1
|
Park S, Jung H, Han SW, Lee SH, Sohn JH. Differences in Neuropathology between Nitroglycerin-Induced Mouse Models of Episodic and Chronic Migraine. Int J Mol Sci 2024; 25:3706. [PMID: 38612517 PMCID: PMC11011425 DOI: 10.3390/ijms25073706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple animal models of migraine have been used to develop new therapies. Understanding the transition from episodic (EM) to chronic migraine (CM) is crucial. We established models mimicking EM and CM pain and assessed neuropathological differences. EM and CM models were induced with single NTG or multiple injections over 9 days. Mechanical hypersensitivity was assessed. Immunofluorescence utilized c-Fos, NeuN, and Iba1. Proinflammatory and anti-inflammatory markers were analyzed. Neuropeptides (CGRP, VIP, PACAP, and substance P) were assessed. Mechanical thresholds were similar. Notable neuropathological distinctions were observed in Sp5C and ACC. ACC showed increased c-Fos and NeuN expression in CM (p < 0.001) and unchanged in EM. Sp5C had higher c-Fos and NeuN expression in EM (p < 0.001). Iba1 was upregulated in Sp5C of EM and ACC of CM (p < 0.001). Proinflammatory markers were strongly expressed in Sp5C of EM and ACC of CM. CGRP expression was elevated in both regions and was higher in CM. VIP exhibited higher levels in the Sp5C of EM and ACC of CM, whereas PACAP and substance P were expressed in the Sp5C in both models. Despite similar thresholds, distinctive neuropathological differences in Sp5C and ACC between EM and CM models suggest a role in the EM to CM transformation.
Collapse
Affiliation(s)
- Songyi Park
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
| | - Harry Jung
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
| | - Sang-Won Han
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Sang-Hwa Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.P.); (H.J.); (S.-W.H.); (S.-H.L.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
2
|
Wu S, Ren X, Zhu C, Wang W, Zhang K, Li Z, Liu X, Wang Y. A c-Fos activation map in nitroglycerin/levcromakalim-induced models of migraine. J Headache Pain 2022; 23:128. [PMID: 36180824 PMCID: PMC9524028 DOI: 10.1186/s10194-022-01496-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic migraine is a common and highly disabling disorder. Functional MRI has indicated that abnormal brain region activation is linked with chronic migraine. Drugs targeting the calcitonin gene-related peptide (CGRP) or its receptor have been reported to be efficient for treating chronic migraine. The CGRP signaling was also shared in two types of chronic migraine models (CMMs). However, it remains unclear whether the activation of specific brain regions could contribute to persistent behavioral sensitization, and CGRP receptor antagonists relieve migraine-like pain in CMMs by altering specific brain region activation. Therefore, it’s of great interest to investigate brain activation pattern and the effect of olcegepant (a CGRP receptor-specific antagonist) treatment on alleviating hyperalgesia by altering brain activation in two CMMs, and provide a reference for future research on neural circuits. Methods Repeated administration of nitroglycerin (NTG) or levcromakalim (LEV) was conducted to stimulate human migraine-like pain and establish two types of CMMs in mice. Mechanical hypersensitivity was evaluated by using the von Frey filament test. Then, we evaluated the activation of different brain regions with c-Fos and NeuN staining. Olcegepant was administered to explore its effect on mechanical hyperalgesia and brain region activation. Results In two CMMs, acute and basal mechanical hyperalgesia was observed, and olcegepant alleviated mechanical hyperalgesia. In the NTG-induced CMM, the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and the caudal part of the spinal trigeminal nucleus (Sp5c) showed a significant increase of c-Fos expression in the NTG group (p < 0.05), while pre-treatment with olcegepant reduced c-Fos expression compared with NTG group (p < 0.05). No significant difference of c-Fos expression was found in the paraventricular thalamic nucleus (PVT) and ventrolateral periaqueductal gray (vlPAG) between the vehicle control and NTG group (p > 0.05). In the LEV-induced CMM, mPFC, PVT, and Sp5c showed a significant increase of c-Fos expression between vehicle control and LEV group, and olcegepant reduced c-Fos expression (p < 0.05). No significant difference in c-Fos expression was found in vlPAG and ACC (p > 0.05). Conclusions Our study demonstrated the activation of mPFC and Sp5c in two CMMs. Olcegepant may alleviate hyperalgesia of the hind paw and periorbital area by attenuating brain activation in CMMs. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01496-8.
Collapse
Affiliation(s)
- Shouyi Wu
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, China
| | - Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, FengtaiDistrict, Beijing, 100070, China
| | - Kaibo Zhang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Zhilei Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Yonggang Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China. .,Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, FengtaiDistrict, Beijing, 100070, China.
| |
Collapse
|
3
|
Levine A, Liktor-Busa E, Karlage KL, Giancotti L, Salvemini D, Vanderah TW, Largent-Milnes TM. DAGLα Inhibition as a Non-invasive and Translational Model of Episodic Headache. Front Pharmacol 2021; 11:615028. [PMID: 33584293 PMCID: PMC7874129 DOI: 10.3389/fphar.2020.615028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Recent findings suggested that Clinical Endocannabinoid Deficiency underlies the pathophysiology of pain disorders, including migraine and headache. In models of medication overuse headache induced by sustained administration of sumatriptan or morphine, 2-AG levels were selectively depleted in the periaqueductal gray (PAG) and anandamide (AEA) increased in the cortex suggesting distinct regulation of the endocannabinoid system during headache pain. These results led to the hypothesis that blockade of DAGL, to reduce 2-AG levels would induce headache-like behaviors as a new, translationally relevant model of episodic headache. Our study investigated whether non-selective and selective blockade of DAGL, the main biosynthetic enzyme for 2-AG, induced periorbital and hind-paw allodynia, photophobia, anxiety-like behaviors, responsivity to abortive anti-migraine agents, and 2-AG/AEA levels. Injection of non-selective DAGL (DH376, 10 mg/kg, IP) and selective DAGLα (LEI106, 20 mg/kg, IP) inhibitors, but not DAGLβ agents, induced facial sensitivity in 100% and ∼60% of female and male rats, respectively, without induction of peripheral sensitivity. Notably, male rats showed significantly less sensitivity than female rats after DAGLα inhibition, suggesting sexual dimorphism in this mechanism. Importantly, LEI106 induced periorbital allodynia was attenuated by administration of the clinically available abortive antimigraine agents, sumatriptan and olcegepant. Selective DAGLα inhibition induced significant photophobia as measured by the light-dark box, without anxiety like behaviors or changes in voluntary movement. Analysis of AEA and 2-AG levels at the time of peak pain sensitivity revealed reductions in 2-AG in the visual cortex and periaqueductal gray (PAG), without altering anandamide or significantly increasing diacylglycerol levels. These results provide foundational evidence for DAGL-2AG in the induction of headache-like pain and photophobia without extracephalic allodynia, thus modeling the clinical episodic migraine. Mechanistically, behavioral measures of headache sensitivity after DAGL inhibition suggests that reduced 2-AG signaling in the cortex and PAG, but not the trigeminal nucleus caudalis or trigeminal ganglia, drives headache initiation. Therefore, episodic DAGL inhibition, which reduces the time, cost, and invasiveness of currently accepted models of headache, may fill the need for episodic migraine/headache models mirroring clinical presentation. Moreover, use of this approach may provide an avenue to study the transition from episodic to chronic headache.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Kelly L Karlage
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Luigi Giancotti
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|