Erola
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Julie Courraud
- Department of Clinical Biochemistry and Immunology, Statens Serum Institute Copenhagen, Copenhagen, Denmark
| | - Susan Svane Laursen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institute Copenhagen, Copenhagen, Denmark
| | - Tom Michoel
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Thomas F Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark.
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark.
- Novo Nordisk Foundation Centre for Protein Research, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
6
|
Stubbe HC, Dahlke C, Rotheneder K, Stirner R, Roider J, Conca R, Seybold U, Bogner J, Addo MM, Draenert R. Integration of microarray data and literature mining identifies a sex bias in DPP4+CD4+ T cells in HIV-1 infection. PLoS One 2020; 15:e0239399. [PMID: 32946499 PMCID: PMC7500694 DOI: 10.1371/journal.pone.0239399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/07/2020] [Indexed: 01/21/2023] Open
Abstract
HIV-1 infection exhibits a significant sex bias. This study aimed at identifying and examining lymphocyte associated sex differences in HIV-1 pathogenesis using a data-driven approach. To select targets for investigating sex differences in lymphocytes, data of microarray experiments and literature mining were integrated. Data from three large-scale microarray experiments were obtained from NCBI/GEO and screened for sex differences in gene expression. Literature mining was employed to identify sex biased genes in the microarray data, which were relevant to HIV-1 pathogenesis and lymphocyte biology. Sex differences in gene expression of selected genes were investigated by RT-qPCR and flowcytometry in healthy individuals and persons living with HIV-1. A significant and consistent sex bias was identified in 31 genes, the majority of which were related to immunity and expressed at higher levels in women. Using literature mining, three genes (DPP4, FCGR1A and SOCS3) were selected for analysis by qPCR because of their relevance to HIV, as well as, B and T cell biology. DPP4 exhibited the most significant sex bias in mRNA expression (p = 0.00029). Therefore, its expression was further analyzed on B and T cells using flowcytometry. In HIV-1 infected controllers and healthy individuals, frequencies of CD4+DPP4+ T cells were higher in women compared to men (p = 0.037 and p = 0.027). In women, CD4 T cell counts correlated with a predominant decreased in DPP4+CD4+ T cells (p = 0.0032). Sex differences in DPP4 expression abrogated in progressive HIV-1 infection. In conclusion, we found sex differences in the pathobiology of T cells in HIV-1 infection using a data-driven approach. Our results indicate that DPP4 expression on CD4+ T cells might contribute to the immunological sex differences observed in chronic HIV‑1 infection.
Collapse
Affiliation(s)
- Hans Christian Stubbe
- Division of Infectious Diseases, Department of Medicine IV, Hospital of the LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
- Department of Medicine II, Hospital of the LMU Munich, Munich, Germany
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Rotheneder
- Division of Infectious Diseases, Department of Medicine IV, Hospital of the LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Renate Stirner
- Division of Infectious Diseases, Department of Medicine IV, Hospital of the LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Julia Roider
- Division of Infectious Diseases, Department of Medicine IV, Hospital of the LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Raffaele Conca
- Department of Pediatrics Dr. Von Hauner Children's Hospital, Hospital of the LMU Munich, Munich, Germany
| | - Ulrich Seybold
- Division of Infectious Diseases, Department of Medicine IV, Hospital of the LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Johannes Bogner
- Division of Infectious Diseases, Department of Medicine IV, Hospital of the LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Marylyn Martina Addo
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Rika Draenert
- Division of Infectious Diseases, Department of Medicine IV, Hospital of the LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
- Antibiotic Stewardship Team, Hospital of the LMU Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
7
|
Integrative analysis of lithium treatment associated effects on brain structure and peripheral gene expression reveals novel molecular insights into mechanism of action. Transl Psychiatry 2020; 10:103. [PMID: 32251271 PMCID: PMC7136209 DOI: 10.1038/s41398-020-0784-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Lithium is a highly effective medication for bipolar disorder, but its mechanism of action remains unknown. In this study, brain MRI scans and blood samples for gene expression (total of 110 scans and 109 blood samples) were collected from 21 bipolar subjects before and after 2 and 8 weeks of lithium monotherapy and at the same time-points from untreated 16 healthy controls. We used linear mixed-effects models to identify brain structural features and genes with expression changed after lithium treatment, with correction for multiple testing, and correlated their concurrent changes to identify molecular pathways associated with lithium effects. There are significant increases in gray matter fraction, global cortical thickness, and the frontal and parietal cortices after 8 weeks of lithium treatment (corrected p < 0.05). Volume increases were also seen for putamen, hippocampus, thalamic nuclei, and thalamic substructures. Several genes showed significant expression changes, and 14 gene pathways were identified for the present integration analysis. Of these, nine pathways had significant correlations with structural changes (FDR < 0.05). Three neurotrophy-related pathways (GDNF family of ligands, NFAT immune-response, and p53-signaling pathway) correlated with structural changes in multiple regions. Mediation analysis showed that the sphingomyelin metabolism pathway is associated with HAM-D change (p < 0.01), and this effect is mediated via the volume of mediodorsal thalamus (p < 0.03). In summary, the integration of lithium effects on brain structural and peripheral gene expression changes revealed effects on several neurotrophic molecular pathways, which provides further insights into the mechanism of lithium action.
Collapse
|
8
|
Kogelman LJ, Falkenberg K, Halldorsson GH, Poulsen LU, Worm J, Ingason A, Stefansson H, Stefansson K, Hansen TF, Olesen J. Comparing migraine with and without aura to healthy controls using RNA sequencing. Cephalalgia 2019; 39:1435-1444. [PMID: 31104508 DOI: 10.1177/0333102419851812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Migraine mechanisms are *These authors contributed equally to this work. only partly known. Some studies have previously described genes differentially expressed between blood from migraineurs and controls. The objective of this study was to describe gene expression in subtypes of migraine outside of attack and in healthy controls. METHODS We extensively phenotyped 17 migraine without aura and nine migraine with aura female patients, and 20 age-matched female controls. Cubital venous blood was RNA sequenced. Genes differentially expressed between migraineurs (migraine without aura and migraine with aura) and controls, and between migraine without aura and migraine with aura were identified using a case-control design. A co-expression network was constructed to investigate the difference between migraineurs and healthy controls at the network level. RESULTS We found two differentially expressed genes: NMNAT2 and RETN. Both were differentially expressed between migraine with aura and controls, but they could not be replicated in an independent cohort. Co-expression network analysis resulted in one cluster of highly interconnected genes that was nominally significantly associated with migraine; however, no pathways or gene ontology terms were detected. CONCLUSIONS We showed no clear distinct difference in gene expression profiles of peripheral blood of migraineurs and controls and were not able to replicate findings from previous studies. A larger sample size may be needed to detect minor differences.
Collapse
Affiliation(s)
- Lisette Ja Kogelman
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Katrine Falkenberg
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | | | - Lau U Poulsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Jacob Worm
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Andres Ingason
- deCODE Genetics, Reykjavik, Iceland.,Institute for Biological Psychiatry, Mental Health Center Sankt Hans, Denmark
| | | | | | - Thomas F Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark.,Institute for Biological Psychiatry, Mental Health Center Sankt Hans, Denmark.,Novo Nordic Foundation Centre for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
9
|
Aczél T, Kun J, Szőke É, Rauch T, Junttila S, Gyenesei A, Bölcskei K, Helyes Z. Transcriptional Alterations in the Trigeminal Ganglia, Nucleus and Peripheral Blood Mononuclear Cells in a Rat Orofacial Pain Model. Front Mol Neurosci 2018; 11:219. [PMID: 29997476 PMCID: PMC6028693 DOI: 10.3389/fnmol.2018.00219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Orofacial pain and headache disorders are among the most debilitating pain conditions. While the pathophysiological basis of these disorders may be diverse, it is generally accepted that a common mechanism behind the arising pain is the sensitization of extra- and intracranial trigeminal primary afferents. In the present study we investigated gene expression changes in the trigeminal ganglia (TRG), trigeminal nucleus caudalis (TNC) and peripheral blood mononuclear cells (PBMC) evoked by Complete Freund's Adjuvant (CFA)-induced orofacial inflammation in rats, as a model of trigeminal sensitization. Microarray analysis revealed 512 differentially expressed genes between the ipsi- and contralateral TRG samples 7 days after CFA injection. Time-dependent expression changes of G-protein coupled receptor 39 (Gpr39), kisspeptin-1 receptor (Kiss1r), kisspeptin (Kiss1), as well as synaptic plasticity-associated Lkaaear1 (Lkr) and Neurod2 mRNA were described on the basis of qPCR results. The greatest alterations were observed on day 3 ipsilaterally, when orofacial mechanical allodynia reached its maximum. This corresponded well with patterns of neuronal (Fosb), microglia (Iba1), and astrocyte (Gfap) activation markers in both TRG and TNC, and interestingly also in PBMCs. This is the first description of up- and downregulated genes both in primary and secondary sensory neurones of the trigeminovascular system that might play important roles in neuroinflammatory activation mechanisms. We are the first to show transcriptomic alterations in the PBMCs that are similar to the neuronal changes. These results open new perspectives and initiate further investigations in the research of trigeminal pain disorders.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Tibor Rauch
- Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Sini Junttila
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Attila Gyenesei
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
10
|
Gerring ZF, McRae AF, Montgomery GW, Nyholt DR. Genome-wide DNA methylation profiling in whole blood reveals epigenetic signatures associated with migraine. BMC Genomics 2018; 19:69. [PMID: 29357833 PMCID: PMC5778740 DOI: 10.1186/s12864-018-4450-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 01/14/2018] [Indexed: 01/07/2023] Open
Abstract
Background Migraine is a common heritable neurovascular disorder typically characterised by episodic attacks of severe pulsating headache and nausea, often accompanied by visual, auditory or other sensory symptoms. Although genome-wide association studies have identified over 40 single nucleotide polymorphisms associated with migraine, there remains uncertainty about the casual genes involved in disease pathogenesis and how their function is regulated. Results We performed an epigenome-wide association study, quantifying genome-wide patterns of DNA methylation in 67 migraine cases and 67 controls with a matching age and sex distribution. Association analyses between migraine and methylation probe expression, after adjustment for cell type proportions, indicated an excess of small P values, but there was no significant single-probe association after correction for multiple testing (P < 1.09 × 10− 7). However, utilising a 1 kb sliding window approach to combine adjacent migraine-methylation association P values, we identified 62 independent differentially methylated regions (DMRs) underlying migraine (false discovery rate < 0.05). Migraine association signals were subtle but consistent in effect direction across the length of each DMR. Subsequent analyses showed that the migraine-associated DMRs were enriched in regulatory elements of the genome and were in close proximity to genes involved in solute transportation and haemostasis. Conclusions This study represents the first genome-wide analysis of DNA methylation in migraine. We have identified DNA methylation in the whole blood of subjects associated with migraine, highlighting novel loci that provide insight into the biological pathways and mechanisms underlying migraine pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4450-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary F Gerring
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,The Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Gasparini CF, Smith RA, Griffiths LR. Genetic and biochemical changes of the serotonergic system in migraine pathobiology. J Headache Pain 2017; 18:20. [PMID: 28194570 PMCID: PMC5307402 DOI: 10.1186/s10194-016-0711-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022] Open
Abstract
Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.
Collapse
Affiliation(s)
- Claudia Francesca Gasparini
- Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD, 4222, Australia
| | - Robert Anthony Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn Robyn Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
12
|
Gerring ZF, Powell JE, Montgomery GW, Nyholt DR. Genome-wide analysis of blood gene expression in migraine implicates immune-inflammatory pathways. Cephalalgia 2017; 38:292-303. [PMID: 28058943 DOI: 10.1177/0333102416686769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Typical migraine is a frequent, debilitating and painful headache disorder with an estimated heritability of about 50%. Although genome-wide association (GWA) studies have identified over 40 single nucleotide polymorphisms associated with migraine, further research is required to determine their biological role in migraine susceptibility. Therefore, we performed a study of genome-wide gene expression in a large sample of 83 migraine cases and 83 non-migraine controls to determine whether altered expression levels of genes and pathways could provide insights into the biological mechanisms underlying migraine. Methods We assessed whole blood gene expression data for 17994 expression probes measured using IlluminaHT-12 v4.0 BeadChips. Differential expression was assessed using multivariable logistic regression. Gene expression probes with a nominal p value < 0.05 were classified as differentially expressed. We identified modules of co-regulated genes and tested them for enrichment of differentially expressed genes and functional pathways using a false discovery rate <0.05. Results Association analyses between migraine and probe expression levels, adjusted for age and gender, revealed an excess of small p values, but there was no significant single-probe association after correction for multiple testing. Network analysis of pooled expression data identified 10 modules of co-expressed genes. One module harboured a significant number of differentially expressed genes and was strongly enriched with immune-inflammatory pathways, including multiple pathways expressed in microglial cells. Conclusions These data suggest immune-inflammatory pathways play an important role in the pathogenesis, manifestation, and/or progression of migraine in some patients. Furthermore, gene-expression associations are measurable in whole blood, suggesting the analysis of blood gene expression can inform our understanding of the biological mechanisms underlying migraine, identify biomarkers, and facilitate the discovery of novel pathways and thus determine new targets for drug therapy.
Collapse
Affiliation(s)
- Zachary F Gerring
- 1 Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Joseph E Powell
- 2 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,3 The Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- 2 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- 1 Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Affiliation(s)
- Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, the Netherlands
- Department of Neurology, Leiden University Medical Centre, the Netherlands
| |
Collapse
|
14
|
Affiliation(s)
- Zachary F Gerring
- Statistical & Genomic Epidemiology Laboratory, Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- Statistical & Genomic Epidemiology Laboratory, Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|