1
|
Chen Q, Wang M, Fu F, Nie L, Miao Q, Zhao L, Liu L, Li B. Mechanism of Traditional Chinese Medicine in Treating Migraine: A Comprehensive Review. J Pain Res 2024; 17:3031-3046. [PMID: 39308997 PMCID: PMC11416110 DOI: 10.2147/jpr.s479575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Migraine is a common neurological illness that causes a great burden on individuals and society. Many migraine patients seek relief through complementary and alternative therapies, with Traditional Chinese medicine (TCM) often being their preferred choice. Acupuncture, Chinese herbal medicine, and massage are important components of TCM, and are commonly used in clinical treatment of migraine. This review aims to consolidate the current knowledge regarding the mechanisms of the three TCM interventions for migraine: acupuncture, herbs, and massage, and how they relieve pain. However, the mechanisms underlying the effectiveness of TCM therapies in treating migraine remain unclear. Therefore, we reviewed the research progress on acupuncture, herbal medicine, and massage as TCM approaches for the treatment of migraine. We conducted a comprehensive search of CNKI, PubMed, Web of Science, and Cochrane databases using keywords such as migraine, acupuncture, needle, herbs, herbal, prescription, decoction, massage, Tuina, and TCM, covering the period from 2000 to 2023. The literature included in the review was selected based on specified exclusion criteria. We discussed the mechanism of TCM therapies on migraine from the perspective of modern medicine, focusing on changes in inflammatory factors, neurotransmitters, and other relevant biomarkers. TCM can relieve migraine by decreasing neuropeptide levels, inhibiting inflammation, modulating neuronal sensitization, changing brain function and structure, changing blood brain barrier permeability, regulating hormone levels, and relieving muscle tension. The purpose of this paper is to provide a basis for improving the clinical strategies of TCM for the treatment of migraine.
Collapse
Affiliation(s)
- Qiuyi Chen
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| | - Mina Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| | - Feiyu Fu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| | - Limin Nie
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| | - Quan Miao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| | - Luopeng Zhao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| | - Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, People’s Republic of China
| |
Collapse
|
2
|
Wang S, Yu L, Guo H, Zuo W, Guo Y, Liu H, Wang J, Wang J, Li X, Hou W, Wang M. Gastrodin Ameliorates Post-Stroke Depressive-Like Behaviors Through Cannabinoid-1 Receptor-Dependent PKA/RhoA Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04267-5. [PMID: 38856794 DOI: 10.1007/s12035-024-04267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Post-stroke depression (PSD) is a significant complication in stroke patients, increases long-term mortality, and exaggerates ischemia-induced brain injury. However, the underlying molecular mechanisms and effective therapeutic targets related to PSD have remained elusive. Here, we employed an animal behavioral model of PSD by combining the use of middle cerebral artery occlusion (MCAO) followed by spatial restraint stress to study the molecular underpinnings and potential therapies of PSD. Interestingly, we found that sub-chronic application of gastrodin (Gas), a traditional Chinese medicinal herb Gastrodia elata extraction, relieved depression-related behavioral deficits, increased the impaired expression of synaptic transmission-associated proteins, and restored the altered spine density in hippocampal CA1 of PSD animals. Furthermore, our results indicated that the anti-PSD effect of Gas was dependent on membrane cannabinoid-1 receptor (CB1R) expression. The contents of phosphorated protein kinase A (p-PKA) and phosphorated Ras homolog gene family member A (p(ser188)-RhoA) were decreased in the hippocampus of PSD-mice, which was reversed by Gas treatment, and CB1R depletion caused a diminished efficacy of Gas on p-PKA and p-RhoA expression. In addition, the anti-PSD effect of Gas was partially blocked by PKA inhibition or RhoA activation, indicating that the anti-PSD effect of Gas is associated with the CB1R-mediated PKA/RhoA signaling pathway. Together, our findings revealed that Gas treatment possesses protective effects against the post-stroke depressive-like state; the CB1R-involved PKA/RhoA signaling pathway is critical in mediating Gas's anti-PSD potency, suggesting that Gas application may be beneficial in the prevention and adjunctive treatment of PSD.
Collapse
Affiliation(s)
- Shiquan Wang
- College of Life Sciences, Northwest University, Xi'an, 710127, Shaanxi, China
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Yu
- Department of Information, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huiqing Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Ma C, Zhu C, Zhang Y, Yu M, Song Y, Chong Y, Yang Y, Zhu C, Jiang Y, Wang C, Cheng S, Jia K, Yu G, Li J, Tang Z. Gastrodin alleviates NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in trigeminal ganglion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155266. [PMID: 38241917 DOI: 10.1016/j.phymed.2023.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Increasing evidence highlights the involvement of metabolic disorder and calcium influx mediated by transient receptor potential channels in migraine; however, the relationship between these factors in the pathophysiology of migraine remains unknown. Gastrodin is the major component of the traditional Chinese medicine Tianma, which is extensively used in migraine therapy. PURPOSE Our work aimed to explore the analgesic action of gastrodin and its regulatory mechanisms from a metabolic perspective. METHODS/RESULTS After being treated with gastrodin, the mice were given nitroglycerin (NTG) to induce migraine. Gastrodin treatment significantly raised the threshold of sensitivity in response to both mechanical and thermal stimulus evidenced by von Frey and hot plate tests, respectively, and decreased total contact numbers in orofacial operant behavioral assessment. We found that the expression of transient receptor potential melastatin 2 (TRPM2) channel was increased in the trigeminal ganglion (TG) of NTG-induced mice, resulting in a sustained Ca2+ influx to trigger migraine pain. The content of succinate, a metabolic biomarker, was elevated in blood samples of migraineurs, as well as in the serum and TG tissue from NTG-induced migraine mice. Calcium imaging assay indicated that succinate insult elevated TRPM2-mediated calcium flux signal in TG neurons. Mechanistically, accumulated succinate upregulated hypoxia inducible factor-1α (HIF-1α) expression and promoted its translocation into nucleus, where HIF-1α enhanced TRPM2 expression through transcriptional induction in TG neurons, evidenced by luciferase reporter measurement. Gastrodin treatment inhibited TRPM2 expression and TRPM2-dependent Ca2+ influx by attenuating succinate accumulation and downstream HIF-1α signaling, and thereby exhibited analgesic effect. CONCLUSION This work revealed that succinate was a critical metabolic signaling molecule and the key mediator of migraine pain through triggering TRPM2-mediated calcium overload. Gastrodin alleviated NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in TG neurons. These findings uncovered the anti-migraine effect of gastrodin and its regulatory mechanisms from a metabolic perspective and provided a novel theoretical basis for the analgesic action of gastrodin.
Collapse
Affiliation(s)
- Chao Ma
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Chunran Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210009, China
| | - Yajun Zhang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Mei Yu
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yizhi Song
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yulong Chong
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210009, China
| | - Yan Yang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Chan Zhu
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yucui Jiang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Changming Wang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shuo Cheng
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Keke Jia
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Guang Yu
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jia Li
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Zongxiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Sokolov AY, Mengal M, Berkovich R. Menthol dural application alters meningeal arteries tone and enhances excitability of trigeminocervical neurons in rats. Brain Res 2024; 1825:148725. [PMID: 38128811 DOI: 10.1016/j.brainres.2023.148725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Headaches, including migraines, can have a causal relationship to exposure to cold, and this relationship may be both positive and negative, as cold can both provoke and alleviate cephalgia. The role of thermoreceptors responsible for transduction of low temperatures belongs to the transient receptor potential cation channel subfamily melastatin member 8 (TRPM8). These channels mediate normal cooling sensation and have a role in both cold pain and cooling-mediated analgesia; they are seen as a potential target for principally new anti-migraine pharmaceuticals. Using a validated animal migraine models, we evaluated effects of menthol, the TRPM8-agonist, on trigeminovascular nociception. In acute experiments on male rats, effects of applied durally menthol solution in various concentrations on the neurogenic dural vasodilatation (NDV) and firing rate of dura-sensitive neurons of the trigeminocervical complex (TCC) were assessed. Application of menthol solution in concentrations of 5 % and 10 % was associated with NDV suppression, however amplitude reduction of the dilatation response caused not by the vascular dilatation degree decrease, but rather due to the significant increase of the meningeal arterioles' basal tone. In electrophysiological experiments the 1 % and 30 % menthol solutions intensified TCC neuron responses to the dural electrical stimulation while not changing their background activity. Revealed in our study excitatory effects of menthol related to the vascular as well as neuronal branches of the trigeminovascular system indicate pro-cephalalgic effects of TRPM8-activation and suggest feasibility of further search for new anti-migraine substances among TRPM8-antagonists.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia; St. Petersburg Medico-Social Institute, Saint Petersburg, Russia.
| | - Miran Mengal
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Regina Berkovich
- LAC+USC General Hospital and Neurology Clinic, Regina Berkovich MD, PhD Inc., Los Angeles, CA, USA
| |
Collapse
|
5
|
Zhang B, Xi Y, Huang Y, Zhang Y, Guo F, Yang H. Integration of single-nucleus RNA sequencing and network disturbance to elucidate crosstalk between multicomponent drugs and trigeminal ganglia cells in migraine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117286. [PMID: 37838292 DOI: 10.1016/j.jep.2023.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine is caused by hyperactivity of the trigeminovascular system, where trigeminal ganglia (TG) plays an important role. TG is composed of multiple neuronal and non-neuronal cell types, which is related to "neuro-inflammation-vascular" disorder in migraine. Tou Tong Ning capsule (TTNC), a CFDA-approved traditional Chinese medicine for treating migraine, has the characteristics of "multicomponents, multitargets, multipathways". AIM OF THE STUDY To clarify the mechanism of TTNC and elucidate crosstalk between multicomponent drugs and neuronal and non-neuronal functions and cells in migraine. MATERIALS AND METHODS We integrated single-nucleus RNA sequencing and a quantitative evaluation algorithm of the disturbance of multitarget drugs on the disease network and explored the specific pathology of migraine and corresponding compounds. A cerebrovascular smooth muscle spasmolytic activity experiment was carried out to verify the results of the bioinformatics analysis. RESULTS TTNC exhibited its regulation activities in neuronal and non-neuronal aspects based on drugs attack to four subnetworks and cell specific networks, which explored the MoA of TTNC in comprehensive and refined perspectives. Compared to neuronal regulation, TTNC showed more significant attack score on non-neuronal biological function (smooth muscle and vessel). And TTNC compound clusters C1, C6 and C7, targeting non-neuronal function and cells, had larger group area than C10, C4 and C6 for neuronal function and cell, which implied that TTNC may mainly regulate the non-neuronal function, e.g., vessel smooth muscle contraction. Contraction of cerebrovascular smooth muscle of mice ex vivo confirmed the vasodilation activity of TTNC and active compounds from C1, C6, C9 (Emodin, Luteolin and Levistilide A). Literature mining confirmed the vasospasmodolytic activity and neuroprotective effect of TTNC. CONCLUSIONS The study found that TTNC may primarily alleviate non-neuronal functional disorders in migraine by relaxing cerebral vascular smooth muscle cell spasm to alleviate migraine. Integrating single-nucleus RNA sequencing data and network disturbance tools provides a new strategy for the pharmacological mechanism of multicomponent drugs through cell subtyping.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Xiao G, Tang R, Yang N, Chen Y. Review on pharmacological effects of gastrodin. Arch Pharm Res 2023; 46:744-770. [PMID: 37749449 DOI: 10.1007/s12272-023-01463-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Gastrodia elata Blume is a well-known traditional Chinese medicine that is mainly used to treat diseases related to the nervous system, such as stroke, epilepsy, and headache. Gastrodin is the main bioactive component of Gastrodia elata Blume, and studies have shown that it has extensive pharmacological activity. This narrative review aims to systematically review relevant studies on the pharmacological effects of gastrodin to provide researchers with the latest and most useful information. Studies have shown that gastrodin has prominent neuroprotective effects and can treat or improve epilepsy, Tourette syndrome, Alzheimer's disease, Parkinson's disease, emotional disorders, cerebral ischemia-reperfusion injury, cognitive impairment, and neuropathic pain. Gastrodin can also improve myocardial hypertrophy, hypertension, and myocardial ischemia-reperfusion injury. In addition, gastrodin can mitigate liver, kidney, and bone tissue damage caused by oxidative stress and inflammation. In short, gastrodin is expected to treat many diseases, and it is worth investing more effort in research on this compound.
Collapse
Affiliation(s)
- Guirong Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- Department of Pharmacy, Sichuan Hospital of Stomatology, Chengdu, 610031, China.
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanhua Chen
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
7
|
Liu Y, Yang G, Cui W, Zhang Y, Liang X. Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review. Front Pharmacol 2022; 13:948600. [PMID: 36133805 PMCID: PMC9483103 DOI: 10.3389/fphar.2022.948600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) diseases can lead to motor, sensory, speech, cognitive dysfunction, and sometimes even death. These diseases are recognized to cause a substantial socio-economic impact on a global scale. Tetramethylpyrazine (TMP) is one of the main active ingredients extracted from the Chinese herbal medicine Ligusticum striatum DC. (Chuan Xiong). Many in vivo and in vitro studies have demonstrated that TMP has a certain role in the treatment of CNS diseases through inhibiting calcium ion overload and glutamate excitotoxicity, anti-oxidative/nitrification stress, mitigating inflammatory response, anti-apoptosis, protecting the integrity of the blood-brain barrier (BBB) and facilitating synaptic plasticity. In this review, we summarize the roles and mechanisms of action of TMP on ischemic cerebrovascular disease, spinal cord injury, Parkinson’s disease, Alzheimer’s disease, cognitive impairments, migraine, and depression. Our review will provide new insights into the clinical applications of TMP and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenqiang Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| |
Collapse
|
8
|
Zhang YX, Wang HX, Li QX, Chen AX, Wang XX, Zhou S, Xie ST, Li HZ, Wang JJ, Zhang Q, Zhang XY, Zhu JN. A comparative study of vestibular improvement and gastrointestinal effect of betahistine and gastrodin in mice. Biomed Pharmacother 2022; 153:113344. [PMID: 35780620 DOI: 10.1016/j.biopha.2022.113344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Betahistine and gastrodin are the first-line medications for vestibular disorders in clinical practice, nevertheless, their amelioration effects on vestibular dysfunctions still lack direct comparison and their unexpected extra-vestibular effects remain elusive. Recent clinical studies have indicated that both of them may have effects on the gastrointestinal (GI) tract. Therefore, we purposed to systematically compare both vestibular and GI effects induced by betahistine and gastrodin and tried to elucidate the mechanisms underlying their GI effects. Our results showed that betahistine and gastrodin indeed had similar therapeutic effects on vestibular-associated motor dysfunction induced by unilateral labyrinthectomy. However, betahistine reduced total GI motility with gastric hypomotility and colonic hypermotility, whereas gastrodin did not influence total GI motility with only slight colonic hypermotility. In addition, betahistine, at normal dosages, induced a slight injury of gastric mucosa. These GI effects may be due to the different effects of betahistine and gastrodin on substance P and vasoactive intestinal peptide secretion in stomach and/or colon, and agonistic/anatgonistic effects of betahistine on histamine H1 and H3 receptors expressed in GI mucosal cells and H3 receptors distributed on nerves within the myenteric and submucosal plexuses. Furthermore, treatment of betahistine and gastrodin had potential effects on gut microbiota composition, which could lead to changes in host-microbiota homeostasis in turn. These results demonstrate that gastrodin has a consistent improvement effect on vestibular functions compared with betahistine but less effect on GI functions and gut microbiota, suggesting that gastrodin may be more suitable for vestibular disease patients with GI dysfunction.
Collapse
Affiliation(s)
- Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Xiao Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ao-Xue Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiao-Xia Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Kong F, Buse DC, Geng J, Xu J, Liu H, Ma S. Efficacy and tolerability of oral gastrodin for medication overuse headache (EASTERN): Study protocol for a multicenter randomized double-blind placebo-controlled trial. Front Neurol 2022; 13:1095298. [PMID: 36910863 PMCID: PMC9993247 DOI: 10.3389/fneur.2022.1095298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023] Open
Abstract
Background Prophylactic medication in clinical detoxification programs for the treatment of medication overuse headache is still debated. Gastrodin, a main bioactive constituent of Rhizoma Gastrodiae, has been applied clinically to treat primary headache for more than 30 years in China due to its potential analgesic and anti-migraine mechanisms. However, clinical evidence supporting its routing use in MOH is insufficient. The present study aims to investigate the efficacy and tolerability of oral gastrodin in medication overuse headache. Methods A multicenter, randomized, double-blind, parallel, placebo-controlled trial will be performed. A target sample size of 186 patients who fulfill the International Classification of Headache Disorders 3rd version (ICHD-3) criteria for MOH will be recruited and screened during a baseline screening period of 28 days before being randomly assigned to either the gastrodin or placebo group at a ratio of 1:1. Enrolled patients will be assessed for each 4 weeks during the 12-weeks double-blind phase and followed up at week 24. The primary endpoint is mean change in monthly headache day frequency. Secondary endpoints will be the proportion of remitted MOH, change in headache pain intensity, headache impact test (HIT-6) score, 50% responder rate, treatment failure, monthly acute medication intake days, and Short Form 36-Item Health Survey (SF-36) score. Tolerability will be assessed by drop-out rates though safety monitoring during treatment. Discussion The findings of the present study may help to provide new evidence on gastrodin as a prophylaxis treatment with both efficacy and high tolerability for the treatment of MOH. Clinical trail registration Chinese Clinical Trail Registry (ChiCTR2200063719), Protocol Version 1.1, May, 09, 2022.
Collapse
Affiliation(s)
- Fanyi Kong
- Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jia Geng
- Department of Neurology, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Jingjing Xu
- Department of Neurology, Xiangya Changde Hospital, Changde, Hunan, China
| | - Hanxiang Liu
- Department of Neurology, Puer People's Hospital, Puer, Yunnan, China
| | - Shu Ma
- Department of Neurology, 920th Hospital of Logistics Support Force, People's Liberation Army, Kunming, Yunnan, China
| |
Collapse
|
10
|
Chen Y, Wang S, Wang Y. Role of herbal medicine for prevention and treatment of migraine. Phytother Res 2021; 36:730-760. [PMID: 34818682 DOI: 10.1002/ptr.7339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023]
Abstract
Migraine is a disabling neurovascular disease with unilateral or bilateral pulsatile headache, which intensively affects human health and quality of life due to high morbidity worldwide. Migraine is commonly accompanied by abnormal pain sensitization, neuroinflammatory response, and vasomotor dysfunction. Owing to the management dilemmas of migraine, there is an urgent need to develop effective and low-cost therapies. In recent years, herbal medicines as a promising strategy with analgesic activity and minor side effect, have been proposed for the prevention and treatment of migraine. Considering the lack of a review integrating experimental studies regarding the herbal treatment of migraine, this review systematically summarizes the important potential applications of herbal medicines in ameliorating migraine via multiple therapeutic targets and pathways, as well as provides a reference for further development of novel antimigraine drugs.
Collapse
Affiliation(s)
- Yulong Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
11
|
Zhang FX, Li ZT, Yang X, Xie ZN, Chen MH, Yao ZH, Chen JX, Yao XS, Dai Y. Discovery of anti-flu substances and mechanism of Shuang-Huang-Lian water extract based on serum pharmaco-chemistry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113660. [PMID: 33276058 DOI: 10.1016/j.jep.2020.113660] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuang-Huang-Lian preparation has captured wide attention since its clinical applications for the successful treatment of upper respiratory tract infection. However, its functional basis under actual therapeutic dose in vivo was still unrevealed. AIM OF THE STUDY This study aimed to reveal the anti-flu substances and mechanism of Shuang-Huang-Lian water extract (SHL) on H1N1 infected mouse model by a strategy based on serum pharmaco-chemistry under actual therapeutic dose and network pharmacology. MATERIALS AND METHODS H1N1 infected mouse model was employed for evaluation of the anti-flu effects of SHL. A simultaneous quantification method was developed by UPLC-TQ-XS MS coupled switch-ions mode and applied to characterize the pharmacokinetics of the multiple components of SHL under actual therapeutic dose. The potential active ingredients were screened out based on their pharmacokinetic parameters. And then, a compound mixture of these active candidates was re-evaluated for the anti-flu activity on H1N1 infected mouse model. Furthermore, the anti-flu mechanism of SHL was also predicted by network pharmacology coupled with the experimental result. RESULTS SHL significantly increased the survival rate and prolonged survival days on H1N1 infected mice at a dosage of 20 g crude drug/kg/day by reversing the increased lung index, down-regulating the inflammatory cytokines (TNF-α, IL-1β, IL-6) and inhibiting the release of IFN-β in bronchoalveolar lavage fluids (BALF). Concomitantly, the pharmacokinetic parameters of fourteen quantified and twenty-one semi-quantified constituents of SHL were characterized. And then, five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin), which displayed satisfactory pharmacokinetic features, were considered as potential active ingredients. Thus, a mixture of these five ingredients was administered to H1N1-infected mice at a dose of 4.24 mg/kg/day. As a result, the therapeutical effects of the mixture were similar to SHL in terms of survival rate, lung index and the release of cytokines (TNF-α, IL-1β and IL-6) in BALF. Moreover, network pharmacology analysis indicated that the TNF-signal pathways might play a role in the anti-flu mechanism of SHL. CONCLUSIONS A mixture of five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin) were the anti-flu substances of SHL. The strategy based on serum pharmaco-chemistry under actual therapeutic dose provided a new sight on exploring in vivo effective substances of TCM.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China; Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Zi-Ting Li
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Zhi-Neng Xie
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Ming-Hao Chen
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Jian-Xin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
12
|
Lu MX, Liu ZX. The role of the P2X4 receptor in trigeminal neuralgia, a common neurological disorder. Neuroreport 2021; 32:407-413. [PMID: 33661807 DOI: 10.1097/wnr.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurological disorders, which include various types of diseases with complex pathological mechanisms, are more common in the elderly and have shown increased prevalence, morbidity and mortality worldwide. Unfortunately, current therapies for these diseases are usually suboptimal or have undesirable side effects. This necessitates the development of new potential targets for disease-modifying therapies. P2X4R, a type of purinergic receptor, has multiple roles in neurological disorders. In this review, we briefly introduce a neurological disorder, trigeminal neuralgia and its' symptoms, etiology and pathology. Moreover, we focused on the role of P2X4R in neurological disorders and their related pathophysiologic mechanisms. Further studies of P2X4R are required to determine potential therapeutic effects for these pathophysiologies.
Collapse
Affiliation(s)
- Ming-Xin Lu
- The Second Clinical Medical College of Nanchang University
| | - Zeng-Xu Liu
- Department of Anatomy, Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
13
|
Wang X, Chen L, Xu Y, Wang W, Wang Y, Zhang Z, Zheng J, Bao H. Gastrodin alleviates perioperative neurocognitive dysfunction of aged mice by suppressing neuroinflammation. Eur J Pharmacol 2021; 892:173734. [PMID: 33220272 DOI: 10.1016/j.ejphar.2020.173734] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 01/20/2023]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of elderly patients after surgery and lacks effective prevention and treatment measures. We investigated the effect and mechanism of gastrodin (GAS), a natural plant ingredient, on postoperative cognition induced by laparotomy in aged mice. Male aged (18 months) mice were subjected to laparotomy and orally treated with GAS (25, 50, and 100 mg/kg) 3 weeks before surgery and 1 week after surgery. In addition, some male aged (18 months) mice were subjected to viral vector or GSK-3β expression virus injection followed by laparotomy with or without 100 mg/kg GAS treatment. GAS improved learning and memory in aged mice after surgery. Surgery increased the levels of pro-inflammatory factors (TNF-α, IL-1β and IL-6) and decreased the level of an anti-inflammatory factor (IL-10) in the mouse hippocampus, and these changes were reversed by GAS treatment. GAS also suppressed the activation of microglia. GAS inhibited the phosphorylation of GSK-3β and Tau. Furthermore, surgery induced more serious cognitive dysfunction, inflammatory factors, activation of microglia, and phosphorylation of GSK-3β and Tau in GSK-3β overexpressing aged mice. The improvement of learning and memory, the reduction of inflammation and microglia activation, and the suppression of GSK-3β and Tau phosphorylation by GAS were prevented when GSK-3β was overexpressed in aged mice subjected to surgery. Our finding suggested that GAS exerts neuroprotective effects in aged mice subjected to laparotomy by suppressing neuroinflammation and GSK-3β and Tau phosphorylation. Thus, these findings suggest that GAS may be a promising agent for PND.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lihai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yajie Xu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wanling Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Youran Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiyuan Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Jing Zheng
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China.
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
The Effectiveness of Scutellaria baicalensis on Migraine: Implications from Clinical Use and Experimental Proof. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8707280. [PMID: 33505504 PMCID: PMC7806391 DOI: 10.1155/2021/8707280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 01/13/2023]
Abstract
Background Scutellaria baicalensis (SB), a traditional Chinese medicine, is commonly used for the treatment of inflammatory and painful conditions. The purpose of the present study was to examine the effects of SB on migraine. Materials and Methods We examined the clinical applications of SB based on the data obtained from Taiwan's National Health Insurance Research Database and confirmed that it was frequently used in Taiwan for the treatment of headaches. An experimental migraine model was established in rats by an intraperitoneal injection of nitroglycerin (NTG, 10 mg/kg). Pretreatment with SB was given orally 30 min before NTG administration. The rats were subjected to migraine-related behaviour tests that were video-recorded and analysed using EthoVision XT 12.0 software. Results The frequency of exploratory and locomotor behaviour was comparatively lower in the NTG group than that in the control group, while the frequency of resting and grooming behaviour increased. These phenomena were ameliorated by pretreatment with 1.0 g/kg SB. The total time spent on the smooth surface was longer in the NTG group than that in the control group, but the time was shortened by pretreatment with 1.0 g/kg SB. Conclusions Pretreatment with 1.0 g/kg SB relieved migraine-related behaviours in the experimental NTG-induced migraine model. The outcome therefore demonstrated that pretreatment with 1.0 g/kg SB is beneficial for migraine treatment.
Collapse
|
15
|
Huang Y, Ni N, Hong Y, Lin X, Feng Y, Shen L. Progress in Traditional Chinese Medicine for the Treatment of Migraine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1731-1748. [DOI: 10.1142/s0192415x2050086x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Migraine is a recurrent disease with complex pathogenesis and is difficult to cure. At present, commercially available western migraine drugs are prone to generate side effects while treating the disease. Traditional Chinese medicine (TCM) avoids side effects via treatment with the principles of “treating both symptoms and root causes”, “overall adjustment”, and “treatment based on syndrome differentiation”. Three strategies of drug treatment were developed based on the syndromes, i.e., removing stasis, calming liver Yang, and reinforcing deficiency. Prescriptions of removing stasis mostly contain Chuanxiong rhizome (Chuan Xiong) to remove blood stasis by promoting blood circulation and improve properties of hemorheology, and Da Chuan Xiong Formula (DCXF) is a traditional prescription widely used in clinical practice. Prescriptions of calming liver Yang usually take Ramulus Uncariae cum Uncis (Gou Teng) as the main herb, which can calm the liver Yang via improving vasomotor function, and Tian Ma Gou Teng Decoction (TMGTD) is the representative drug. For reinforcing deficiency, Chinese doctors frequently utilize Angelica Sinensis (Dang Gui) and Astragali Radix (Huang Qi) to nourish blood and Qi in order to improve the weak state of human body; Dang Gui Bu Xue Decoction (DGBXD) is the commonly used prescription. These strategies not only treat the symptoms of diseases but also their root causes, and with the features of multiple targets, in multiple ways. Therefore, TCM prescriptions have obvious advantages in the treatment of chronic diseases such as migraine. In this review, we provided an overview of the pathogenesis of migraine and the function of representative TCM preparations in therapy of migraine as well as the mechanism of action according to effective researches, in order to provide reference and clue for further researches.
Collapse
Affiliation(s)
- Yanleng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ni Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yanlong Hong
- Health Service Collaborative Innovation Center of Shanghai, Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
16
|
Tardiolo G, Bramanti P, Mazzon E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int J Mol Sci 2019; 20:E2932. [PMID: 31208068 PMCID: PMC6628212 DOI: 10.3390/ijms20122932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a disorder affecting an increasing number of subjects. Currently, this disorder is not entirely understood, and limited therapeutic solutions are available. Migraine manifests as a debilitating headache associated with an altered sensory perception that may compromise the quality of life. Animal models have been developed using chemical, physical or genetic modifications, to evoke migraine-like hallmarks for the identification of novel molecules for the treatment of migraine. In this context, experimental models based on the use of chemicals as nitroglycerin or inflammatory soup were extensively used to mimic the acute state and the chronicity of the disorder. This manuscript is aimed to provide an overview of murine models used to investigate migraine pathophysiology. Pharmacological targets as 5-HT and calcitonin gene-related peptide (CGRP) receptors were evaluated for their relevance in the development of migraine therapeutics. Drug delivery systems using nanoparticles may be helpful for the enhancement of the brain targeting and bioavailability of anti-migraine drugs as triptans. In conclusion, the progresses in migraine management have been reached with the development of emerging agonists of 5-HT receptors and novel antagonists of CGRP receptors. The nanoformulations may represent a future perspective in which already known anti-migraine drugs showed to better exert their therapeutic effects.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
17
|
Shi YH, Wang Y, Fu H, Xu Z, Zeng H, Zheng GQ. Chinese herbal medicine for headache: A systematic review and meta-analysis of high-quality randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:315-330. [PMID: 30807986 DOI: 10.1016/j.phymed.2018.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chinese herbal medicines (CHMs) are widely used to relieve headache in Asia. However, it is uncertain whether there is robust evidence on the effects of CHMs for headache. PURPOSE To assess the effectiveness and safety of CHMs for headache using systematic review of high-quality randomized controlled trials (RCTs). METHODS Electronic search was conducted on six databases from inception to January 2018. We included the RCTs that met the requirement of at least 4 out of the 7 domains according to the Cochrane risk of bias tool. RESULTS Thirty RCTs with 3447 subjects were ultimately included for analysis and all trials were conducted in Asia. Meta-analysis showed that CHMs monotherapy were superior to placebo in reducing headache frequency [SMD -0.48 (95% CI -0.76, -0.20); p < 0.01], headache days [SMD -0.29 (95% CI -0.45, -0.13); p < 0.01], headache duration[SMD -0.58 (95% CI -0.81, -0.36); p < 0.01], headache intensity [SMD -0.42 (95% CI -0.62, -0.23); p < 0.01] and analgesic consumption [SMD -0.36 (95% CI -0.52, -0.21); p < 0.01] and improving clinical efficacy rate (p < 0.01). Similarly, CHMs monotherapy were superior to western conventional medicines (WCMs) in headache frequency [SMD -0.57 (95% CI -0.84, -0.29); p < 0.01], headache days (p < 0.01), analgesic consumption [SMD -1.63 (95% CI -1.98, -1.28); p < 0.01], headache intensity [SMD -0.81 (95% CI -1.06, -0.57); p < 0.01], and clinical efficacy rate [RR 1.24 (95% CI 1.18, 1.31); p < 0.01], except reducing headache duration (p > 0.05). CHMs adjunct therapy can improve clinical efficacy rate compared with WCMs alone [RR 1.15 (95% CI 1.09, 1.22); p < 0.01]. Meanwhile, CHMs had fewer adverse events than that of controls. CONCLUSION The findings supported, at least to an extent, the use of CHM for headache patients; however, we should treat the results cautiously because the clinical heterogeneity.
Collapse
Affiliation(s)
- Yi-Hua Shi
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China
| | - Yong Wang
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China
| | - Huan Fu
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China
| | - Zhen Xu
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China
| | - Hua Zeng
- Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou 510405, China
| | - Guo-Qing Zheng
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China.
| |
Collapse
|
18
|
A Metabolism-Based Synergy for Total Coumarin Extract of Radix Angelicae Dahuricae and Ligustrazine on Migraine Treatment in Rats. Molecules 2018; 23:molecules23051004. [PMID: 29693578 PMCID: PMC6102536 DOI: 10.3390/molecules23051004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022] Open
Abstract
Radix Angelicae dahuricae, containing coumarins, which might affect cytochrome P450 enzyme (CYP450) activity, has been co-administered with ligustrazine, a substrate of CYP450s, for the clinical treatment of migraine. However, whether a pharmacokinetic-based synergy exists between Radix Angelicae dahuricae and ligustrazine is still unknown. In this study, the total coumarin extract (TCE) of Radix Angelicae dahuricae (50 mg/kg, orally) reinforced the anti-migraine activity of ligustrazine by declining head scratching, plasma calcitonin gene-related peptide, and serum nitric oxide, as well as increasing plasma endothelin levels in rats (p < 0.05). Moreover, the pharmacokinetic study reflected that TCE potentiated the area under the concentration⁻time curve of ligustrazine and prolonged its mean retention time in rats (p < 0.05). Besides, the IC50 for TCE, imperatorin and isoimperatorin inhibiting ligustrazine metabolism were 5.0 ± 1.02, 1.35 ± 0.46, 4.81 ± 1.14 µg/mL in human liver microsomes, and 13.69 ± 1.11, 1.19 ± 1.09, 1.69 ± 1.17 µg/mL in rat liver microsomes, respectively. Moreover, imperatorin and isoimperatorin were CYP450s inhibitors with IC50 < 10 µM for CYP1A2, 2C9, 2D6, and 3A4. Therefore, this study concluded that Radix Angelicae dahuricae could increase ligustrazine plasma concentration and then reinforce its pharmacological effect by inhibiting its metabolism through interference with CYP450s. This could be one mechanism for the synergy between Radix Angelicae dahuricae and ligustrazine on migraine treatment.
Collapse
|