1
|
Eftekhari Moghadam AR, Absalan F, Khatavian E, Jalilian M, Maghsoudi F. Evaluation of the Frequency of Migraine and CVA Patients Based on Circle of Willis Morphological Variations in MRA Images. Adv Biomed Res 2024; 13:109. [PMID: 39717249 PMCID: PMC11665160 DOI: 10.4103/abr.abr_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 12/25/2024] Open
Abstract
Background The Circle of Willis (CoW) forms a critical collateral route for the compensation pathway at the basal cistern of the brain. This study aims to determine if migraine headaches and cerebrovascular accidents (CVAs) are associated with the prevalence and patterns of CoW arterial variations seen in the three-dimensional time-of-flight magnetic resonance angiography technique in patients. Materials and Methods A cross-sectional study was undertaken by a systemic search of electronic databases in the Imaging Center, Abadan's Taleghani Hospital, Iran, from March 2020 to March 2022. Data on the prevalence of variations in patients who presented for screening for migraine and CVA were extracted and analyzed with Student t-test and the Chi-square method. Results Findings show complete CoW has been visible in 20.19% of our patients. The anterior part of the CoW was almost intact in all patients. The posterior part of CoW was mostly bilaterally hypoplastic (31.73%) or bilateral aplastic (29.81%) and in some rare cases unilaterally varied. In migraine patients, CoW was rarely in its classic form (15%) and was varied bilaterally in 72.5% of the cases. In CVA patients, CoW was in its complete vascular structure in 23.08% and bilaterally varied in 46.15% of all cases. Conclusions Overall, migraine and CVA are associated with anatomical variations in the posterior portions of the CoW. Further larger prospective trials are needed to determine the true prevalence of CoW variations and their pathological significance.
Collapse
Affiliation(s)
- Ali Reza Eftekhari Moghadam
- Department of Anatomical Science, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Forouzan Absalan
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
- Medical Faculty, Taleghani Hospital, Abadan, Iran
| | - Ehsan Khatavian
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| | - Milad Jalilian
- Department of Neuroscience, Neuroimaging and Addiction Studies, Schools of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Maghsoudi
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
2
|
Islam J, Rahman MT, Ali M, Kc E, Park YS. Potential hypothalamic mechanisms in trigeminal neuropathic pain: a comparative analysis with migraine and cluster headache. J Headache Pain 2024; 25:205. [PMID: 39587517 PMCID: PMC11587712 DOI: 10.1186/s10194-024-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Trigeminal neuropathic pain (TNP), migraine, and cluster headache (CH) profoundly impact the quality of life and present significant clinical challenges due to their complex neurobiological underpinnings. This review delves into the pivotal role of the hypothalamus in the pathophysiology of these facial pain syndromes, highlighting its distinctive functions and potential as a primary target for research, diagnosis, and therapy. While the involvement of the hypothalamus in migraine and CH has been increasingly supported by imaging and clinical studies, the precise mechanisms of its role remain under active investigation. The role of the hypothalamus in TNP, in contrast, is less explored and represents a critical gap in our understanding. The hypothalamus's involvement varies significantly across these conditions, orchestrating a unique interplay of neural circuits and neurotransmitter systems that underlie the distinct characteristics of each pain type. We have explored advanced neuromodulation techniques, such as deep brain stimulation (DBS) and optogenetics, which show promise in targeting hypothalamic dysfunction to alleviate pain symptoms. Furthermore, we discuss the neuroplastic changes within the hypothalamus that contribute to the chronicity of these pains and the implications of these findings for developing targeted therapies. By offering a comprehensive examination of the hypothalamus's roles, this paper aims to bridge existing knowledge gaps and propel forward the understanding and management of facial neuralgias, underscoring the hypothalamus's critical position in future neurological research.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Muhammad Ali
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Schramm S, Börner C, Reichert M, Hoffmann G, Kaczmarz S, Griessmair M, Jung K, Berndt MT, Zimmer C, Baum T, Heinen F, Bonfert MV, Sollmann N. Perfusion imaging by arterial spin labeling in migraine: A literature review. J Cereb Blood Flow Metab 2024; 44:1253-1270. [PMID: 38483125 PMCID: PMC11342727 DOI: 10.1177/0271678x241237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 08/15/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Philips GmbH Market DACH, Hamburg, Germany
| | - Michael Griessmair
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kirsten Jung
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
4
|
Dourson AJ, Darken RS, Baranski TJ, Gereau RW, Ross WT, Nahman-Averbuch H. The role of androgens in migraine pathophysiology. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100171. [PMID: 39498299 PMCID: PMC11532460 DOI: 10.1016/j.ynpai.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Migraine affects ∼12 % of the worldwide population and is more prevalent in females, which suggests a role of sex hormones in migraine pathophysiology. Most studies have focused on estrogen and progesterone, and the involvement of androgens has been less studied. However, due to the recent advances in androgen interventions, which could advance new androgen-based migraine treatments, it is critical to better understand the role of androgens in migraine. Testosterone, the most studied androgen, was found to have an antinociceptive effect in various animal and human pain studies. Thus, it could also have a protective effect related to lower migraine severity and prevalence. In this review, we discuss studies examining the role of androgens on migraine-related symptoms in migraine animal models. Additionally, we summarize the results of human studies comparing androgen levels between patients with migraine and healthy controls, studies assessing the relationships between androgen levels and migraine severity, and intervention studies examining the impact of testosterone treatment on migraine severity. Many of the studies have limitations, however, the results suggest that androgens may have a minor effect on migraine. Still, it is possible that androgens are involved in migraine pathophysiology in a sub-group of patients such as in adolescents or postmenopausal women. We discuss potential mechanisms in which testosterone, as the main androgen tested, can impact migraine. These mechanisms range from the cellular level to systems and behavior and include the effect of testosterone on sensory neurons, the immune and vascular systems, the stress response, brain function, and mood. Lastly, we suggest future directions to advance this line of research.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel S. Darken
- Department of Neurology, Washington University School of Medicine, St. Louis Missouri, USA
| | - Thomas J. Baranski
- Division of Endocrinology, Diabetes and Metabolism Washington University School of Medicine in St. Louis Missouri, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney Trotter Ross
- Division of Minimally Invasive Gynecologic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Karsan N, Goadsby PJ. Intervening in the Premonitory Phase to Prevent Migraine: Prospects for Pharmacotherapy. CNS Drugs 2024; 38:533-546. [PMID: 38822165 DOI: 10.1007/s40263-024-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/02/2024]
Abstract
Migraine is a common brain condition characterised by disabling attacks of headache with sensory sensitivities. Despite increasing understanding of migraine neurobiology and the impacts of this on therapeutic developments, there remains a need for treatment options for patients underserved by currently available therapies. The first specific drugs developed to treat migraine acutely, the serotonin-5-hydroxytryptamine [5-HT1B/1D] receptor agonists (triptans), seem to require headache onset in order to have an effect, while early treatment during mild pain before headache escalation improves short-term and long-term outcomes. Some patients find treating in the early window once headache has started but not escalated difficult, and migraine can arise from sleep or in the early hours of the morning, making prompt treatment after pain onset challenging. Triptans may be deemed unsuitable for use in patients with vascular disease and in those of older age and may not be effective in a proportion of patients. Headache is also increasingly recognised as being just one of the many facets of the migraine attack, and for some patients it is not the most disabling symptom. In many patients, painless symptoms can start prior to headache onset and can reliably warn of impending headache. There is, therefore, a need to identify therapeutic targets and agents that may be used as early as possible in the course of the attack, to prevent headache onset before it starts, and to reduce both headache and non-headache related attack burden. Early small studies using domperidone, naratriptan and dihydroergotamine have suggested that this approach could be useful; these studies were methodologically less rigorous than modern day treatment studies, of small sample size, and have not since been replicated. The emergence of novel targeted migraine treatments more recently, specifically calcitonin gene-related peptide (CGRP) receptor antagonists (gepants), has reignited interest in this strategy, with encouraging results. This review summarises historical and emerging data in this area, supporting use of the premonitory phase as an opportunity to intervene as early as possible in migraine to prevent attack-related morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, Wellcome Foundation Building, King's College London, Denmark Hill, London, SE5 9PJ, UK
- NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, Wellcome Foundation Building, King's College London, Denmark Hill, London, SE5 9PJ, UK.
- NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College Hospital, London, UK.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Li F, Zhang D, Ren J, Xing C, Hu L, Miao Z, Lu L, Wu X. Connectivity of the insular subdivisions differentiates posttraumatic headache-associated from nonheadache-associated mild traumatic brain injury: an arterial spin labelling study. J Headache Pain 2024; 25:103. [PMID: 38898386 PMCID: PMC11186101 DOI: 10.1186/s10194-024-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The insula is an important part of the posttraumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) neuropathological activity pattern. It is composed of functionally different subdivisions and each of which plays different role in PTH neuropathology. METHODS Ninety-four mTBI patients were included in this study. Based on perfusion imaging data obtained from arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI), this study evaluated the insular subregion perfusion-based functional connectivity (FC) and its correlation with clinical characteristic parameters in patients with PTH after mTBI and non-headache mTBI patients. RESULTS The insular subregions of mTBI + PTH (mTBI patients with PTH) and mTBI-PTH (mTBI patients without PTH) group had positive perfusion-based functional connections with other insular nuclei and adjacent discrete cortical regions. Compared with mTBI-PTH group, significantly increased resting-state perfusion-based FC between the anterior insula (AI) and middle cingulate cortex (MCC)/Rolandic operculum (ROL), between posterior insula (PI) and supplementary motor area (SMA), and decreased perfusion-based FC between PI and thalamus were found in mTBI + PTH group. Changes in the perfusion-based FC of the left posterior insula/dorsal anterior insula with the thalamus/MCC were significant correlated with headache characteristics. CONCLUSIONS Our findings provide new ASL-based evidence for changes in the perfusion-based FC of the insular subregion in PTH patients attributed to mTBI and the association with headache features, revealing the possibility of potential neuroplasticity after PTH. These findings may contribute to early diagnosis of the disease and follow-up of disease progression.
Collapse
Affiliation(s)
- Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jun Ren
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Lanyue Hu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
7
|
Stanyer EC, Hoffmann J, Holland PR. Orexins and primary headaches: an overview of the neurobiology and clinical impact. Expert Rev Neurother 2024; 24:487-496. [PMID: 38517280 PMCID: PMC11034548 DOI: 10.1080/14737175.2024.2328728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Primary headaches, including migraines and cluster headaches, are highly prevalent disorders that significantly impact quality of life. Several factors suggest a key role for the hypothalamus, including neuroimaging studies, attack periodicity, and the presence of altered homeostatic regulation. The orexins are two neuropeptides synthesized almost exclusively in the lateral hypothalamus with widespread projections across the central nervous system. They are involved in an array of functions including homeostatic regulation and nociception, suggesting a potential role in primary headaches. AREAS COVERED This review summarizes current knowledge of the neurobiology of orexins, their involvement in sleep-wake regulation, nociception, and functions relevant to the associated symptomology of headache disorders. Preclinical reports of the antinociceptive effects of orexin-A in preclinical models are discussed, as well as clinical evidence for the potential involvement of the orexinergic system in headache. EXPERT OPINION Several lines of evidence support the targeted modulation of orexinergic signaling in primary headaches. Critically, orexins A and B, acting differentially via the orexin 1 and 2 receptors, respectively, demonstrate differential effects on trigeminal pain processing, indicating why dual-receptor antagonists failed to show clinical efficacy. The authors propose that orexin 1 receptor agonists or positive allosteric modulators should be the focus of future research.
Collapse
Affiliation(s)
- Emily C. Stanyer
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jan Hoffmann
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Philip R. Holland
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
8
|
Zhou Q, Zhang C, Du J, Xin Z, Qi Y, Wang Y, Li SJ, Wang W, Zhou C, Liu JR, Du X. Altered neurovascular coupling in migraine without aura. J Neurosci Res 2024; 102:e25293. [PMID: 38284838 DOI: 10.1002/jnr.25293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Neurovascular coupling (NVC) provides new insights into migraine, a neurological disorder impacting over one billion people worldwide. This study compared NVC and cerebral blood flow (CBF) in patients with migraine without aura (MwoA) and healthy controls. About 55 MwoA patients in the interictal phase and 40 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging and arterial spin-labeling perfusion imaging scans. The CBF and resting-state neuronal activity indicators, including the amplitudes of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC), were calculated for each participant. The global and regional NVCs were assessed using cross-voxel CBF-neuronal activity correlations and CBF/neuronal activity ratios. Patients with MwoA showed increased CBF/ALFF ratios in the left media, superior and inferior frontal gyri, and anterior cingulate gyrus, increased CBF/DC ratios in the left middle and inferior frontal gyri, and increased CBF/ReHo ratios in the right corpus callosum and right posterior cingulate gyrus. Lower CBF/ALFF ratios in the right rectal gyrus, the left orbital gyrus, the right inferior frontal gyrus, and the right superior temporal gyrus were also found in the MwoA patients. Furthermore, the CBF/ALFF ratios in the inferior frontal and superior temporal gyri were positively correlated with the Headache Impact Test scores and Hamilton anxiety scale scores in the MwoA patients. These findings provide evidence for the theory that abnormal NVC contributes to MwoA.
Collapse
Affiliation(s)
- Qichen Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, China
| | - Chao Zhang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Du
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Ziyue Xin
- Department of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yapeng Qi
- Department of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yihan Wang
- Department of Psychology, Shanghai University of Sport, Shanghai, China
| | - Shen-Jie Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weikan Wang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglin Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, China
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Du
- Department of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Sollmann N, Hoffmann G, Schramm S, Reichert M, Hernandez Petzsche M, Strobel J, Nigris L, Kloth C, Rosskopf J, Börner C, Bonfert M, Berndt M, Grön G, Müller HP, Kassubek J, Kreiser K, Koerte IK, Liebl H, Beer A, Zimmer C, Beer M, Kaczmarz S. Arterial Spin Labeling (ASL) in Neuroradiological Diagnostics - Methodological Overview and Use Cases. ROFO-FORTSCHR RONTG 2024; 196:36-51. [PMID: 37467779 DOI: 10.1055/a-2119-5574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI)-based technique using labeled blood-water of the brain-feeding arteries as an endogenous tracer to derive information about brain perfusion. It enables the assessment of cerebral blood flow (CBF). METHOD This review aims to provide a methodological and technical overview of ASL techniques, and to give examples of clinical use cases for various diseases affecting the central nervous system (CNS). There is a special focus on recent developments including super-selective ASL (ssASL) and time-resolved ASL-based magnetic resonance angiography (MRA) and on diseases commonly not leading to characteristic alterations on conventional structural MRI (e. g., concussion or migraine). RESULTS ASL-derived CBF may represent a clinically relevant parameter in various pathologies such as cerebrovascular diseases, neoplasms, or neurodegenerative diseases. Furthermore, ASL has also been used to investigate CBF in mild traumatic brain injury or migraine, potentially leading to the establishment of imaging-based biomarkers. Recent advances made possible the acquisition of ssASL by selective labeling of single brain-feeding arteries, enabling spatial perfusion territory mapping dependent on blood flow of a specific preselected artery. Furthermore, ASL-based MRA has been introduced, providing time-resolved delineation of single intracranial vessels. CONCLUSION Perfusion imaging by ASL has shown promise in various diseases of the CNS. Given that ASL does not require intravenous administration of a gadolinium-based contrast agent, it may be of particular interest for investigations in pediatric cohorts, patients with impaired kidney function, patients with relevant allergies, or patients that undergo serial MRI for clinical indications such as disease monitoring. KEY POINTS · ASL is an MRI technique that uses labeled blood-water as an endogenous tracer for brain perfusion imaging.. · It allows the assessment of CBF without the need for administration of a gadolinium-based contrast agent.. · CBF quantification by ASL has been used in several pathologies including brain tumors or neurodegenerative diseases.. · Vessel-selective ASL methods can provide brain perfusion territory mapping in cerebrovascular diseases.. · ASL may be of particular interest in patient cohorts with caveats concerning gadolinium administration..
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Moritz Hernandez Petzsche
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Lorenzo Nigris
- cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Corinna Börner
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michaela Bonfert
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria Berndt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg Grön
- Department of Psychiatry and Psychotherapy III, University Hospital Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, Ulm, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Inga K Koerte
- cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, United States
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, United States
| | - Hans Liebl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
- MoMan - Center for Translational Imaging, University Hospital Ulm, Ulm, Germany
- i2SouI - Innovative Imaging in Surgical Oncology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- MoMan - Center for Translational Imaging, University Hospital Ulm, Ulm, Germany
- i2SouI - Innovative Imaging in Surgical Oncology, University Hospital Ulm, Ulm, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Market DACH, Philips GmbH, Hamburg, Germany
| |
Collapse
|
10
|
Li ML, Zhang F, Chen YY, Luo HY, Quan ZW, Wang YF, Huang LT, Wang JH. A state-of-the-art review of functional magnetic resonance imaging technique integrated with advanced statistical modeling and machine learning for primary headache diagnosis. Front Hum Neurosci 2023; 17:1256415. [PMID: 37746052 PMCID: PMC10513061 DOI: 10.3389/fnhum.2023.1256415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Primary headache is a very common and burdensome functional headache worldwide, which can be classified as migraine, tension-type headache (TTH), trigeminal autonomic cephalalgia (TAC), and other primary headaches. Managing and treating these different categories require distinct approaches, and accurate diagnosis is crucial. Functional magnetic resonance imaging (fMRI) has become a research hotspot to explore primary headache. By examining the interrelationships between activated brain regions and improving temporal and spatial resolution, fMRI can distinguish between primary headaches and their subtypes. Currently the most commonly used is the cortical brain mapping technique, which is based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). This review sheds light on the state-of-the-art advancements in data analysis based on fMRI technology for primary headaches along with their subtypes. It encompasses not only the conventional analysis methodologies employed to unravel pathophysiological mechanisms, but also deep-learning approaches that integrate these techniques with advanced statistical modeling and machine learning. The aim is to highlight cutting-edge fMRI technologies and provide new insights into the diagnosis of primary headaches.
Collapse
Affiliation(s)
- Ming-Lin Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Yang Chen
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Family Medicine, Liaoning Health Industry Group Fukuang General Hospital, Fushun, Liaoning, China
| | - Han-Yong Luo
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zi-Wei Quan
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Fei Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Karsan N, Goadsby PJ. Neuroimaging in the pre-ictal or premonitory phase of migraine: a narrative review. J Headache Pain 2023; 24:106. [PMID: 37563570 PMCID: PMC10416375 DOI: 10.1186/s10194-023-01617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The premonitory phase, or prodrome, of migraine, provides valuable opportunities to study attack initiation and for treating the attack before headache starts. Much that has been learned about this phase in recent times has come from the outcomes of functional imaging studies. This review will summarise these studies to date and use their results to provide some feasible insights into migraine neurobiology. MAIN BODY The ability to scan repeatedly a patient without radiation and with non-invasive imaging modalities, as well as the recognition that human experimental migraine provocation compounds, such as nitroglycerin (NTG) and pituitary adenylate cyclase activating polypeptide (PACAP), can trigger typical premonitory symptoms (PS) and migraine-like headache in patients with migraine, have allowed feasible and reproducible imaging of the premonitory phase using NTG. Some studies have used serial scanning of patients with migraine to image the migraine cycle, including the 'pre-ictal' phase, defined by timing to headache onset rather than symptom phenotype. Direct observation and functional neuroimaging of triggered PS have also revealed compatible neural substrates for PS in the absence of headache. Various imaging methods including resting state functional MRI (rsfMRI), arterial spin labelling (ASL), positron emission tomography (PET) and diffusion tensor imaging (DTI) have been used. The results of imaging the spontaneous and triggered premonitory phase have been largely consistent and support a theory of central migraine attack initiation involving brain areas such as the hypothalamus, midbrain and limbic system. Early dysfunctional pain, sensory, limbic and homeostatic processing via monoaminergic and peptidergic neurotransmission likely manifests in the heterogeneous PS phenotype. CONCLUSION Advances in human migraine research, including the use of functional imaging techniques lacking radiation or radio-isotope exposure, have led to an exciting opportunity to study the premonitory phase using repeated measures imaging designs. These studies have provided novel insights into attack initiation, migraine neurochemistry and therapeutic targets. Emerging migraine-specific therapies, such as those targeting calcitonin gene-related peptide (CGRP), are showing promise acutely when taken during premonitory phase to reduce symptoms and prevent subsequent headache. Therapeutic research in this area using PS for headache onset prediction and early treatment is likely to grow in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK.
| | - Peter J Goadsby
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
12
|
Toprak K, Kaplangöray M, Memioglu T, İnanır M, Biçer A, Demirbağ R, Erdoğdu H. The Relationship Between Nitrate-Induced Headache and -Blood Viscosity: An Observational Prospective Study. J Cardiovasc Pharmacol 2023; 82:162-168. [PMID: 37314267 DOI: 10.1097/fjc.0000000000001443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Nitrates are one of the most prescribed medications in the treatment of angina pectoris today. Headache is the most common side effect of nitrates, and there is limited prospective data on the determinants of this effect. Our aim in this study is to open a foresight window for clinicians in clinical practice by explaining the possible relationship between nitrate-induced headache and whole-blood viscosity (WBV). After coronary revascularization treatment, 869 patients with angina who were prescribed nitrate preparations were divided into groups according to the development of headache or not and categorized according to the 4-grade scale level. Those who had no headache during nitrate use were graded as grade 0, those who felt mild headache were grade 1, those who felt moderate headache were grade 2, and those who described severe headache were graded as grade 3. The groups were compared according to WBV values. A total of 869 participants were included in the study. Most patients (82.1%) experienced some level of headache. Headache severity correlated with both WBV at high shear rate (r = 0.657; P < 0.001) and WBV at low shear rate (r = 0.687; P < 0.001). In multivariate analysis, WBV was determined as an independent predictor of headache experience. WBV predicted nitrate-induced headache with 75% sensitivity and 75% specificity at high shear rate and 77% sensitivity and 77% specificity at low shear rate. WBV seems to be one of the major determinants for nitrate-induced headache. WBV may be a guide for initiating alternative antianginal drugs without prescribing nitrates to the patient to increase patient compliance.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mustafa Kaplangöray
- Cardiology Department, Faculty of Medicine, Şeyh Edebali University, Bilecik, Turkey
| | - Tolga Memioglu
- Cardiology Department, Medical Faculty, Bolu Abant Izzet Baysal University, Bolu, Turkey; and
| | - Mehmet İnanır
- Cardiology Department, Medical Faculty, Bolu Abant Izzet Baysal University, Bolu, Turkey; and
| | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Hamza Erdoğdu
- Department of Biostatistics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
13
|
Russo A, Silvestro M, Tessitore A, Orologio I, De Rosa AP, De Micco R, Tedeschi G, Esposito F, Cirillo M. Arterial spin labeling MRI applied to migraine: current insights and future perspectives. J Headache Pain 2023; 24:71. [PMID: 37322466 DOI: 10.1186/s10194-023-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Advanced neuroimaging techniques have extensively contributed to elucidate the complex mechanisms underpinning the pathophysiology of migraine, a neurovascular disorder characterized by episodes of headache associated with a constellation of non-pain symptoms. The present manuscript, summarizing the most recent progresses of the arterial spin labelling (ASL) MRI techniques and the most significant findings from ASL studies conducted in migraine, is aimed to clarify how ASL investigations are contributing to the evolving insight on migraine pathophysiology and their putative role in migraine clinical setting. ASL techniques, allowing to quantitatively demonstrate changes in cerebral blood flow (CBF) both during the attacks and in the course of interictal period, could represent the melting point between advanced neuroimaging investigations, conducted with pure scientific purposes, and conventional neuroimaging approaches, employed in the diagnostic decision-making processes. MAIN BODY Converging ASL evidences have demonstrated that abnormal CBF, exceeding the boundaries of a single vascular territory, with biphasic trend dominated by an initial hypoperfusion (during the aura phenomenon but also in the first part of the headache phase) followed by hyperperfusion, characterizes migraine with aura attack and can represent a valuable clinical tool in the differential diagnosis from acute ischemic strokes and epileptic seizures. Studies conducted during migraine without aura attacks are converging to highlight the involvement of dorsolateral pons and hypothalamus in migraine pathophysiology, albeit not able to disentangle their role as "migraine generators" from mere attack epiphenomenon. Furthermore, ASL findings tend to support the presence of perfusion abnormalities in brain regions known to be involved in aura ignition and propagation as well as in areas involved in multisensory processing, in both patients with migraine with aura and migraine without aura. CONCLUSION Although ASL studies have dramatically clarified quality and timing of perfusion abnormalities during migraine with aura attacks, the same cannot be said for perfusion changes during migraine attacks without aura and interictal periods. Future studies with more rigorous methodological approaches in terms of study protocol, ASL technique and sample selection and size are mandatory to exploit the possibility of better understanding migraine pathophysiology and identifying neuroimaging biomarkers of each migraine phase in different migraine phenotypes.
Collapse
Affiliation(s)
- Antonio Russo
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pasquale De Rosa
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa De Micco
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
14
|
Karsan N, Bose RP, O'Daly O, Zelaya F, Goadsby PJ. Regional cerebral perfusion during the premonitory phase of triggered migraine: A double-blind randomized placebo-controlled functional imaging study using pseudo-continuous arterial spin labeling. Headache 2023; 63:771-787. [PMID: 37337681 DOI: 10.1111/head.14538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To identify changes in regional cerebral blood flow (CBF) associated with premonitory symptoms (PS) of nitroglycerin (NTG)-triggered migraine attacks. BACKGROUND PS could provide insights into attack initiation and alterations in neuronal function prior to headache onset. METHODS We undertook a functional imaging study using a double-blind placebo-controlled randomized approach in patients with migraine who spontaneously experienced PS, and in whom PS and migraine-like headache could be induced by administration of NTG. All study visits took place in a dedicated clinical research facility housing a monitoring area with clinical beds next to a 3Tesla magnetic resonance imaging scanner. Fifty-three patients with migraine were enrolled; imaging on at least one triggered visit was obtained from 25 patients, with 21 patients completing the entire imaging protocol including a placebo visit. Whole brain CBF maps were acquired using 3D pseudo-continuous arterial spin labeling (3D pCASL). RESULTS The primary outcome was that patients with migraine not taking preventive treatment (n = 12) displayed significant increases in CBF in anterior cingulate cortex, caudate, midbrain, lentiform, amygdala and hippocampus (p < 0.05 family-wise error-corrected) during NTG-induced PS. A separate region of interest analysis revealed significant CBF increases in the region of the hypothalamus (p = 0.006, effect size 0.77). Post hoc analyses revealed significant reductions in CBF over the occipital cortices in participants with a history of migraine with underlying aura (n = 14). CONCLUSIONS We identified significant regional CBF changes associated with NTG-induced PS, consistent with other investigations and with novel findings, withstanding statistical comparison against placebo. These findings were not present in patients who continually took preventive medication. Additional findings were identified only in participants who experience migraine with aura. Understanding this biological and treatment-related heterogeneity is vital to evaluating functional imaging outcomes in migraine research.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
| | - Ray Pyari Bose
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
15
|
Gu HW, Zhang GF, Liu PM, Pan WT, Tao YX, Zhou ZQ, Yang JJ. Contribution of activating lateral hypothalamus-lateral habenula circuit to nerve trauma-induced neuropathic pain in mice. Neurobiol Dis 2023; 182:106155. [PMID: 37182721 DOI: 10.1016/j.nbd.2023.106155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023] Open
Abstract
Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity. LH glutamatergic neurons are activated and display enhanced responses to normally non-noxious stimuli following chronic constriction injury. Chemogenetic inhibition of LH glutamatergic neurons or excitatory LH-LHb circuit blocked CCI-induced nociceptive hypersensitivity. Activation of the LH-LHb circuit led to augmented responses to mechanical and thermal stimuli in mice without nerve injury. These findings suggest that LH neurons and their triggered LH-LHb circuit participate in central mechanisms underlying neuropathic pain and may be the targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.
| |
Collapse
|
16
|
Gu L, Shu H, Wang Y. Functional brain alterations in migraine patients: an activation likelihood estimation study. Neurol Res 2023:1-8. [PMID: 37019685 DOI: 10.1080/01616412.2023.2199377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND Previous functional magnetic resonance imaging (fMRI) studies reported inconsistent results for comparison in brain activation between migraine patients and healthy controls (HC). Thus, activation likelihood estimation (ALE) method, a powerful voxel-based technique, was used to explore the concordant functional brain changes in migraine patients. METHODS Studies published before October 2022 were searched in the following databases (PubMed, Web of Science and Google Scholar). RESULTS Migraine without aura (MWoA) patients showed reduced amplitude of low-frequency fluctuations (ALFF) in right lingual gyrus, the left posterior cingulate and the right precuneus (PCUN), compared to HC. Migraine patients showed increased ALFF in the right claustrum, the left caudate, the left insula and the right parahippocampal gyrus, compared to HC. MWoA patients showed reduced regional homogeneity (ReHo) in the right culmen, compared to HC. In addition, migraine patients showed increased ReHo in the bilateral thalamus, compared to HC. MWoA patients showed reduced whole-brain functional connectivity (FC) in the left middle occipital gyrus and the right superior parietal lobule, compared to HC. In addition, migraine patients showed increased whole-brain FC in the left middle temporal gyrus (MTG), the right inferior frontal gyrus, the right superior temporal gyrus (STG) and the left inferior temporal gyrus, compared to HC. CONCLUSIONS ALE analysis identified consistent functional changes in widespread regions, especially in cingulate gyrus, basal ganglia region and frontal cortex in migraine. These regions involve in pain processing, cognitive dysfunction and emotional problems. These results may provide important clues for clarifying the pathophysiology of migraine.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Shu
- Department of Neurology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Schramm S, Börner C, Reichert M, Baum T, Zimmer C, Heinen F, Bonfert MV, Sollmann N. Functional magnetic resonance imaging in migraine: A systematic review. Cephalalgia 2023; 43:3331024221128278. [PMID: 36751858 DOI: 10.1177/03331024221128278] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Migraine is a highly prevalent primary headache disorder. Despite a high burden of disease, key disease mechanisms are not entirely understood. Functional magnetic resonance imaging is an imaging method using the blood-oxygen-level-dependent signal, which has been increasingly used in migraine research over recent years. This systematic review summarizes recent findings employing functional magnetic resonance imaging for the investigation of migraine. METHODS We conducted a systematic search and selection of functional magnetic resonance imaging applications in migraine from April 2014 to December 2021 (PubMed and references of identified articles according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines). Methodological details and main findings were extracted and synthesized. RESULTS Out of 224 articles identified, 114 were included after selection. Repeatedly emerging structures of interest included the insula, brainstem, limbic system, hypothalamus, thalamus, and functional networks. Assessment of functional brain changes in response to treatment is emerging, and machine learning has been used to investigate potential functional magnetic resonance imaging-based markers of migraine. CONCLUSIONS A wide variety of functional magnetic resonance imaging-based metrics were found altered across the brain for heterogeneous migraine cohorts, partially correlating with clinical parameters and supporting the concept to conceive migraine as a brain state. However, a majority of findings from previous studies have not been replicated, and studies varied considerably regarding image acquisition and analyses techniques. Thus, while functional magnetic resonance imaging appears to have the potential to advance our understanding of migraine pathophysiology, replication of findings in large representative datasets and precise, standardized reporting of clinical data would likely benefit the field and further increase the value of observations.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
18
|
Cai M, Liu J, Wang X, Ma J, Ma L, Liu M, Zhao Y, Wang H, Fu D, Wang W, Xu Q, Guo L, Liu F. Spontaneous brain activity abnormalities in migraine: A meta-analysis of functional neuroimaging. Hum Brain Mapp 2023; 44:571-584. [PMID: 36129066 PMCID: PMC9842892 DOI: 10.1002/hbm.26085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Neuroimaging studies have demonstrated that migraine is accompanied by spontaneous brain activity alterations in specific regions. However, these findings are inconsistent, thus hindering our understanding of the potential neuropathology. Hence, we performed a quantitative whole-brain meta-analysis of relevant resting-state functional imaging studies to identify brain regions consistently involved in migraine. A systematic search of studies that investigated the differences in spontaneous brain activity patterns between migraineurs and healthy controls up to April 2022 was conducted. We then performed a whole-brain voxel-wise meta-analysis using the anisotropic effect size version of seed-based d mapping software. Complementary analyses including jackknife sensitivity analysis, heterogeneity test, publication bias test, subgroup analysis, and meta-regression analysis were conducted as well. In total, 24 studies that reported 31 datasets were finally eligible for our meta-analysis, including 748 patients and 690 controls. In contrast to healthy controls, migraineurs demonstrated consistent and robust decreased spontaneous brain activity in the angular gyrus, visual cortex, and cerebellum, while increased activity in the caudate, thalamus, pons, and prefrontal cortex. Results were robust and highly replicable in the following jackknife sensitivity analysis and subgroup analysis. Meta-regression analyses revealed that a higher visual analog scale score in the patient sample was associated with increased spontaneous brain activity in the left thalamus. These findings provided not only a comprehensive overview of spontaneous brain activity patterns impairments, but also useful insights into the pathophysiology of dysfunction in migraine.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xuexiang Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
- Department of RadiologyTianjin Hongqiao HospitalTianjinChina
| | - Juanwei Ma
- Department of RadiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Dianxun Fu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Wenqin Wang
- School of Mathematical SciencesTiangong UniversityTianjinChina
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
19
|
Gollion C, De Icco R, Dodick DW, Ashina H. The premonitory phase of migraine is due to hypothalamic dysfunction: revisiting the evidence. J Headache Pain 2022; 23:158. [PMID: 36514014 PMCID: PMC9745986 DOI: 10.1186/s10194-022-01518-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To critically appraise the evidence for and against premonitory symptoms in migraine being due to hypothalamic dysfunction. DISCUSSION Some premonitory symptoms (e.g. fatigue, mood changes, yawning, and food craving) are associated with the physiologic effects of neurotransmitters such as orexins, neuropeptide Y, and dopamine; all of which are expressed in hypothalamic neurons. In rodents, electrophysiologic recordings have shown that these neurotransmitters modulate nociceptive transmission at the level of second-order neurons in the trigeminocervical complex (TCC). Additional insights have been gained from neuroimaging studies that report hypothalamic activation during the premonitory phase of migraine. However, the available evidence is limited by methodologic issues, inconsistent reporting, and a lack of adherence to ICHD definitions of premonitory symptoms (or prodromes) in human experimental studies. CONCLUSIONS The current trend to accept that premonitory symptoms are due to hypothalamic dysfunction might be premature. More rigorously designed studies are needed to ascertain whether the neurobiologic basis of premonitory symptoms is due to hypothalamic dysfunction or rather reflects modulatory input to the trigeminovascular system from several cortical and subcortical areas. On a final note, the available epidemiologic data raises questions as to whether the existence of premonitory symptoms and even more so a distinct premonitory phase is a true migraine phenomenon. Video recording of the debate held at the 1st International Conference on Advances in Migraine Sciences (ICAMS 2022, Copenhagen, Denmark) is available at: https://www.youtube.com/watch?v=d4Y2x0Hr4Q8 .
Collapse
Affiliation(s)
- Cedric Gollion
- Danish Headache Center, Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Roberto De Icco
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hakan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation / Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Chen ZH, Cui YL, Sun JT, Li YT, Zhang C, Zhang YM, Li ZY, Shang YX, Ni MH, Hu B, Yan LF, Wang W. The brain structure and function abnormalities of migraineurs: A systematic review and neuroimaging meta-analysis. Front Neurol 2022; 13:1022793. [PMID: 36419535 PMCID: PMC9676357 DOI: 10.3389/fneur.2022.1022793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023] Open
Abstract
Objectives To quantitatively summarize the specific changes in brain structure and function in migraine patients. Methods A literature screening of migraine was conducted from inception to Sept 1, 2022, in PubMed, Web of Science, Cochrane Library, and Medline databases using the keyword combination of "migraine and MRI." Activation likelihood estimation (ALE) was performed to assess the differentiation of functional connectivity (FC), regional homogeneity (ReHo), and gray matter volume (GMV) of migraine patients. Results Eleven voxel-based morphometry (VBM) studies and 25 resting-state fMRI (rs-fMRI) studies (16 FC and 9 ReHo studies) were included in this study. ALE analysis revealed the ReHo increase in the brainstem and left thalamus, with no decreased area. Neither increased nor decreased regions were detected in FC and GMV of migraine patients. Conclusions The left thalamus and brainstem were the significantly activated regions of migraine. It is a meaningful insights into the pathophysiology of migraine. The consistent alterated brain areas of morphometrical and functional in migraine patients were far from reached based on current studies.
Collapse
Affiliation(s)
- Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Radiology, Gansu Hospital of Chinese Armed Police Force, Lanzhou, China
| | - Yu-Ling Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Radiology, The First Affiliated Hospital, Xi'an Jiatong University, Xi'an, China
| | - Jing-Ting Sun
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang City, China
| | - Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yang-Ming Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang City, China
| |
Collapse
|
21
|
Porcaro C, Di Renzo A, Tinelli E, Parisi V, Di Lorenzo C, Caramia F, Fiorelli M, Giuliani G, Cioffi E, Seri S, Di Piero V, Pierelli F, Di Lorenzo G, Coppola G. A Hypothalamic Mechanism Regulates the Duration of a Migraine Attack: Insights from Microstructural and Temporal Complexity of Cortical Functional Networks Analysis. Int J Mol Sci 2022; 23:13238. [PMID: 36362026 PMCID: PMC9658908 DOI: 10.3390/ijms232113238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 07/23/2023] Open
Abstract
The role of the hypothalamus and the limbic system at the onset of a migraine attack has recently received significant interest. We analyzed diffusion tensor imaging (DTI) parameters of the entire hypothalamus and its subregions in 15 patients during a spontaneous migraine attack and in 20 control subjects. We also estimated the non-linear measure resting-state functional MRI BOLD signal's complexity using Higuchi fractal dimension (FD) and correlated DTI/fMRI findings with patients' clinical characteristics. In comparison with healthy controls, patients had significantly altered diffusivity metrics within the hypothalamus, mainly in posterior ROIs, and higher FD values in the salience network (SN). We observed a positive correlation of the hypothalamic axial diffusivity with migraine severity and FD of SN. DTI metrics of bilateral anterior hypothalamus positively correlated with the mean attack duration. Our results show plastic structural changes in the hypothalamus related to the attacks severity and the functional connectivity of the SN involved in the multidimensional neurocognitive processing of pain. Plastic changes to the hypothalamus may play a role in modulating the duration of the attack.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences and Technologies (ISTC)—National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Emanuele Tinelli
- Unit of Neuroradiology, Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | | | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Francesca Caramia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Stefano Seri
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Department of Clinical Neurophysiology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCCS—Fondazione Santa Lucia, 00179 Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| |
Collapse
|
22
|
Zhang L, Yu W, Xu M, Cui F, Song W, Yan M, Cao Z, Zhang Z. The hypothalamus may mediate migraine and ictal photophobia: evidence from Granger causality analysis. Neurol Sci 2022; 43:6021-6030. [DOI: 10.1007/s10072-022-06245-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023]
|
23
|
Mungoven TJ, Meylakh N, Macefield VG, Macey PM, Henderson LA. Alterations in brain structure associated with trigeminal nerve anatomy in episodic migraine. FRONTIERS IN PAIN RESEARCH 2022; 3:951581. [PMID: 35923273 PMCID: PMC9341524 DOI: 10.3389/fpain.2022.951581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
The pathophysiology of migraine remains to be elucidated. We have recently shown that interictal migraineurs exhibit reduced fractional anisotropy (FA) in the root entry zone of the trigeminal nerve when compared to controls, but it is not known if this altered nerve anatomy is associated with changes within the brainstem or higher cortical brain regions. Diffusion tensor imaging of the brain was used to calculate regional measures of structure, including mean diffusivity (MD), axial diffusivity (AX) and radial diffusivity (RD) in addition to voxel-based morphometry of T1-weighted anatomical images. Linear relationships between trigeminal nerve anatomy (FA) and MD throughout the brainstem and/or higher cortical regions were determined in both controls (n = 31, brainstem; n = 38, wholebrain) and interictal migraineurs (n = 32, brainstem; n = 38, wholebrain). Additionally, within the same brain areas, relationships of AX and RD with nerve FA were determined. We found that in both interictal migraine and control participants, decreasing trigeminal nerve FA was associated with significantly increased MD in brainstem regions including the spinal trigeminal nucleus and midbrain periaqueductal gray matter (PAG), and in higher brain regions such as the hypothalamus, insula, posterior cingulate, primary somatosensory and primary visual (V1) cortices. Whereas, both control and migraineur groups individually displayed significant inverse correlations between nerve FA and MD, in migraineurs this pattern was disrupted in the areas of the PAG and V1, with only the control group displaying a significant linear relationship (PAG controls r = –0.58, p = 0.003; migraineurs r = –0.25, p = 0.17 and V1 controls r = −0.52, p = 0.002; migraineurs r = –0.10, p = 0.55). Contrastingly, we found no gray matter volume changes in brainstem or wholebrain areas. These data show that overall, trigeminal nerve anatomy is significantly related to regional brain structure in both controls and migraineurs. Importantly, the PAG showed a disruption of this relationship in migraineurs suggesting that the anatomy and possibly the function of the PAG is uniquely altered in episodic migraine, which may contribute to altered orofacial pain processing in migraine.
Collapse
Affiliation(s)
- Tiffani J. Mungoven
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Vaughan G. Macefield
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Paul M. Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, CA, United States
| | - Luke A. Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
- *Correspondence: Luke A. Henderson
| |
Collapse
|
24
|
Mungoven TJ, Marciszewski KK, Macefield VG, Macey PM, Henderson LA, Meylakh N. Alterations in pain processing circuitries in episodic migraine. J Headache Pain 2022; 23:9. [PMID: 35033014 PMCID: PMC8903545 DOI: 10.1186/s10194-021-01381-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/28/2021] [Indexed: 01/13/2023] Open
Abstract
Background The precise underlying mechanisms of migraine remain unknown. Although we have previously shown acute orofacial pain evoked changes within the brainstem of individuals with migraine, we do not know if these brainstem alterations are driven by changes in higher cortical regions. The aim of this investigation is to extend our previous investigation to determine if higher brain centers display altered activation patterns and connectivity in migraineurs during acute orofacial noxious stimuli. Methods Functional magnetic resonance imaging was performed in 29 healthy controls and 25 migraineurs during the interictal and immediately (within 24-h) prior to migraine phases. We assessed activation of higher cortical areas during noxious orofacial heat stimulation using a thermode device and assessed whole scan and pain-related changes in connectivity. Results Despite similar overall pain intensity ratings between all three groups, migraineurs in the group immediately prior to migraine displayed greater activation of the ipsilateral nucleus accumbens, the contralateral ventrolateral prefrontal cortex and two clusters in the dorsolateral prefrontal cortex (dlPFC). Reduced whole scan dlPFC [Z + 44] connectivity with cortical/subcortical and brainstem regions involved in pain modulation such as the putamen and primary motor cortex was demonstrated in migraineurs. Pain-related changes in connectivity of the dlPFC and the hypothalamus immediately prior to migraine was also found to be reduced with brainstem pain modulatory areas such as the rostral ventromedial medulla and dorsolateral pons. Conclusions These data reveal that the modulation of brainstem pain modulatory areas by higher cortical regions may be aberrant during pain and these alterations in this descending pain modulatory pathway manifests exclusively prior to the development of a migraine attack.
Collapse
Affiliation(s)
- Tiffani J Mungoven
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Kasia K Marciszewski
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | | | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
25
|
Meylakh N, Henderson LA. Exploring alterations in sensory pathways in migraine. J Headache Pain 2022; 23:5. [PMID: 35021998 PMCID: PMC8903612 DOI: 10.1186/s10194-021-01371-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Migraine is a neurological disorder characterized by intense, debilitating headaches, often coupled with nausea, vomiting and sensitivity to light and sound. Whilst changes in sensory processes during a migraine attack have been well-described, there is growing evidence that even between migraine attacks, sensory abilities are disrupted in migraine. Brain imaging studies have investigated altered coupling between areas of the descending pain modulatory pathway but coupling between somatosensory processing regions between migraine attacks has not been properly studied. The aim of this study was to determine if ongoing functional connectivity between visual, auditory, olfactory, gustatory and somatosensory cortices are altered during the interictal phase of migraine. Methods To explore the neural mechanisms underpinning interictal changes in sensory processing, we used functional magnetic resonance imaging to compare resting brain activity patterns and connectivity in migraineurs between migraine attacks (n = 32) and in healthy controls (n = 71). Significant differences between groups were determined using two-sample random effects procedures (p < 0.05, corrected for multiple comparisons, minimum cluster size 10 contiguous voxels, age and gender included as nuisance variables). Results In the migraine group, increases in infra-slow oscillatory activity were detected in the right primary visual cortex (V1), secondary visual cortex (V2) and third visual complex (V3), and left V3. In addition, resting connectivity analysis revealed that migraineurs displayed significantly enhanced connectivity between V1 and V2 with other sensory cortices including the auditory, gustatory, motor and somatosensory cortices. Conclusions These data provide evidence for a dysfunctional sensory network in pain-free migraine patients which may be underlying altered sensory processing between migraine attacks.
Collapse
Affiliation(s)
- Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
26
|
Zhang S, Li H, Xu Q, Wang C, Li X, Sun J, Wang Y, Sun T, Wang Q, Zhang C, Wang J, Jia X, Sun X. Regional homogeneity alterations in multi-frequency bands in tension-type headache: a resting-state fMRI study. J Headache Pain 2021; 22:129. [PMID: 34711175 PMCID: PMC8555254 DOI: 10.1186/s10194-021-01341-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES In this study, we aimed to investigate the spontaneous neural activity in the conventional frequency band (0.01-0.08 Hz) and two sub-frequency bands (slow-4: 0.027-0.073 Hz, and slow-5: 0.01-0.027 Hz) in tension-type headache (TTH) patients with regional homogeneity (ReHo) analyses. METHODS Thirty-eight TTH patients and thirty-eight healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (RS-fMRI) scanning to investigate abnormal spontaneous neural activity using ReHo analysis in conventional frequency band (0.01-0.08 Hz) and two sub-frequency bands (slow-4: 0.027-0.073 Hz and slow-5: 0.01-0.027 Hz). RESULTS In comparison with the HC group, patients with TTH exhibited ReHo increases in the right medial superior frontal gyrus in the conventional frequency band (0.01-0.08 Hz). The between group differences in the slow-5 band (0.01-0.027 Hz) highly resembled the differences in the conventional frequency band (0.01-0.08 Hz); even the voxels with increased ReHo were spatially more extensive, including the right medial superior frontal gyrus and the middle frontal gyrus. In contrast, no region showed significant between-group differences in the slow-4 band (0.027-0.073 Hz). The correlation analyses showed no correlation between the ReHo values in TTH patients and VAS scores, course of disease and number of seizures per month in conventional band (0.01-0.08 Hz), slow-4 band (0.027-0.073 Hz), as well as in slow-5 band (0.01-0.027 Hz). CONCLUSIONS The results showed that the superior frontal gyrus and middle frontal gyrus were involved in the integration and processing of pain signals. In addition, the abnormal spontaneous neural activity in TTH patients was frequency-specific. Namely, slow-5 band (0.01-0.027 Hz) might contain additional useful information in comparison to slow-4 band (0.027-0.073 Hz). This preliminary exploration might provide an objective imaging basis for the understanding of the pathophysiological mechanism of TTH.
Collapse
Affiliation(s)
- Shuxian Zhang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Qinyan Xu
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Chao Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yaqi Wang
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong Province, China
| | - Tong Sun
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong Province, China
| | - Qianqian Wang
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Chengcheng Zhang
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, China
| | - Jili Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, China
| | - Xize Jia
- Centre for Cognition and Brain disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Xihe Sun
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
27
|
Mungoven TJ, Henderson LA, Meylakh N. Chronic Migraine Pathophysiology and Treatment: A Review of Current Perspectives. FRONTIERS IN PAIN RESEARCH 2021; 2:705276. [PMID: 35295486 PMCID: PMC8915760 DOI: 10.3389/fpain.2021.705276] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic migraine is a disabling neurological disorder that imposes a considerable burden on individual and socioeconomic outcomes. Chronic migraine is defined as headaches occurring on at least 15 days per month with at least eight of these fulfilling the criteria for migraine. Chronic migraine typically evolves from episodic migraine as a result of increasing attack frequency and/or several other risk factors that have been implicated with migraine chronification. Despite this evolution, chronic migraine likely develops into its own distinct clinical entity, with unique features and pathophysiology separating it from episodic migraine. Furthermore, chronic migraine is characterized with higher disability and incidence of comorbidities in comparison to episodic migraine. While existing migraine studies primarily focus on episodic migraine, less is known about chronic migraine pathophysiology. Mounting evidence on aberrant alterations suggest that pronounced functional and structural brain changes, central sensitization and neuroinflammation may underlie chronic migraine mechanisms. Current treatment options for chronic migraine include risk factor modification, acute and prophylactic therapies, evidence-based treatments such as onabotulinumtoxinA, topiramate and newly approved calcitonin gene-related peptide or receptor targeted monoclonal antibodies. Unfortunately, treatments are still predominantly ineffective in aborting migraine attacks and decreasing intensity and frequency, and poor adherence and compliance with preventative medications remains a significant challenge. Novel emerging chronic migraine treatments such as neuromodulation offer promising therapeutic approaches that warrant further investigation. The aim of this narrative review is to provide an update of current knowledge and perspectives regarding chronic migraine background, pathophysiology, current and emerging treatment options with the intention of facilitating future research into this debilitating and largely indeterminant disorder.
Collapse
Affiliation(s)
| | | | - Noemi Meylakh
- Department of Anatomy and Histology, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Zhang D, Huang X, Mao C, Chen Y, Miao Z, Liu C, Xu C, Wu X, Yin X. Assessment of normalized cerebral blood flow and its connectivity with migraines without aura during interictal periods by arterial spin labeling. J Headache Pain 2021; 22:72. [PMID: 34261444 PMCID: PMC8278584 DOI: 10.1186/s10194-021-01282-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine constitutes a global health burden, and its pathophysiology is not well-understood; research evaluating cerebral perfusion and altered blood flow between brain areas using non-invasive imaging techniques, such as arterial spin labeling, have been scarce. This study aimed to assess cerebral blood flow (CBF) and its connectivity of migraine. METHODS This study enrolled 40 patients with episodic migraine without aura (MwoA), as well as 42 healthy patients as control (HC). Two groups of normalized CBF and CBF connectivity were compared, and the relationship between CBF variation and clinical scale assessment was further evaluated. RESULTS In comparison to HC subjects, MwoA patients exhibited higher CBF in the right middle frontal orbital gyrus (ORBmid.R) and the right middle frontal gyrus, while that in Vermis_6 declined. The increased CBF of ORBmid.R was positively correlated with both the Visual Light Sensitivity Questionnaire-8 (VLSQ-8) and the monthly attack frequency score. In MwoA, significantly decreased CBF connectivity was detected between ORBmid.R and the left superior frontal gyrus, the right putamen, the right caudate, as well as the right angular gyrus. In addition, increased CBF connectivity was observed between the left calcarine cortex and ORBmid.R. CONCLUSIONS Our results indicate that migraine patients exhibit abnormalities in regional CBF and feature CBF connection defects at the resting state. The affected areas involve information perception, information integration, and emotional, pain and visual processing. Our findings might provide important clues for the pathophysiology of migraine.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Cunnan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Yuchen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Chunmei Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Chenjie Xu
- Department of Pain Treatment, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
29
|
Xu SY, Li HJ, Huang J, Li XP, Li CX. Migraine with Brainstem Aura Accompanied by Disorders of Consciousness. J Pain Res 2021; 14:1119-1127. [PMID: 33907459 PMCID: PMC8068516 DOI: 10.2147/jpr.s305483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 12/24/2022] Open
Abstract
Migraine with brainstem aura (MBA) accompanied by disorders of consciousness (DOC) is a rare subtype of migraine. The pathophysiology of MBA with DOC has not been elucidated yet. Some patients have a family history of migraine, and women are more affected than men. The aura symptoms are diverse; however, when MBA is combined with DOC, the clinical manifestations are more complicated. Coma is the most common clinical manifestation. The overall duration of the patient’s DOC is short and can often return to normal within half an hour. Headache often occurs after regaining consciousness and can also occur at the same time as DOC. The most common headache is located at the occipital region. Although DOC is reversible, considering the current small number of cases, we still need to improve our understanding of the disease to avoid misdiagnosis. The MBA patient’s electroencephalogram and cerebral blood flow perfusion may have transient changes and may return to normal in the interictal period or after the DOC. Although triptans have traditionally been contraindicated in MBA under drug instructions, the evidence of basilar artery constriction, as postulated in MBA, is lacking. Lasmiditan is currently the first and only 5-HT 1F receptor agonist approved by the Food and Drug Administration. The calcitonin gene-related peptide receptor antagonists and monoclonal antibody therapies may be the most promising for future consideration. Here, the pathophysiology, clinical manifestations, diagnostic tools, and treatment progress for MBA with DOC are reviewed.
Collapse
Affiliation(s)
- Sui-Yi Xu
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, People's Republic of China
| | - Hui-Juan Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, People's Republic of China
| | - Jing Huang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, People's Republic of China
| | - Xiu-Ping Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, People's Republic of China
| | - Chang-Xin Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, People's Republic of China
| |
Collapse
|
30
|
Edvinsson L, Haanes KA. Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 2021; 42:217-225. [PMID: 33495027 DOI: 10.1016/j.tips.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Primary headaches are one of the most common conditions; migraine being most prevalent. Recent work on the pathophysiology of migraine suggests a mismatch in the communication or tuning of the trigeminovascular system, leading to sensitization and the release of calcitonin gene-related peptide (CGRP). In the current Opinion, we use the up-to-date molecular understanding of mechanisms behind migraine pain, to provide novel aspects on how to modify the system and for the development of future treatments; acute as well as prophylactic. We explore the distribution and the expression of neuropeptides themselves, as well as certain ion channels, and most importantly how they may act in concert as modulators of excitability of both the trigeminal C neurons and the Aδ neurons.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
31
|
Contextual experience modifies functional connectome indices of topological strength and efficiency. Sci Rep 2020; 10:19843. [PMID: 33199790 PMCID: PMC7670469 DOI: 10.1038/s41598-020-76935-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study we assessed the effect on functional connectivity of a familiar contextual stimulus presented 10 min prior to sedation for imaging. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Rats were imaged at 11.1 T and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (after excluding 144 diagonal edges). Our results show substantial changes in network topology in response to the familiar (context). Presentation of the familiar context, both in the absence and presence of the social stimulus, strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. We propose that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.
Collapse
|
32
|
Quadros MA, Granadeiro M, Ruiz-Tagle A, Maruta C, Gil-Gouveia R, Martins IP. Cognitive performance along the migraine cycle: A negative exploratory study. CEPHALALGIA REPORTS 2020. [DOI: 10.1177/2515816320951136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Migraine patients frequently report cognitive difficulties in the proximity and during migraine attacks. We performed an exploratory comparison of executive functioning across the four stages of the migraine cycle. Consecutive patients with episodic migraine undertook cognitive tests for attention, processing speed, set-shifting, and inhibitory control. Performance was compared between patients in different migraine stages, controlling for attack frequency and prophylactic medication. One hundred forty-three patients (142 women, average age 36.2 ± 9.9 years) were included, 28 preictal (≤48 h before the attack), 21 ictal (during the attack), 18 postictal (≤24 h after attack), and 76 interictal. Test performance (age and literacy adjusted z-scores) was not significantly different across migraine phases, despite a tendency for a decline before the attack. This negative study shows that cognitive performance fluctuates as patients approach the attack. To control for individual variability, this comparison needs to be better characterized longitudinally with a within-patient design.
Collapse
Affiliation(s)
- Maria Ana Quadros
- Laboratório de Estudos de Linguagem, Department of Clinical Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Marta Granadeiro
- Laboratório de Estudos de Linguagem, Department of Clinical Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Amparo Ruiz-Tagle
- Laboratório de Estudos de Linguagem, Department of Clinical Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Carolina Maruta
- Laboratório de Estudos de Linguagem, Department of Clinical Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
- Católica Research Centre for Psychological Family and Social Wellbeing, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Headache Outpatient Clinic, Department of Neurosciences, University Hospital de SantaMaria, Lisboa, Portugal
| | - Isabel Pavão Martins
- Laboratório de Estudos de Linguagem, Department of Clinical Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
- Headache Outpatient Clinic, Department of Neurosciences, University Hospital de SantaMaria, Lisboa, Portugal
| |
Collapse
|