1
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Kamins JL, Karimi R, Hoffman A, Prins ML, Giza CC. Biomarkers and Endophenotypes of Post-traumatic Headaches. Curr Pain Headache Rep 2024; 28:1185-1193. [PMID: 39136870 DOI: 10.1007/s11916-024-01255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE OF REVIEW To review existing literature on biomarkers for post-traumatic headache (PTH). RECENT FINDINGS Preclinical models and clinical findings have started to elucidate the biology that underlies PTH. Traumatic brain injury results in ionic flux, glutamatergic surge, and activation of the trigeminal cervical complex resulting in the release of pain neuropeptides. These neuropeptides, including calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP), play a key role in the pathophysiology of migraine and other primary headache disorders. Only two studies were identified that evaluated CGRP levels in PTH. Neither study found a consistent relationship between CGRP levels and PTH. One study did discover that nerve growth factor (NGF) was elevated in subjects with PTH. There is no conclusive evidence for reliable blood-based biomarkers for PTH. Limitations in assays, collection technique, and time since injury must be taken into account. There are multiple ideal candidates that have yet to be explored.
Collapse
Affiliation(s)
- Joshua L Kamins
- Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ramin Karimi
- UCLA Steve Tisch BrainSPORT Program, Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ann Hoffman
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Brain Injury Research Center and UCLA Steve Tisch BrainSPORT Program, Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Mayumi L Prins
- UCLA Brain Injury Research Center and UCLA Steve Tisch BrainSPORT Program, Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Department of Pediatrics/Division of Neurology and Department of Neurosurgery, UCLA Mattel Children's Hospital David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Clay AM, Carr RL, DuBien JL, To F. Short-term behavioral and histological findings following a single concussive and repeated subconcussive brain injury in a rodent model. Brain Inj 2024; 38:827-834. [PMID: 38704844 DOI: 10.1080/02699052.2024.2349144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
PRIMARY OBJECTIVE It is unclear of the correlation between a mild traumatic brain injury (mTBI) and repeated subconcussive (RSC) impacts with respect to injury biomechanics. Thus, the present study was designed to determine the behavioral and histological differences between a single mTBI impact and RSC impacts with subdivided cumulative kinetic energies of the single mTBI impact. RESEARCH DESIGN Adult male Sprague-Dawley rats were randomly assigned to a single mTBI impact, RSC impact, sham, or repeated sham groups. METHODS AND PROCEDURES Following a weight drop injury, anxiety-like behavior and general locomotive activity and were assessed using the open field test, while motor coordination was evaluated using a rotarod unit. Neuronal loss, astrogliosis, and microgliosis were assessed using NeuN, GFAP and Iba-1 immunohistochemistry. All assessments were undertaken at 3- and 7-days post impact. MAIN OUTCOMES AND RESULTS No behavioral disturbances were observed in injury groups, however, both injury groups did lead to microgliosis following 3-days post-impact. CONCLUSIONS No pathophysiological differences were observed between a single mTBI impact and RSC impacts of the same energy input. Even though a cumulative injury threshold for RSC impacts was not determined, a threshold still may exist where no pathodynamic shift occurs.
Collapse
Affiliation(s)
- Anna Marie Clay
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi University, Mississippi, USA
| | - Janice L DuBien
- Department of Statistics, Mississippi University, Mississippi, USA
| | - Filip To
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| |
Collapse
|
4
|
Eggertsen PP, Palmfeldt J, Schytz HW, Hay D, Olsen RKJ, Nielsen JF. Serum calcitonin gene-related peptide in patients with persistent post-concussion symptoms, including headache: a cohort study. J Neurol 2024; 271:2458-2472. [PMID: 38231270 PMCID: PMC11055722 DOI: 10.1007/s00415-024-12181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) plays an important role in migraine pathophysiology, and post-traumatic headache (PTH) frequently presents with migraine-like features. Despite several clinical similarities, few studies have explored CGRP in PTH and concussion. This study investigates serum CGRP levels in patients with persistent post-concussion symptoms (PPCS), including PTH. METHODS This cohort study was based on serum samples from individuals aged 18-30 years with PPCS who participated in a previously published randomized controlled trial of a non-pharmacological intervention. The primary outcome was serum CGRP concentrations, determined at baseline before randomization and at follow-up 7 months later, using an enzyme-linked immunosorbent assay (ELISA). CGRP levels at baseline were compared with healthy anonymous blood donors in the same age group. RESULTS Baseline serum samples were collected from 86 participants with PPCS. The participants were most often female (78%) and migraine-like headache was the most frequent headache phenotype (74%). Serum CGRP levels were higher in participants with PPCS than in 120 healthy individuals (median: 158.5 pg/mL vs. 76.3 pg/mL, p = 0.050). A stratified analysis revealed that females with PPCS had a fivefold higher median than healthy females (166.3 pg/mL vs. 32.1 pg/mL, p = 0.0006), while no differences were observed in males (p = 0.83). At follow-up, CGRP levels decreased with a median change of - 1.3 pg/mL (95% confidence interval: - 17.6-0, p = 0.024). DISCUSSION Elevated serum levels of CGRP in patients with PPCS and a decrease over time suggest an involvement of CGRP in PTH/PPCS. If confirmed in other studies, it could pave the way for CGRP-targeted therapies, which could have clinical significance.
Collapse
Affiliation(s)
- Peter Preben Eggertsen
- Department of Clinical Medicine, Hammel Neurorehabilitation Centre and University Research Clinic, Aarhus University, Voldbyvej 15A, 8450, Hammel, Denmark.
- Department of Clinical Medicine, Research Unit for Molecular Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Johan Palmfeldt
- Department of Clinical Medicine, Research Unit for Molecular Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Henrik Winther Schytz
- Faculty of Health and Medical Sciences, Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Debbie Hay
- Department of Pharmacology and Toxicology, University of Otago, 362 Leith Street, Dunedin North, Dunedin, 9016, New Zealand
| | - Rikke Katrine Jentoft Olsen
- Department of Clinical Medicine, Research Unit for Molecular Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jørgen Feldbæk Nielsen
- Department of Clinical Medicine, Hammel Neurorehabilitation Centre and University Research Clinic, Aarhus University, Voldbyvej 15A, 8450, Hammel, Denmark
| |
Collapse
|
5
|
Rudolph M, Kopruszinski C, Wu C, Navratilova E, Schwedt TJ, Dodick DW, Porreca F, Anderson T. Identification of brain areas in mice with peak neural activity across the acute and persistent phases of post-traumatic headache. Cephalalgia 2023; 43:3331024231217469. [PMID: 38016977 PMCID: PMC11149587 DOI: 10.1177/03331024231217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.
Collapse
Affiliation(s)
- Megan Rudolph
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Caroline Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chen Wu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, Mayo Clinic, Phoenix, USA
| | | | - David W Dodick
- Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
- Atria Academy of Science and Medicine, New York City, New York, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Trent Anderson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Bharadwaj VN, Sahbaie P, Shi X, Irvine KA, Yeomans DC, Clark JD. Effect of Voluntary Exercise on Endogenous Pain Control Systems and Post-traumatic Headache in Mice. THE JOURNAL OF PAIN 2023; 24:1859-1874. [PMID: 37271350 DOI: 10.1016/j.jpain.2023.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Traumatic brain injury (TBI) can cause acute and chronic pain along with motor, cognitive, and emotional problems. Although the mechanisms are poorly understood, previous studies suggest disruptions in endogenous pain modulation may be involved. Voluntary exercise after a TBI has been shown to reduce some consequences of injury including cognitive impairment. We hypothesized, therefore, that voluntary exercise could augment endogenous pain control systems in a rodent model of TBI. For these studies, we used a closed-head impact procedure in male mice modeling mild TBI. We investigated the effect of voluntary exercise on TBI-induced hindpaw nociceptive sensitization, diffuse noxious inhibitory control failure, and periorbital sensitization after bright light stress, a model of post-traumatic headache. Furthermore, we investigated the effects of exercise on memory, circulating markers of brain injury, neuroinflammation, and spinal cord gene expression. We observed that exercise significantly reduced TBI-induced hindpaw allodynia and periorbital allodynia in the first week following TBI. We also showed that exercise improved the deficits associated with diffuse noxious inhibitory control and reduced bright light stress-induced allodynia up to 2 months after TBI. In addition, exercise preserved memory and reduced TBI-induced increases in spinal BDNF, CXCL1, CXCL2, and prodynorphin expression, all genes previously linked to TBI-induced nociceptive sensitization. Taken together, our observations suggest that voluntary exercise may reduce pain after TBI by reducing TBI-induced changes in nociceptive signaling and preserving endogenous pain control systems. PERSPECTIVE: This article evaluates the effects of exercise on pain-related behaviors in a preclinical model of traumatic brain injury (TBI). The findings show that exercise reduces nociceptive sensitization, loss of diffuse noxious inhibitory control, memory deficits, and spinal nociception-related gene expression after TBI. Exercise may reduce or prevent pain after TBI.
Collapse
Affiliation(s)
- Vimala N Bharadwaj
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California.
| | - Peyman Sahbaie
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Xiaoyou Shi
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Karen-Amanda Irvine
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - David C Yeomans
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California
| | - J David Clark
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
7
|
Christensen J, MacPherson N, Li C, Yamakawa GR, Mychasiuk R. Repeat mild traumatic brain injuries (RmTBI) modify nociception and disrupt orexinergic connectivity within the descending pain pathway. J Headache Pain 2023; 24:72. [PMID: 37316796 DOI: 10.1186/s10194-023-01608-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Repeat mild traumatic brain injuries (RmTBI) result in substantial burden to the public health system given their association with chronic post-injury pathologies, such as chronic pain and post-traumatic headache. Although this may relate to dysfunctional descending pain modulation (DPM), it is uncertain what mechanisms drive changes within this pathway. One possibility is altered orexinergic system functioning, as orexin is a potent anti-nociceptive neuromodulator. Orexin is exclusively produced by the lateral hypothalamus (LH) and receives excitatory innervation from the lateral parabrachial nucleus (lPBN). Therefore, we used neuronal tract-tracing to investigate the relationship between RmTBI and connectivity between lPBN and the LH, as well as orexinergic projections to a key site within the DPM, the periaqueductal gray (PAG). Prior to injury induction, retrograde and anterograde tract-tracing surgery was performed on 70 young-adult male Sprague Dawley rats, targeting the lPBN and PAG. Rodents were then randomly assigned to receive RmTBIs or sham injuries before undergoing testing for anxiety-like behaviour and nociceptive sensitivity. Immunohistochemical analysis identified distinct and co-localized orexin and tract-tracing cell bodies and projections within the LH. The RmTBI group exhibited altered nociception and reduced anxiety as well as a loss of orexin cell bodies and a reduction of hypothalamic projections to the ventrolateral nucleus of the PAG. However, there was no significant effect of injury on neuronal connectivity between the lPBN and orexinergic cell bodies within the LH. Our identification of structural losses and the resulting physiological changes in the orexinergic system following RmTBI begins to clarify acute post-injury mechanistic changes that drive may drive the development of post-traumatic headache and the chronification of pain.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Naomi MacPherson
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia.
| |
Collapse
|
8
|
Benedicter N, Messlinger K, Vogler B, Mackenzie KD, Stratton J, Friedrich N, Dux M. Semi-Automated Recording of Facial Sensitivity in Rat Demonstrates Antinociceptive Effects of the Anti-CGRP Antibody Fremanezumab. Neurol Int 2023; 15:622-637. [PMID: 37218978 DOI: 10.3390/neurolint15020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Migraine pain is frequently accompanied by cranial hyperalgesia and allodynia. Calcitonin gene-related peptide (CGRP) is implicated in migraine pathophysiology but its role in facial hypersensitivity is not entirely clear. In this study, we investigated if the anti-CGRP monoclonal antibody fremanezumab, which is therapeutically used in chronic and episodic migraines, can modify facial sensitivity recorded by a semi-automatic system. Rats of both sexes primed to drink from a sweet source had to pass a noxious mechanical or heat barrier to reach the source. Under these experimental conditions, animals of all groups tended to drink longer and more when they had received a subcutaneous injection of 30 mg/kg fremanezumab compared to control animals injected with an isotype control antibody 12-13 days prior to testing, but this was significant only for females. In conclusion, anti-CGRP antibody, fremanezumab, reduces facial sensitivity to noxious mechanical and thermal stimulation for more than one week, especially in female rats. Anti-CGRP antibodies may reduce not only headache but also cranial sensitivity in migraineurs.
Collapse
Affiliation(s)
- Nicola Benedicter
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany
| | | | | | - Nadine Friedrich
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary
| | - Mária Dux
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Begasse de Dhaem O, Wattiez AS, de Boer I, Pavitt S, Powers SW, Pradhan A, Gelfand AA, Nahman-Averbuch H. Bridging the gap between preclinical scientists, clinical researchers, and clinicians: From animal research to clinical practice. Headache 2023; 63:25-39. [PMID: 36633108 DOI: 10.1111/head.14441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Collaborations amongst researchers and clinicians with complementary areas of expertise enhance knowledge for everyone and can lead to new discoveries. To facilitate these interactions, shared language and a general understanding of how colleagues in different subfields of headache and headache research approach their work are needed. METHODS This narrative review focuses on research methods applied in animal studies, human studies including clinical trials, and provides an overview of clinical practice. RESULTS For animal studies, we describe concepts needed to evaluate the quality and relevance of preclinical studies. For human research, fundamental concepts of neuroimaging, quantitative sensory testing, genetic and epidemiological research methods, and clinical research methodology that are commonly used in headache research are summarized. In addition, we provide an understanding of what guides headache clinicians, and summarize the practical approach to migraine management in adults and children. CONCLUSIONS It is hoped that this review facilitates further dialogue between clinicians and researchers that will help guide future research efforts and implementation of research findings into clinical practice.
Collapse
Affiliation(s)
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, Iowa, USA
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Sara Pavitt
- Child & Adolescent Headache Program, University of California, San Francisco, California, USA
| | - Scott W Powers
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amynah Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amy A Gelfand
- Child & Adolescent Headache Program, University of California, San Francisco, California, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Tanaka M, Zhang Y. Preclinical Studies of Posttraumatic Headache and the Potential Therapeutics. Cells 2022; 12:cells12010155. [PMID: 36611947 PMCID: PMC9818317 DOI: 10.3390/cells12010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Posttraumatic headache (PTH) attributed to traumatic brain injury (TBI) is a secondary headache developed within 7 days after head injury, and in a substantial number of patients PTH becomes chronic and lasts for more than 3 months. Current medications are almost entirely relied on the treatment of primary headache such as migraine, due to its migraine-like phenotype and the limited understanding on the PTH pathogenic mechanisms. To this end, increasing preclinical studies have been conducted in the last decade. We focus in this review on the trigeminovascular system from the animal studies since it provides the primary nociceptive sensory afferents innervating the head and face region, and the pathological changes in the trigeminal pathway are thought to play a key role in the development of PTH. In addition to the pathologies, PTH-like behaviors induced by TBI and further exacerbated by nitroglycerin, a general headache inducer through vasodilation are reviewed. We will overview the current pharmacotherapies including calcitonin gene-related peptide (CGRP) monoclonal antibody and sumatriptan in the PTH animal models. Given that modulation of the endocannabinoid (eCB) system has been well-documented in the treatment of migraine and TBI, the therapeutic potential of eCB in PTH will also be discussed.
Collapse
|
12
|
La Fountaine MF, Hohn AN, Leahy CL, Weir JP, Testa AJ. Observations from a prospective small cohort study suggest that CGRP genes contribute to acute posttraumatic headache burden after concussion. Front Neurol 2022; 13:947524. [PMID: 35989941 PMCID: PMC9389220 DOI: 10.3389/fneur.2022.947524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionPost-traumatic headache (PTH) is commonly reported after concussion. Calcitonin gene-related peptide (CGRP) is implicated in the pathogenesis of migraine. We explored how single nucleotide polymorphisms (SNPs) from CGRP-alpha (CALCA) and the receptor activity modifying protein-1 (RAMP1) related to headache burden during the first week after concussion.MethodsA prospective study was performed in 34 collegiate athletes who sustained a concussion. Participants completed the symptom evaluation checklist from the SCAT3 within 48 h of injury (V1), and again 4 (V2) and 7 (V3) days after injury. For each visit, the self-reported score (0–6) for headache, pressure in head, blurred vision, and sensitivity to light/noise were reported and summed to calculate the headache burden. A saliva sample was obtained and genotyped for CALCA (rs3781719) and RAMP1 (rs10185142). RAMP1 (TT, TC, CC) and CALCA (AA, AG, GG) were dichotomized (A+, A- and T+, T-, respectively), and concatenated (T+A+, T+A-, T-A+, T-A-) for analyses.ResultsHeadache Burden at Visit 1 was greatest in T+A+ compared to T-A+, and trended toward a significant difference with T+A-. Repeated-measures ANOVA revealed the presence of significant visit main effects (p < 0.001, η2 = 0.404), but the group (p = 0.055) and interaction effects only trended (p = 0.094). Pearson's χ2-tests revealed that 88% of those with return-to play (RTP) exclusions ≥15 days had PTH with multi-sensory symptoms (PTH+SENS) as compared to 35% in those with RTP < 14 day.ConclusionKnowledge of RAMP1 and CALCA genotypes appear to improve an understanding the presenting features and magnitude of headache burden after concussion injury.
Collapse
Affiliation(s)
- Michael F. La Fountaine
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States
- Departments of Medical Sciences and Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, United States
- *Correspondence: Michael F. La Fountaine
| | - Asante N. Hohn
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States
| | - Caroline L. Leahy
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States
| | - Joseph P. Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, United States
- Osness Human Performance Laboratories, University of Kansas, Lawrence, KS, United States
| | - Anthony J. Testa
- Center for Sports Medicine, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
13
|
Richmond-Hacham B, Izchak H, Elbaum T, Qubty D, Bader M, Rubovitch V, Pick CCG. Sex-specific cognitive effects of mild traumatic brain injury to the frontal and temporal lobes. Exp Neurol 2022; 352:114022. [PMID: 35202640 DOI: 10.1016/j.expneurol.2022.114022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive deficits are the most enduring and debilitating sequelae of mild traumatic brain injury (mTBI). However, relatively little is known about whether the cognitive effects of mTBI vary with respect to time post-injury, biological sex, and injury location. OBJECTIVES The aim of this study was to assess the effect of the side and site of mTBI and to determine whether these effects are sexually dimorphic. METHODS Male and female ICR mice were subjected to either a sham procedure or mTBI to the temporal lobes (right-sided or left-sided) or to the frontal lobes (bilateral) using a weight-drop model. After recovery, mice underwent a battery of behavioral tests at two post-injury time points. RESULTS Different mTBI impact locations produced dissociable patterns of memory deficits; the extent of these deficits varied across sexes, time points, and memory domains. In both sexes, frontal mTBI mice exhibited a delayed onset of spatial memory deficits. Additionally, the performance of the frontal and left temporal injured males and females was more variable than that of controls. Interestingly, only in females does the effect of mTBI on visual recognition memory depend on the time post-injury. Moreover, only in females does spatial recognition memory remain relatively intact after mTBI to the left temporal lobe. CONCLUSION This study showed that different mTBI impact sites produce dissociable and sex-specific patterns of cognitive deficits in mice. The results emphasize the importance of considering the injury site/side and biological sex when evaluating the cognitive sequelae of mTBI.
Collapse
Affiliation(s)
- Bar Richmond-Hacham
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Haim Izchak
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Elbaum
- Department of Industrial Engineering and Management, Ariel University, Ariel, Israel
| | - Doaa Qubty
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Miaad Bader
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Chaim C G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Zhang J, Dong W, Dou X, Wang J, Yin P, Shi H. Etiology Analysis and Diagnosis and Treatment Strategy of Traumatic Brain Injury Complicated With Hyponatremia. Front Surg 2022; 9:848312. [PMID: 35265664 PMCID: PMC8898937 DOI: 10.3389/fsurg.2022.848312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the etiology and diagnosis and treatment strategy of traumatic brain injury complicated with hyponatremia. Methods 90 patients with traumatic brain injury admitted to our hospital from December 2019 to December 2020 were retrospectively analyzed and divided into hyponatremic group (50 patients) and non-hyponatremic group (40 patients) according to the patients' concomitant hyponatremia, and the clinical data of the two groups were collected and compared. In addition, patients in the hyponatremia group were divided into a control group and an experimental group of 25 patients each according to their order of admission, with the control group receiving conventional treatment and the experimental group using continuous renal replacement therapy (CRRT). Hemodynamic indices, mortality and serum neuron-specific enolase (NSE) indices before and after treatment were compared between the control and experimental groups. The Glasgow coma scale (GCS) was used to assess the degree of coma before and after the treatment in the two groups, and the patients' disease status was assessed using the Acute Physiological and Chronic Health Evaluation Scoring System (APACHE II). Results The etiology of traumatic brain injury complicated with hyponatremia is related to the degree of brain injury, ventricular hemorrhage, cerebral edema, and skull base fracture (P < 0.05). After the treatment, the hemodynamic indexes, APACHE II scores, death rate, and NSE levels of the experimental group were significantly lower than those of the control group (P < 0.001); The experimental group yielded remarkably higher GAC scores as compared to the control group (P < 0.001). Conclusion The degree of brain injury, ventricular hemorrhage, cerebral edema, and skull base fracture were considered to be the main factors for traumatic brain injury complicated with hyponatremia. Continuous renal replacement therapy can effectively improve the clinical indicators of the patients with a promising curative effect, which merits promotion and application.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Wensheng Dong
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Xianghong Dou
- Department of Neurology, Donghai County People's Hospital, Lianyungang, China
| | - Jinjin Wang
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Peng Yin
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Hui Shi
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
- *Correspondence: Hui Shi
| |
Collapse
|
15
|
Ashina H, Dodick DW. Post-traumatic Headache: Pharmacologic Management and Targeting CGRP Signaling. Curr Neurol Neurosci Rep 2022; 22:105-111. [PMID: 35138589 DOI: 10.1007/s11910-022-01175-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Post-traumatic headache is a common sequela of injury to the head and/or neck. Here, we review the current approach to pharmacologic management of post-traumatic headache and explore the therapeutic promise of targeting calcitonin gene-related peptide signaling to address unmet treatment needs. RECENT FINDINGS The scarcity of data from controlled trials has left clinicians to rely on mainly expert opinion for the pharmacologic management of post-traumatic headache. The current view is that a phenotype-guided approach should be used, in which patients are treated according to the primary headache phenotype that their clinical features resemble the most (e.g. migraine, tension-type headache). Moreover, incremental advances are being made in the field that aim to identify possible cellular and molecular drivers of headache persistence. Calcitonin gene-related peptide has emerged as a key drug target which, in turn, has prompted novel insights on the potential importance of early initiation of pharmacologic treatment following the onset of post-traumatic headache. This, in turn, might prevent subsequent persistence and chronification of headache.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
16
|
Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles. Pain 2021; 162:1163-1175. [PMID: 33027220 DOI: 10.1097/j.pain.0000000000002103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.
Collapse
|
17
|
Guo Z, Czerpaniak K, Zhang J, Cao YQ. Increase in trigeminal ganglion neurons that respond to both calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide in mouse models of chronic migraine and posttraumatic headache. Pain 2021; 162:1483-1499. [PMID: 33252452 PMCID: PMC8049961 DOI: 10.1097/j.pain.0000000000002147] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023]
Abstract
A large body of animal and human studies indicates that blocking peripheral calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) signaling pathways may prevent migraine episodes and reduce headache frequency. To investigate whether recurring migraine episodes alter the strength of CGRP and PACAP signaling in trigeminal ganglion (TG) neurons, we compared the number of TG neurons that respond to CGRP and to PACAP (CGRP-R and PACAP-R, respectively) under normal and chronic migraine-like conditions. In a mouse model of chronic migraine, repeated nitroglycerin (NTG) administration significantly increased the number of CGRP-R and PACAP-R neurons in TG but not dorsal root ganglia. In TG neurons that express endogenous αCGRP, repeated NTG led to a 7-fold increase in the number of neurons that respond to both CGRP and PACAP (CGRP-R&PACAP-R). Most of these neurons were unmyelinated C-fiber nociceptors. This suggests that a larger fraction of CGRP signaling in TG nociceptors may be mediated through the autocrine mechanism, and the release of endogenous αCGRP can be enhanced by both CGRP and PACAP signaling pathways under chronic migraine condition. The number of CGRP-R&PACAP-R TG neurons was also increased in a mouse model of posttraumatic headache (PTH). Interestingly, low-dose interleukin-2 treatment, which completely reverses chronic migraine-related and PTH-related behaviors in mouse models, also blocked the increase in both CGRP-R and PACAP-R TG neurons. Together, these results suggest that inhibition of both CGRP and PACAP signaling in TG neurons may be more effective in treating chronic migraine and PTH than targeting individual signaling pathways.
Collapse
Affiliation(s)
- Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Katherine Czerpaniak
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Jintao Zhang
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
- Present address: Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China 510515
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
18
|
Yan X, Han H, Zhang S, Lu Y, Ren L, Tang Y, Li X, Jian F, Wang Y, Long H, Lai W. N/OFQ modulates orofacial pain induced by tooth movement through CGRP-dependent pathways. BMC Neurosci 2021; 22:25. [PMID: 33836649 PMCID: PMC8034138 DOI: 10.1186/s12868-021-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nociceptin/orphanin FQ (N/OFQ) has been revealed to play bidirectional roles in orofacial pain modulation. Calcitonin gene-related peptide (CGRP) is a well-known pro-nociceptive molecule that participates in the modulation of orofacial pain. We aimed to determine the effects of N/OFQ on the modulation of orofacial pain and on the release of CGRP. METHODS Orofacial pain model was established by ligating springs between incisors and molars in rats for the simulation of tooth movement. The expression level of N/OFQ was determined and pain level was scored in response to orofacial pain. Both agonist and antagonist of N/OFQ receptor were administered to examine their effects on pain and the expression of CGRP in trigeminal ganglia (TG). Moreover, gene therapy based on the overexpression of N/OFQ was delivered to validate the modulatory role of N/OFQ on pain and CGRP expression. RESULTS Tooth movement elicited orofacial pain and an elevation in N/OFQ expression. N/OFQ exacerbated orofacial pain and upregulated CGRP expression in TG, while UFP-101 alleviated pain and downregulated CGRP expression. N/OFQ-based gene therapy was successful in overexpressing N/OFQ in TG, which resulted in pain exacerbation and elevation of CGRP expression in TG. CONCLUSIONS N/OFQ exacerbated orofacial pain possibly through upregulating CGRP.
Collapse
Affiliation(s)
- Xinyu Yan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Han Han
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Shizhen Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yanzhu Lu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Linghuan Ren
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yufei Tang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Xiaolong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Fan Jian
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yan Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| | - Wenli Lai
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|
19
|
Repetitive stress in mice causes migraine-like behaviors and calcitonin gene-related peptide-dependent hyperalgesic priming to a migraine trigger. Pain 2021; 161:2539-2550. [PMID: 32541386 DOI: 10.1097/j.pain.0000000000001953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Migraine is one of the most disabling disorders worldwide but the underlying mechanisms are poorly understood. Stress is consistently reported as a common trigger of migraine attacks. Here, we show that repeated stress in mice causes migraine-like behaviors that are responsive to a migraine therapeutic. Adult female and male mice were exposed to 2 hours of restraint stress for 3 consecutive days, after which they demonstrated facial mechanical hypersensitivity and facial grimace responses that were resolved by 14 days after stress. Hypersensitivity or grimace was not observed in either control animals or those stressed for only 1 day. After return to baseline, the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg) elicited mechanical hypersensitivity in stressed but not in control animals, demonstrating the presence of hyperalgesic priming. This suggests the presence of a migraine-like state, because nitric oxide donors are reliable triggers of attacks in migraine patients but not controls. The stress paradigm also caused priming responses to dural pH 7.0 treatment. The presence of this primed state after stress is not permanent because it was no longer present at 35 days after stress. Finally, mice received either the calcitonin gene-related peptide monoclonal antibody ALD405 (10 mg/kg) 24 hours before SNP or a coinjection of sumatriptan (0.6 mg/kg). ALD405, but not sumatriptan, blocked the facial hypersensitivity due to SNP. This stress paradigm in mice and the subsequent primed state caused by stress allow further preclinical investigation of mechanisms contributing to migraine, particularly those caused by common triggers of attacks.
Collapse
|
20
|
Levine A, Vanderah TW, Largent-Milnes TM. An underrepresented majority: A systematic review utilizing allodynic criteria to examine the present scarcity of discrete animal models for episodic migraine. Cephalalgia 2021; 41:404-416. [PMID: 33131303 PMCID: PMC10443224 DOI: 10.1177/0333102420966984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Despite increasing evidence differentiating episodic and chronic migraine, little work has determined how currently utilized animal models of migraine best represent each distinct disease state. AIM In this review, we seek to characterize accepted preclinical models of migraine-like headache by their ability to recapitulate the clinical allodynic features of either episodic or chronic migraine. METHODS From a search of the Pu bMed database for "animal models of migraine", "headache models" and "preclinical migraine", we identified approximately 80 recent (within the past 20 years) publications that utilized one of 10 different models for migraine research. Models reviewed fit into one of the following categories: Dural KCl application, direct electrical stimulation, nitroglycerin administration, inflammatory soup injection, CGRP injection, medication overuse, monogenic animals, post-traumatic headache, specific channel activation, and hormone manipulation. Recapitulation of clinical features including cephalic and extracephalic hypersensitivity were evaluated for each and compared. DISCUSSION Episodic migraineurs comprise over half of the migraine population, yet the vast majority of current animal models of migraine appear to best represent chronic migraine states. While some of these models can be modified to reflect episodic migraine, there remains a need for non-invasive, validated models of episodic migraine to enhance the clinical translation of migraine research.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | |
Collapse
|
21
|
Naugle KM, Carey C, Evans E, Saxe J, Overman R, White FA. The role of deficient pain modulatory systems in the development of persistent post-traumatic headaches following mild traumatic brain injury: an exploratory longitudinal study. J Headache Pain 2020; 21:138. [PMID: 33272206 PMCID: PMC7712573 DOI: 10.1186/s10194-020-01207-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Post-traumatic headache (PTH) is one of the most common and long-lasting symptoms following mild traumatic brain injury (TBI). However, the pathological mechanisms underlying the development of persistent PTH remain poorly understood. The primary purpose of this prospective pilot study was to evaluate whether early pain modulatory profiles (sensitization and endogenous pain inhibitory capacity) and psychological factors after mild TBI predict the development of persistent PTH in mild TBI patients. METHODS Adult mild TBI patients recruited from Level I Emergency Department Trauma Centers completed study sessions at 1-2 weeks, 1-month, and 4-months post mild TBI. Participants completed the following outcome measures during each session: conditioned pain modulation to measure endogenous pain inhibitory capacity, temporal summation of pain and pressure pain thresholds of the head to measure sensitization of the head, Pain Catastrophizing Scale, Center for Epidemiological Studies - Depression Scale, and a standardized headache survey. Participants were classified into persistent PTH (PPTH) and no-PPTH groups based on the 4-month data. RESULTS The results revealed that mild TBI patients developing persistent PTH exhibited significantly diminished pain inhibitory capacity, and greater depression and pain catastrophizing following injury compared to those who do not develop persistent PTH. Furthermore, logistic regression indicated that headache pain intensity at 1-2 weeks and pain inhibitory capacity on the conditioned pain modulation test at 1-2 weeks predicted persistent PTH classification at 4 months post injury. CONCLUSIONS Overall, the results suggested that persistent PTH is characterized by dysfunctional alterations in endogenous pain modulatory function and psychological processes in the early stages following mild TBI, which likely exacerbate risk for the maintenance of PTH.
Collapse
Affiliation(s)
- Kelly M Naugle
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis (IUPUI), 901 West New York St., Indianapolis, IN, 46202, USA.
| | - Christopher Carey
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis (IUPUI), 901 West New York St., Indianapolis, IN, 46202, USA
| | - Eric Evans
- Department of Health Sciences, School of Health and Human Sciences, IUPUI, 250 University Boulevard, Indianapolis, IN, 46202, USA
| | - Jonathan Saxe
- Trauma Department, Ascension St. Vincent Indianapolis Hospital, 2001 W 86th St, Indianapolis, IN, 46260, USA
| | - Ryan Overman
- Department of Neurology, Indiana University School of Medicine, GH 4700 Neur, IN, 46202, Indianapolis, USA
| | - Fletcher A White
- Department of Anesthesia, School of Medicine, Indiana University, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Stark Neuroscience Research Institute, School of Medicine, Indiana University, 320 West 15th Street, Indianapolis, IN, 46202, USA
| |
Collapse
|
22
|
Hoffman AN, Watson SL, Makridis AS, Patel AY, Gonzalez ST, Ferguson L, Giza CC, Fanselow MS. Sex Differences in Behavioral Sensitivities After Traumatic Brain Injury. Front Neurol 2020; 11:553190. [PMID: 33324313 PMCID: PMC7724082 DOI: 10.3389/fneur.2020.553190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with high rates of post-injury psychiatric and neurological comorbidities. TBI is more common in males than females despite females reporting more symptoms and longer recovery following TBI and concussion. Both pain and mental health conditions like anxiety and post-traumatic stress disorder (PTSD) are more common in women in the general population, however the dimorphic comorbidity in the TBI population is not well-understood. TBI may predispose the development of maladaptive anxiety or PTSD following a traumatic stressor, and the impact of sex on this interaction has not been investigated. We have shown that white noise is noxious to male rats following fluid percussion injury (FPI) and increases fear learning when used in auditory fear conditioning, but it is unclear whether females exhibit a similar phenotype. Adult female and male rats received either lateral FPI or sham surgery and 48 h later received behavioral training. We first investigated sex differences in response to 75 dB white noise followed by white noise-signaled fear conditioning. FPI groups exhibited defensive behavior to the white noise, which was significantly more robust in females, suggesting FPI increased auditory sensitivity. In another experiment, we asked how FPI affects contextual fear learning in females and males following unsignaled footshocks of either strong (0.9 mA) or weaker (0.5 mA) intensity. We saw that FPI led to rapid acquisition of contextual fear compared to sham. A consistent pattern of increased contextual fear after TBI was apparent in both sexes across experiments under differing conditioning protocols. Using a light gradient open field task we found that FPI females showed a defensive photophobia response to light, a novel finding supporting TBI enhanced sensory sensitivity across modalities in females. General behavioral differences among our measures were observed between sexes and discussed with respect to interpretations of TBI effects for each sex. Together our data support enhanced fear following a traumatic stressor after TBI in both sexes, where females show greater sensitivity to sensory stimuli across multiple modalities. These data demonstrate sex differences in emergent defensive phenotypes following TBI that may contribute to comorbid PTSD, anxiety, and other neurological comorbidities.
Collapse
Affiliation(s)
- Ann N Hoffman
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sonya L Watson
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anna S Makridis
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anisha Y Patel
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sarah T Gonzalez
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lindsay Ferguson
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Christopher C Giza
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States.,Division of Neurology, Department of Pediatrics, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, CA, United States
| | - Michael S Fanselow
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Science, Los Angeles, CA, United States
| |
Collapse
|
23
|
Benemei S, Labastida-Ramírez A, Abramova E, Brunelli N, Caronna E, Diana P, Gapeshin R, Hofacker MD, Maestrini I, Pías EM, Mikulenka P, Tikhonova O, Martelletti P, MaassenVanDenBrink A. Persistent post-traumatic headache: a migrainous loop or not? The preclinical evidence. J Headache Pain 2020; 21:90. [PMID: 32664898 PMCID: PMC7362418 DOI: 10.1186/s10194-020-01135-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background According to the International Classification of Headache Disorders 3, post-traumatic headache (PTH) attributed to traumatic brain injury (TBI) is a secondary headache reported to have developed within 7 days from head injury, regaining consciousness following the head injury, or discontinuation of medication(s) impairing the ability to sense or report headache following the head injury. It is one of the most common secondary headache disorders, and it is defined as persistent when it lasts more than 3 months. Main body Currently, due to the high prevalence of this disorder, several preclinical studies have been conducted using different animal models of mild TBI to reproduce conditions that engender PTH. Despite representing a simplification of a complex disorder and displaying different limitations concerning the human condition, animal models are still a mainstay to study in vivo the mechanisms of PTH and have provided valuable insight into the pathophysiology and possible treatment strategies. Different models reproduce different types of trauma and have been ideated in order to ensure maximal proximity to the human condition and optimal experimental reproducibility. Conclusion At present, despite its high prevalence, PTH is not entirely understood, and the differential contribution of pathophysiological mechanisms, also observed in other conditions like migraine, has to be clarified. Although facing limitations, animal models are needed to improve understanding of PTH. The knowledge of currently available models is necessary to all researchers who want to investigate PTH and contribute to unravel its mechanisms.
Collapse
Affiliation(s)
- Silvia Benemei
- Health Sciences Department, University of Florence and Headache Centre, Careggi University Hospital, Florence, Italy
| | - Alejandro Labastida-Ramírez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Ekaterina Abramova
- Pain Clinic Unit, Department of Anesthesiology, Pirogov City Clinical Hospital, Moscow, Russia
| | | | - Edoardo Caronna
- Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Paola Diana
- Child Neuropsychiatry Unit, Department of PROMISE, University of Palermo, Palermo, Italy
| | - Roman Gapeshin
- Department of Neurology and Manual Medicine, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Maxi Dana Hofacker
- Department of Neurology, Headache Centre, Charité Universitatsmedizin Berlin, Berlin, Germany
| | - Ilaria Maestrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Enrique Martínez Pías
- Neurology Department, Hospital Clínico Universitario of Valladolid, Valladolid, Spain
| | - Petr Mikulenka
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Olga Tikhonova
- Department of neurology, Kazaryan Clinic of Epileptology and Neurology, Moscow, Russia
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | |
Collapse
|
24
|
Bree D, Stratton J, Levy D. Increased severity of closed head injury or repetitive subconcussive head impacts enhances post-traumatic headache-like behaviors in a rat model. Cephalalgia 2020; 40:1224-1239. [PMID: 32600065 DOI: 10.1177/0333102420937664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Posttraumatic headache is one of the most common, debilitating, and difficult symptoms to manage after a traumatic head injury. The development of novel therapeutic approaches is nevertheless hampered by the paucity of preclinical models and poor understanding of the mechanisms underlying posttraumatic headache. To address these shortcomings, we previously characterized the development of posttraumatic headache-like pain behaviors in rats subjected to a single mild closed head injury using a 250 g weight drop. Here, we conducted a follow-up study to further extend the preclinical research toolbox for studying posttraumatic headache by exploring the development of headache-like pain behaviors in male rats subjected to a single, but more severe head trauma (450 g) as well as following repetitive, subconcussive head impacts (150 g). In addition, we tested whether these behaviors involve peripheral calcitonin gene-related peptide signaling by testing the effect of systemic treatment with an anti-calcitonin gene-related peptide monoclonal antibody (anti-calcitonin gene-related peptide mAb). METHODS Adult male Sprague Dawley rats (total n = 138) were subjected to diffuse closed head injury using a weight-drop device, or a sham procedure. Three injury paradigms were employed: A single hit, using 450 g or 150 g weight drop, and three successive 150 g weight drop events conducted 72 hours apart. Changes in open field activity and development of cephalic and extracephalic tactile pain hypersensitivity were assessed up to 42 days post head trauma. Systemic administration of the anti-calcitonin gene-related peptide mAb or its control IgG (30 mg/kg) began immediately after the 450 g injury or the third 150 g weight drop with additional doses given every 6 days subsequently. RESULTS Rats subjected to 450 g closed head injury displayed an acute decrease in rearing and increased thigmotaxis, together with cephalic tactile pain hypersensitivity that resolved by 6 weeks post-injury. Injured animals also displayed delayed and prolonged extracephalic tactile pain hypersensitivity that remained present at 6 weeks post-injury. Repetitive subconcussive head impacts using the 150 g weight drop, but not a single event, led to decreased vertical rearing as well as cephalic and extracephalic tactile pain hypersensitivity that resolved by 6 weeks post-injury. Early and prolonged anti-calcitonin gene-related peptide mAb treatment inhibited the development of the cephalic tactile pain hypersensitivity in both the severe and repetitive subconcussive head impact models. CONCLUSIONS Severe head injury gives rise to a prolonged state of cephalic and extracephalic tactile pain hypersensitivity. These pain behaviors also develop following repetitive, subconcussive head impacts. Extended cephalic tactile pain hypersensitivity following severe and repetitive mild closed head injury are ameliorated by early and prolonged anti-calcitonin gene-related peptide mAb treatment, suggesting a mechanism linked to calcitonin gene-related peptide signaling, potentially of trigeminal origin.
Collapse
Affiliation(s)
- Dara Bree
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | | | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Centre, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|