1
|
Haidar-Montes AA, Mauro A, El Khatib M, Prencipe G, Pierdomenico L, Tosi U, Wouters G, Cerveró-Varona A, Berardinelli P, Russo V, Barboni B. Mechanobiological Strategies to Enhance Ovine ( Ovis aries) Adipose-Derived Stem Cells Tendon Plasticity for Regenerative Medicine and Tissue Engineering Applications. Animals (Basel) 2024; 14:2233. [PMID: 39123758 PMCID: PMC11310997 DOI: 10.3390/ani14152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
Collapse
Affiliation(s)
- Arlette A. Haidar-Montes
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Laura Pierdomenico
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Guy Wouters
- FAT STEM Company, Erembodegem, 9300 Aalst, Belgium;
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| |
Collapse
|
2
|
Yeo YH, Jo SK, Kim MH, Lee SJ, Han SY, Park MH, Kim DY, Kim DY, Yoo IH, Kang C, Song JH, Park WH. Fabrication of atelocollagen-coated bioabsorbable suture and the evaluation of its regenerative efficacy in Achilles tendon healing using a rat experimental model. Int J Biol Macromol 2024; 271:132564. [PMID: 38782324 DOI: 10.1016/j.ijbiomac.2024.132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Recently, the incidence of Achilles tendon ruptures (ATRs) has become more common, and repair surgery using a bioabsorbable suture is generally preferred, particularly in the case of healthy patients. Sutures composed of poly(lactic-co-glycolic acid) (PLGA) are commonly used in ATR surgeries. Nevertheless, owing to the inherent limitations of PLGA, novel bioabsorbable sutures that can accelerate Achilles tendon healing are sought. Recently, several studies have demonstrated the beneficial effects of atelocollagen on tendon healing. In this study, poly(3,4-dihydroxy-L-phenylalanine) (pDOPA), a hydrophilic biomimetic material, was used to modify the hydrophobic surface of a PLGA suture (Vicryl, VC) for the stable coating of atelocollagen on its surface. The main objective was to fabricate an atelocollagen-coated VC suture and evaluate its performance in the healing of Achilles tendon using a rat model of open repair for ATR. Structural analyses of the surface-modified suture indicated that the collagen was successfully coated on the VC/pDOPA suture. Postoperative in vivo biomechanical analysis, histological evaluation, ultrastructural/morphological analyses, and western blotting confirmed that the tendons in the VC/pDOPA/Col group exhibit superior healing than those in the VC and VC/pDOPA groups after 1 and 6 weeks following the surgery. The this study suggests that atelocollagen-coated PLGA/pDOPA sutures are preferable for future medical applications, especially in the repair of ATR.
Collapse
Affiliation(s)
- Yong Ho Yeo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Kyeong Jo
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Republic of Korea
| | - Su Jeong Lee
- R&D planning team, Organoid Sciences Co., Ltd., 331, Pangyo-ro, Bundang-gu, Seongnam-si, Republic of Korea
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Mun Hyang Park
- Department of Pathology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Dae Young Kim
- Department of Pathology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Dae Yeung Kim
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| | - In Ha Yoo
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Kang
- Department of Orthopedic Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jae Hwang Song
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024:e12999. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Vidal L, Lopez-Garzon M, Venegas V, Vila I, Domínguez D, Rodas G, Marotta M. A Novel Tendon Injury Model, Induced by Collagenase Administration Combined with a Thermo-Responsive Hydrogel in Rats, Reproduces the Pathogenesis of Human Degenerative Tendinopathy. Int J Mol Sci 2024; 25:1868. [PMID: 38339145 PMCID: PMC10855568 DOI: 10.3390/ijms25031868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Patellar tendinopathy is a common clinical problem, but its underlying pathophysiology remains poorly understood, primarily due to the absence of a representative experimental model. The most widely used method to generate such a model is collagenase injection, although this method possesses limitations. We developed an optimized rat model of patellar tendinopathy via the ultrasound-guided injection of collagenase mixed with a thermo-responsive Pluronic hydrogel into the patellar tendon of sixty male Wistar rats. All analyses were carried out at 3, 7, 14, 30, and 60 days post-injury. We confirmed that our rat model reproduced the pathophysiology observed in human patients through analyses of ultrasonography, histology, immunofluorescence, and biomechanical parameters. Tendons that were injured by the injection of the collagenase-Pluronic mixture exhibited a significant increase in the cross-sectional area (p < 0.01), a high degree of tissue disorganization and hypercellularity, significantly strong neovascularization (p < 0.01), important changes in the levels of types I and III collagen expression, and the organization and presence of intra-tendinous calcifications. Decreases in the maximum rupture force and stiffness were also observed. These results demonstrate that our model replicates the key features observed in human patellar tendinopathy. Collagenase is evenly distributed, as the Pluronic hydrogel prevents its leakage and thus, damage to surrounding tissues. Therefore, this model is valuable for testing new treatments for patellar tendinopathy.
Collapse
Affiliation(s)
- Laura Vidal
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Maria Lopez-Garzon
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Vanesa Venegas
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ingrid Vila
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - David Domínguez
- Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation, 08970 Sant Joan Despí, Spain
| | - Gil Rodas
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation, 08970 Sant Joan Despí, Spain
- Sports Medicine Unit, Hospital Clínic and Sant Joan de Déu, 08950 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Mario Marotta
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| |
Collapse
|
5
|
Inaki R, Sato Y, Nakamura D, Aikawa Y, Takato T, Hoshi K, Hikita A. Lipoaspirate stored at a constant low temperature by electric control suppresses intracellular metabolism and maintains high cell viability. Regen Ther 2023; 24:662-669. [PMID: 38028938 PMCID: PMC10667615 DOI: 10.1016/j.reth.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cell therapy is a useful treatment method for wide spectrum of diseases which utilizes the immunosuppressive and regenerative abilities of administered cells. It is essential to build a transport system of tissues from which cells are harvested, because various external factors, such as temperature, time, air pressure, and vibration affect the cell functions isolated from body tissues. In particular, temperature is a critical factor which determines the viability of the cells and organs. In this study, we investigated the optimal temperature during the transportation of lipoaspirates from which adipose -derived stem cells (ASCs) were isolated. Method Lipoaspirates obtained by liposuctions (lipomatic or vaser method) were transported in four different temperature zones (4, 20, 32, and 37 °C) in a transport container which is electrically controlled to maintain a constant temperature during transport. Stromal vascular fractions (SVFs) were harvested from the lipoaspirate, and the cell number, viability and proliferation rate and the yield of ASCs were examined. In addition, the metabolic state of the cells was examined. Results ASCs from lipoaspirates transported at high temperature significantly decreased cell viability, while those at low temperature maintained high cell viability and showed good cell proliferation. In addition, transportation of lipoaspirates at low temperature resulted in a high level of NAD+/NADH, coenzymes involved in intracellular metabolism, and a low level of lactate in lipoaspirate suppressed the glycolytic system of intracellular metabolism, in ASCs. Conclusion The lipoaspirate transported at 4 °C exhibited best results regarding live cell number, viability and cell proliferation in our experiments. This study offers a direction to build a transport system that connects laboratories and hospitals and achieve a beneficial therapy for patients.
Collapse
Affiliation(s)
- Ryoko Inaki
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Tokyo, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
- National Hospital Organization Miyagi National Hospital, Japan
| | - Yoshihiko Sato
- Pharma & Healthcare Logistics Team, Tokyo Branch, Mitsubishi Logistics Corporation, Tokyo, Japan
| | | | | | | | - Kazuto Hoshi
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Tokyo, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Wang S, Yao Z, Chen L, Li J, Chen S, Fan C. Preclinical assessment of IL-1β primed human umbilical cord mesenchymal stem cells for tendon functional repair through TGF-β/IL-10 signaling. Heliyon 2023; 9:e21411. [PMID: 37954299 PMCID: PMC10638607 DOI: 10.1016/j.heliyon.2023.e21411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Background Inadequate repair capacity and disturbed immune compartments are the main pathological causes of tendinopathy. Transplantation of mesenchymal stem cells (MSCs) become an effective clinic option to alleviate tendinopathy. Interleukin-1β (IL-1β) could confer on MSCs enhanced immunoregulatory capability to remodel the repair microenvironment favoring tissue repair. Therefore, IL-1β activated UC-MSCs (1βUC-MSCs) may exert favorable efficacy in promoting tendon repair in a preclinical tendinopathy rat model. Methods Tendon-derived stem cells (TDSCs) were isolated and characterized. In vitro, the levels of immunoregulatory-related cytokines such as IL-1β, IL-6, IL-10, and TGF-β secreted by 1βUC-MSCs and unprimed UC-MSCs was measured. And tendon-specific markers expressed by TDSCs cultured with primed cultured medium (CM) or unprimed CM were detected. In vivo, Achilles tendinopathy was induced by 30 μL collagenase I injection in Sprague Dawley rats. One week later, the rats were randomly injected with UC-MSCs primed with IL-1β (106 cells per tendon), UC-MSCs, or PBS. After rats were sacrificed, histological evaluation, electron microscopy, biomechanical tests, gait performance were conducted to evaluate the structural and functional recovery of Achilles tendons. The inflammation and metabolic state of the extracellular matrix, and the potential mechanism were assessed by immunohistochemical staining and Western blot. Results UC-MSCs were activated by IL-1β to secrete higher levels of IL-10 and TGF-β while the secretion levels of IL-6 and IL-1β were not changed significantly, promoting a higher expression level of COL I and TNMD in TDSCs under proinflammatory environment. In vivo, the transplanted 1βUC-MSCs could survive up to 5 weeks after injection with tenogenic differentiation and improved tendon healing histologically semi-quantified by modified Bonar scores. This structural regeneration was further confirmed by observation of ultrastructural morphology, and led to good functional recovery including improved biomechanical properties and gait performance. During this process, the inflammatory response and metabolism of the extracellular matrix was improved through TGF-β/IL-10 pathway. Conclusion This study demonstrated that the transplantation of UC-MSCs activated by IL-1β exhibited satisfactory ability for promoting tendon functional repair in a tendinopathy rat model. During this process, the balance of inflammatory response and extracellular matrix metabolism was remodeled, and the TGF-β/Smad2/3 and IL-10 signaling pathways were activated simultaneously. We cautiously conclude that the IL-1β primed UC-MSCs could be a promising strategy for enhancing the ability of MSCs to treat tendinopathy.
Collapse
Affiliation(s)
- Shikun Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Lei Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine Tongji University, Shanghai, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
7
|
Jo SK, Yoo IH, Park HY, Kang C, Han SY, Moon JH, Park WH, Yeo YH, Jun S, Yi YS, Lee SJ, Tae JY, Song JH. An Atelocollagen Injection Enhances the Healing of Nonoperatively Treated Achilles Tendon Tears: An Experimental Study in Rats. Orthop J Sports Med 2023; 11:23259671231200933. [PMID: 37868218 PMCID: PMC10586006 DOI: 10.1177/23259671231200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background There is growing interest in nonoperative treatment for the management of Achilles tendon ruptures (ATRs). However, nonoperative treatment is limited by the risk of tendon reruptures and low satisfaction rates. Recently, atelocollagen injections have been reported to have beneficial effects on tendon healing. Purpose To evaluate the beneficial effects of injected atelocollagen on Achilles tendon healing and investigate the mechanism of atelocollagen on tendon healing. Study Design Controlled laboratory study. Methods Percutaneous tenotomy of the right Achilles tendon in 66 rats was performed. The animals were equally divided into the noninjection group (NG) and the collagen injection group (CG). At 1, 3, and 6 weeks, the Achilles functional index, cross-sectional area, load to failure, stiffness, stress, and the modified Bonar score were assessed. Transmission electron microscopy, western blotting, and immunohistochemistry were also performed. Results The Achilles functional index (-6.8 vs -43.0, respectively; P = .040), load to failure (42.1 vs 27.0 N, respectively; P = .049), and stiffness (18.8 vs 10.3 N/mm, respectively; P = .049) were higher in the CG than those in the NG at 3 weeks. There were no significant differences in histological scores between the 2 groups. Transmission electron microscopy analysis showed that the mean diameter of collagen fibrils in the CG was greater than that in the NG at 3 weeks (117.2 vs 72.6 nm, respectively; P < .001) and 6 weeks (202.1 vs 144.0 nm, respectively; P < .001). Western blot analysis showed that the expression of collagen type I in the CG was higher than that in the NG at 1 week (P = .005) and 6 weeks (P = .001). Conclusion An atelocollagen injection had beneficial effects on the healing of nonoperatively treated Achilles tendon injuries. The Achilles tendon of CG rats exhibited better functional, biomechanical, and morphological outcomes compared with NG rats. The molecular data indicated that the mechanism of atelocollagen injections may be associated with an increased amount of collagen type I. Clinical Relevance An atelocollagen injection might be a good adjuvant option for the nonoperative treatment of ATRs.
Collapse
Affiliation(s)
- Seong Kyeong Jo
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| | - In Ha Yoo
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeon Yeong Park
- Department of Occupational Therapy, College of Medical Science, Konyang University, Daejeon, Republic of Korea
| | - Chan Kang
- Department of Orthopedic Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ji Hyun Moon
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Ho Yeo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Su Jeong Lee
- Department of Microbiology, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Jung Yeon Tae
- Department of Medicine, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jae Hwang Song
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Zeng CW. Multipotent Mesenchymal Stem Cell-Based Therapies for Spinal Cord Injury: Current Progress and Future Prospects. BIOLOGY 2023; 12:biology12050653. [PMID: 37237467 DOI: 10.3390/biology12050653] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Spinal cord injury (SCI) represents a significant medical challenge, often resulting in permanent disability and severely impacting the quality of life for affected individuals. Traditional treatment options remain limited, underscoring the need for novel therapeutic approaches. In recent years, multipotent mesenchymal stem cells (MSCs) have emerged as a promising candidate for SCI treatment due to their multifaceted regenerative capabilities. This comprehensive review synthesizes the current understanding of the molecular mechanisms underlying MSC-mediated tissue repair in SCI. Key mechanisms discussed include neuroprotection through the secretion of growth factors and cytokines, promotion of neuronal regeneration via MSC differentiation into neural cell types, angiogenesis through the release of pro-angiogenic factors, immunomodulation by modulating immune cell activity, axonal regeneration driven by neurotrophic factors, and glial scar reduction via modulation of extracellular matrix components. Additionally, the review examines the various clinical applications of MSCs in SCI treatment, such as direct cell transplantation into the injured spinal cord, tissue engineering using biomaterial scaffolds that support MSC survival and integration, and innovative cell-based therapies like MSC-derived exosomes, which possess regenerative and neuroprotective properties. As the field progresses, it is crucial to address the challenges associated with MSC-based therapies, including determining optimal sources, intervention timing, and delivery methods, as well as developing standardized protocols for MSC isolation, expansion, and characterization. Overcoming these challenges will facilitate the translation of preclinical findings into clinical practice, providing new hope and improved treatment options for individuals living with the devastating consequences of SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Yu W, Zhou H, Feng X, Liang X, Wei D, Xia T, Yang B, Yan L, Zhao X, Liu H. Mesenchymal stem cell secretome-loaded fibrin glue improves the healing of intestinal anastomosis. Front Bioeng Biotechnol 2023; 11:1103709. [PMID: 37064233 PMCID: PMC10102583 DOI: 10.3389/fbioe.2023.1103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Anastomotic leakage is a serious complication following gastrointestinal surgery and one of the leading causes of patient mortality. Despite the significant clinical and economic burden, there are currently no reliable treatment options to improve the healing of intestinal anastomosis and subsequently prevent anastomotic leakage. Recently, the development of regenerative medicine has shown promise for improving anastomotic healing. Recent studies have illustrated that stem cell-derived secretome can enhance tissue regeneration without the safety and ethical limitations of stem cell transplantation. Herein, we developed a fibrin glue topical delivery system loaded with mesenchymal stem cells (MSCs)-derived secretome for controlled delivery of bioactive factors, and evaluated its application potential in improving the healing of intestinal anastomosis. Under in vitro conditions, the MSCs secretome significantly promoted cell proliferation viability in a dose-dependent manner and resulted in the controlled release of growth factors via fibrin glue delivery. We established a rat surgical anastomotic model and experimentally found that MSCs secretome-loaded fibrin glue enhanced anastomotic bursting pressure, increased granulation tissue formation and collagen deposition, and significantly promoted anastomotic healing. Mechanistically, fibrin glue accelerated cell proliferation, angiogenesis, and macrophage M2 polarization at the surgical anastomotic site by releasing bioactive factors in the secretome, and it also alleviated the inflammatory response and cell apoptosis at the anastomotic site. Our results demonstrated for the first time that MSCs-derived secretome could promote the healing of intestinal anastomosis. Considering the accessibility and safety of the cell-free secretome, we believed that secretome-loaded fibrin glue would be a cell-free therapy to accelerate the healing of intestinal anastomosis with great potential for clinical translation.
Collapse
Affiliation(s)
- Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haicun Zhou
- Department of Breast Surgery, Gansu Maternal and Child Healthcare Hospital, Lanzhou, China
| | - Xueliang Feng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoqin Liang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dengwen Wei
- Department of Abdominal Surgery, Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Tianhong Xia
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Bin Yang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Long Yan
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Xiaochen Zhao
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Suroto H, Satmoko BA, Rarasati T, Prajasari T. Long term functional outcome evaluation in post flexor digitorum profundus tendon zone I rupture repaired by palmaris longus tendon grafting augmented with human amniotic membranes and adipose derived mesenchymal stem cell: A case report. Int J Surg Case Rep 2023; 104:107960. [PMID: 36893703 PMCID: PMC10018546 DOI: 10.1016/j.ijscr.2023.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE The sport climbing has many complex maneuvers of the hand producing many potential injuries in flexor digitorum profundus tendon (FDPT). The late management due to an athlete high demand on competition makes the complication of retracted tendon and adhesion tend to occur. We provide the long terms functional outcome in FDPT zone I rupture repaired by palmaris longus (PL) tendon grafting augmented with human amniotic (hAM) and adipose derived mesenchymal stem cell (ASCs). CASE PRESENTATION We present a case of a 31-years old male sport climbing athlete with excruciating pain in the right middle finger due to an injury at distal phalangeal area occurred two months earlier. Intraoperatively, Bruner's incision was performed for exploration. A modified Kessler suture technique with running sutures around the sutured stump was used. We slightly overcorrected tension between PL and FDPT distal stumps. We shielded the distal and proximal sutured areas with hAM augmented with ASCs. The result was remarkable as he could return to competitive sport. CLINICAL DISCUSSION Zones I and II have a high adhesion risk due to their complex structures. In the case of the PL tendon graft, the sutured stump lies in these zones which can affect outcomes. An HAM augmented with ASCs has an anti-adhesive property that allows smooth gliding of the tendon FDPT on two sutured stump junctions, as well as stimulating the tendon to produce tenocytes, which accelerates tendon healing. CONCLUSION The combination of our technique and regenerative therapy effectively prevents adhesions and modulates tendon healing.
Collapse
Affiliation(s)
- Heri Suroto
- Orthopedic and Traumatology Department, Faculty of Medicine, Airlangga University/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia.
| | | | - Twindy Rarasati
- Orthopedic and Traumatology Department, Faculty of Medicine, Airlangga University/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Tabita Prajasari
- Orthopedic and Traumatology Department, Faculty of Medicine, Airlangga University/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| |
Collapse
|
11
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Efficacy of Adipose-Derived Mesenchymal Stem Cells and Stromal Vascular Fraction Alone and Combined to Biomaterials in Tendinopathy or Tendon Injury: Systematic Review of Current Concepts. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020273. [PMID: 36837474 PMCID: PMC9963687 DOI: 10.3390/medicina59020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Background and Objectives: Tendon injury and tendinopathy are among the most frequent musculoskeletal diseases and represent a challenging issue for surgeons as well as a great socio-economic global burden. Despite the current treatments available, either surgical or conservative, the tendon healing process is often suboptimal and impaired. This is due to the inherent scarce ability of tendon tissue to repair and return itself to the original structure. Recently, Adipose-derived mesenchymal stem cells (ADSC) and stromal vascular fraction (SVF) have gained a central interest in the scientific community, demonstrating their effectiveness in treatments of acute and chronic tendon disorders in animals and humans. Either enzymatic or mechanical procedures to obtain ADSC and SVF have been described and used in current clinical practice. However, no unified protocols and processes have been established. Materials and Methods: This systematic review aims at providing a comprehensive update of the literature on the clinical application of ADSC enzymatically or mechanically processed to obtain SVF, alone and in association with biomaterials in the local treatment of tendinopathy and tendon injury in vivo, in animal models and humans. The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Thirty-two articles met our inclusion criteria, with a total of 18 studies in animals, 10 studies in humans and 4 studies concerning the application of biomaterials in vivo in animals. The review of the literature suggests that ADSC/SVF therapy can represent a promising alternative in tendonregenerative medicine for the enhancement of tendon healing. Conclusions: Nevertheless, further investigations and randomized control trials are needed to improve the knowledge, standardize the procedures and extend the consensus on their use for such applications.
Collapse
|
13
|
Qu S, Ma N, Wang W, Chen S, Wu Q, Li Y, Yang Z. Human adipose-derived stem cells can optimize the filling material in rats. Biomed Mater Eng 2023:BME222503. [PMID: 36710667 DOI: 10.3233/bme-222503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Human adipose-derived stem cells have been identified as a promising candidate for cell-assisted therapy to improve graft survival. OBJECTIVE To objective of the study was to add human adipose-derived stem cells into filling materials. METHODS The filling materials were prepared and divided into 6 groups: fat particles with phosphate buffer saline or human adipose-derived stem cells; acellular dermal matrix particles with phosphate buffer saline or human adipose-derived stem cells; mixture of fat particles and acellular dermal matrix particles with phosphate buffer saline or human adipose-derived stem cells. The survival rate, vascular density and histological at 2, 6 and 12 weeks were investigated. RESULTS Human adipose-derived stem cells significantly improved survival rate in each group at 6 and 12 weeks, and it significantly increased the vascular density in the fat particles and porcine acellular dermal matrix combined group and porcine acellular dermal matrix group at three time points, but human adipose-derived stem cells did not have a significant effect in the fat particles group. CONCLUSION Human adipose-derived stem cells as assisted cells added into filling material can improve survival rate and vascular density in rats.
Collapse
Affiliation(s)
- Siwei Qu
- Second Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Ma
- Second Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weixin Wang
- Second Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sen Chen
- Second Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Wu
- Second Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangqun Li
- Second Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Yang
- Second Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Quintero D, Perucca Orfei C, Kaplan LD, de Girolamo L, Best TM, Kouroupis D. The roles and therapeutic potentialof mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front Bioeng Biotechnol 2023; 11:1040762. [PMID: 36741745 PMCID: PMC9892947 DOI: 10.3389/fbioe.2023.1040762] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tendinopathies encompass a highly prevalent, multi-faceted spectrum of disorders, characterized by activity-related pain, compromised function, and propensity for an extended absence from sport and the workplace. The pathophysiology of tendinopathy continues to evolve. For decades, it has been related primarily to repetitive overload trauma but more recently, the onset of tendinopathy has been attributed to the tissue's failed attempt to heal after subclinical inflammatory and immune challenges (failed healing model). Conventional tendinopathy management produces only short-term symptomatic relief and often results in incomplete repair or healing leading to compromised tendon function. For this reason, there has been increased effort to develop therapeutics to overcome the tissue's failed healing response by targeting the cellular metaplasia and pro-inflammatory extra-cellular environment. On this basis, stem cell-based therapies have been proposed as an alternative therapeutic approach designed to modify the course of the various tendon pathologies. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells often referred to as "medicinal signaling cells" due to their immunomodulatory and anti-inflammatory properties that can produce a pro-regenerative microenvironment in pathological tendons. However, the adoption of MSCs into clinical practice has been limited by FDA regulations and perceived risk of adverse events upon infusion in vivo. The introduction of cell-free approaches, such as the extracellular vesicles of MSCs, has encouraged new perspectives for the treatment of tendinopathies, showing promising short-term results. In this article, we review the most recent advances in MSC-based and MSC-derived therapies for tendinopathies. Preclinical and clinical studies are included with comment on future directions of this rapidly developing therapeutic modality, including the importance of understanding tissue loading and its relationship to any treatment regimen.
Collapse
Affiliation(s)
- Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Dimitrios Kouroupis,
| |
Collapse
|
15
|
Park J, Jo S, Lee MK, Kim TH, Sung IH, Lee JK. Comparison of ligamentization potential between anterior cruciate ligament-derived cells and adipose-derived mesenchymal stem cells reseeded to acellularized tendon allograft. Bone Joint Res 2022; 11:777-786. [PMID: 36342052 PMCID: PMC9680201 DOI: 10.1302/2046-3758.1111.bjr-2021-0548.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIMS To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). METHODS Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed. RESULTS In the graft reseeded with ACL-derived cells, a large number of elongated cells that integrated into the matrix were evident at day 3 and day 7. However, in the graft reseeded with ADMSCs, only a small number of elongated cells were found integrated into the matrix. Immunofluorescence for Ki-67 and type I collagen confirmed the pronounced production of type I collagen by Ki-67-positive ACL-derived cells integrated into the ECM. A messenger RNA (mRNA) expression assay demonstrated significantly higher gene expression levels of types I (p = 0.013) and III (p = 0.050) collagen in the composites reseeded with ACL-derived cells than ADMSCs. CONCLUSION ACL-derived cells, when reseeded to acellularized tendon graft, demonstrated earlier better survival and integration in the tendon ECM and resulted in higher gene expression levels of collagen, which may be essential to the normal ligamentization process compared to ADMSCs.Cite this article: Bone Joint Res 2022;11(11):777-786.
Collapse
Affiliation(s)
- Jinsung Park
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| | - Myung-Kyu Lee
- Department of Research and Development, Korea Public Tissue Bank, Seongnam-si, South Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Il-Hoon Sung
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, South Korea
| | - Jin K. Lee
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, South Korea
| |
Collapse
|
16
|
Park JH, Chung SG, Jun JY, Lee JJ, Lee K. Quantitative analysis of tendon histopathology using digital pathology in rat models with Achilles tendon injury. Connect Tissue Res 2022; 63:463-474. [PMID: 34974783 DOI: 10.1080/03008207.2021.2011251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although digital image analysis methods that quantify histopathologic features have emerged, no validated quantitative methods are available to evaluate tendon injury. This study aimed to propose and validate a quantitative analysis method to identify the histopathologic features of tendon injuries. The histopathologic features of two Achilles tendon injury models (a partial full-thickness defect model and a collagenase injection model) using Sprague-Dawley rats were evaluated by semiquantitative grading and a quantitative analysis method using a digital pathology software at weeks 1 and 4 after tendon injury (six tendons per group at each time point). The outcome variables between tendon injury models and between time points were compared, and the correlation between semiquantitative scores and the results of the quantitative analysis was investigated. The proposed analysis method quantified the severity of the histopathological features after tendon injury. Quantitative analysis differentiated the cell morphology between tendon injury models and time points better than semiquantitative scoring. The results from quantitative measurements correlated significantly with the semiquantitative scores. The proposed quantitative method can be effective in evaluating the histopathology of tendon injuries.
Collapse
Affiliation(s)
- Jae Hyeon Park
- Department of Rehabilitation Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Sun G Chung
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Aging, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Jun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-Ju Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Mirghaderi SP, Valizadeh Z, Shadman K, Lafosse T, Oryadi-Zanjani L, Yekaninejad MS, Nabian MH. Cell therapy efficacy and safety in treating tendon disorders: a systemic review of clinical studies. J Exp Orthop 2022; 9:85. [PMID: 36042110 PMCID: PMC9428081 DOI: 10.1186/s40634-022-00520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Despite substantial animal evidence, cell therapy in humans remains in its infancy. The purpose of this study was to examine the potential therapeutic effects and safety of cell therapy in the treatment of tendon disorders. Methods According to the PRISMA guideline, a systematic review was performed on clinical studies concerning cell therapy in tendon disorders. A comprehensive search including the 5 databases of MEDLINE, Embase, Scopus, Web of Science, and Cochrane Library until December 2021 was carried out and associated with hand searching. The quality of the eligible studies was assessed using the tools suggested by Cochrane recommendations. Qualitative synthesis was performed in 2 tables and discussed separately for rotator cuff, elbow, patella, Achilles, and gluteal tendons. Results Through 6017 records, 22 studies were included in the qualitative synthesis, including 658 patients. All the studies administered autologous cells, except one that used allogenic adipose-derived mesenchymal stem cells (Allogenic AD-MSC). Almost all studies demonstrated the safety of cell injection in their follow-up period with no serious side effects or immunologic reactions, with only a few related minor adverse events in some cases. The included studies showed the effectiveness of cell injection in tendinopathies of different sites, rotator cuff, elbow, patella, Achilles, and gluteal tendons. Among the rotator cuff studies, 4 comparative studies claimed that cell therapy is a more efficient treatment with a lower retear rate and pain level compared to the control group. However, one study found no differences between the groups. No controlled study has been performed on elbow tendinopathies, but 5 case series demonstrated the effectiveness of cell injection in elbow tendon disorders. For Achilles tendinopathies, only one randomized controlled trial (RCT) found that both cell therapy and control groups showed significant pain reduction and functional improvement with no statistical differences at the 6 months follow-up, but the cell therapy group had improved faster at earlier follow-ups. Patellar tendinopathy was studied in 2 RCTs, one did not show a significant difference and the other showed superior improvement compared to controls. Conclusion Cell therapy showed promising results and the available evidence suggests that it is safe at several sites of tendon disease. Based on available evidence, cell therapy should be suggested in specific conditions at each site. To approve cell therapy for tendon diseases, randomized clinical trials are required with a large sample size and long-term follow-ups. Level of evidence IV Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00520-9.
Collapse
Affiliation(s)
- Seyed Peyman Mirghaderi
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Valizadeh
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Shadman
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Thibault Lafosse
- Alps Surgery Institute: Hand, Upper Limb, Brachial Plexus, and Microsurgery Unit (PBMA), Clinique Générale d'Annecy, Annecy, France
| | - Leila Oryadi-Zanjani
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic and Trauma Surgery, Shariati Hospital and School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Nabian
- Center of Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran. .,Department of Orthopedic and Trauma Surgery, Shariati Hospital and School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Wang HD, Li Z, Hu X, Ao Y. Efficacy of Stem Cell Therapy for Tendon Graft Ligamentization After Anterior Cruciate Ligament Reconstruction: A Systematic Review. Orthop J Sports Med 2022; 10:23259671221098363. [PMID: 35706553 PMCID: PMC9189545 DOI: 10.1177/23259671221098363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Sufficient intra-articular graft ligamentization enhances the biomechanical and biological properties of the femur-graft-tibia complex to ensure knee stability after anterior cruciate ligament (ACL) reconstruction using a tendon graft. It remains unclear whether stem cell therapy promotes tendon graft ligamentization. Purpose/Hypothesis The purpose of this study was to compare tendon graft ligamentization after primary ACL reconstruction with versus without stem cell therapy. It was hypothesized was that stem cell therapy would promote tendon graft ligamentization by enhancing the biomechanical and histological properties of the tendon graft after ACL reconstruction. Study Design Systematic review. Methods A systematic review was performed according to the guidelines outlined in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement to identify controlled animal studies that compared tendon graft ligamentization outcomes after primary ACL reconstruction in groups with and without stem cell therapy. Biomechanical and histological outcomes were assessed. Results A total of 4 studies met the eligibility criteria and were included in this review. Bone marrow-derived mesenchymal stem cells were used in 3 studies, while tendon-derived stem cells were used in 1 study. An intra-articular injection was used to deliver conditioned medium and stem cells in 2 studies, while around-graft application was used to deliver bone marrow-derived mesenchymal stem cells in 2 studies. Stem cell therapy enhanced the biomechanical and histological properties of the tendon graft after ACL reconstruction. Conclusion This review revealed that stem cell therapy is a promising technique that promotes graft ligamentization by enhancing the biomechanical and histological properties of the tendon graft after ACL reconstruction in animal models. There is a need for future preclinical studies aimed at evaluating the effect of stem cells on graft ligamentization and identifying the optimal method of intra-articular stem cell delivery.
Collapse
Affiliation(s)
- Hong-De Wang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Zong Li
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
| |
Collapse
|
19
|
Song JH, Kang C, Han SY, Park WH, Kim MH, Moon JH, Tae JY, Park HY, Yoo IH, Park JH, Yeo YH, Kim DY. Comparative analysis of Achilles tendon healing outcomes after open tenotomy versus percutaneous tenotomy: An experimental study in rats. J Orthop Res 2022; 40:1446-1456. [PMID: 34370341 DOI: 10.1002/jor.25159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023]
Abstract
There is growing interest in conservative treatment of Achilles tendon rupture. However, the majority of experimental studies of Achilles tendon have been performed by open tenotomy. More appropriate model of conservative treatment of Achilles tendon rupture is required. We performed an experimental study to evaluate whether outcomes differ between open tenotomy and percutaneous tenotomy of the Achilles tendon in rats. The Achilles tendons of 48 rats were transected. The animals were divided into two groups according to surgical technique: open tenotomy or microscopy-assisted percutaneous tenotomy. After 1, 2, and 4 weeks, functional, biomechanical, and histological analyses were performed. Western blot was performed for quantitative molecular analysis at 1 week. The Achilles functional index was superior in the percutaneous tenotomy group, compared with the open tenotomy group, at 1 week. The cross-sectional area was significantly larger in the percutaneous tenotomy group than in the open tenotomy group at 4 weeks. Relative to the native tendons, load to failure and stiffness yielded comparable results at 2 weeks in the percutaneous tenotomy group and at 4 weeks in the open tenotomy group. The histological score was significantly better in the percutaneous tenotomy group than in the open tenotomy group at 1 week. At 1 week, interleukin-1β expression in the open tenotomy group was higher than in the percutaneous tenotomy group. In summary, Achilles tendon healing was substantially affected by the tenotomy method. We presume that our percutaneous tenotomy method might constitute a useful experimental animal model for conservative treatment of Achilles tendon rupture.
Collapse
Affiliation(s)
- Jae H Song
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| | - Chan Kang
- Department of Orthopedic Surgery, Regional Rheumatoid and Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seung Y Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Won H Park
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Republic of Korea
| | - Min H Kim
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Ji H Moon
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jung Y Tae
- Department of Medicine, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyeon Y Park
- Department of Occupational Therapy, Konyang University, Daejeon, Republic of Korea
| | - In H Yoo
- Department of Occupational Therapy, Konyang University, Daejeon, Republic of Korea
| | - Jong H Park
- Department of Biomedical Material, College of Medical Engineering, Konyang University, Daejeon, Republic of Korea
| | - Yong H Yeo
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Republic of Korea
| | - Dae Y Kim
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
20
|
Ramos DM, Abdulmalik S, Arul MR, Sardashti N, Banasavadi-Siddegowda YK, Nukavarapu SP, Drissi H, Kumbar SG. Insulin-Functionalized Bioactive Fiber Matrices with Bone Marrow-Derived Stem Cells in Rat Achilles Tendon Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2851-2861. [PMID: 35642544 DOI: 10.1021/acsabm.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately half of annual musculoskeletal injuries in the US involve tendon tears. The naturally hypocellular and hypovascular tendon environment makes tendons injury-prone and heal slowly. Tendon tissue engineering strategies often use biomimetic scaffolds combined with bioactive factors and/or cells to enhance healing. FDA-approved growth factors to promote tendon healing are lacking, which highlights the need for safe and effective bioactive factors. Our previous work evaluated insulin as a bioactive factor and identified an optimal dose to promote in vitro mesenchymal stem cell survival, division, and tenogenesis. The present work evaluates the ability of insulin-functionalized electrospun nanofiber matrices with or without mesenchymal stem cells to enhance tendon repair in a rat Achilles injury model. Electrospun nanofiber matrices were functionalized with insulin, cultured with or without mesenchymal stem cells, and sutured to transected Achilles tendons in rats. We analyzed rat tendons 4 and 8 weeks after surgery for the tendon morphology, collagen production, and mechanical properties. Bioactive insulin-functionalized fiber matrices with mesenchymal stem cells resulted in significantly increased collagen I and III at 4 and 8 weeks postsurgery. Additionally, these matrices supported highly aligned collagen fibrils in the regenerated tendon tissue at 8 weeks. However, treatment- and control-regenerated tissues had similar tensile properties at 8 weeks, which were less than that of the native Achilles tendon. Our preliminary results establish the benefits of insulin-functionalized fiber matrices in promoting higher levels of collagen synthesis and alignment needed for functional recovery of tendon repair.
Collapse
Affiliation(s)
- Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Naseem Sardashti
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hicham Drissi
- Department of Orthopedic Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322-1007, United States
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
21
|
Viganò M, Ragni E, Marmotti A, de Girolamo L. The effects of orthobiologics in the treatment of tendon pathologies: a systematic review of preclinical evidence. J Exp Orthop 2022; 9:31. [PMID: 35394237 PMCID: PMC8994001 DOI: 10.1186/s40634-022-00468-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose The aim of this systematic review is to explore the current available knowledge about tendon disorders and orthobiologics derived by preclinical experiments to evaluate their role and efficacy in the different stages and conditions related to the tendon healing processes. Methods The systematic review was performed according to the PRISMA guidelines. Different electronic databases (MEDLINE, Web of Science, EMBASE) were searched for studies investigating orthobiologics (PRP and cell-based products from adipose tissue or bone marrow) in animal models or veterinary clinical trials for tendon pathologies (complete/partial tendon ruptures, rotator cuff tears, tendinopathy, enthesis-related injuries). Data regarding the specific product used, the treatment site/pathology, the host and the model were collected. The results were classified into the following categories: histological, biomechanical, molecular and imaging. Results A large pool of preclinical studies on tendon disorders have been found on platelet-rich plasma (PRP), while data about stromal vascular fraction (SVF) and bone marrow concentrate (BMAC) are still limited and frequently focused on expanded cells, rather than orthobiologics prepared at the point of care. The effect of PRP is related to an acceleration of the healing process, without improvements in the final structure and properties of repaired tendon. Cell-based products have been reported to produce more durable results, but the level of evidence is currently insufficient to draw clear indications. Conclusions The preclinical results about orthobiologics applications to tendon pathologies would support the rationale of their clinical use and encourage the performance of clinical trials aimed to confirm these data in human subjects. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00468-w.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Enrico Ragni
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | - Antonio Marmotti
- San Luigi Gonzaga Hospital, Orthopedics and Traumatology Department, University of Turin - Medical School, Turin, Italy
| | - Laura de Girolamo
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| |
Collapse
|
22
|
Christensen KW, Turner J, Coughenour K, Maghdouri-White Y, Bulysheva AA, Sergeant O, Rariden M, Randazzo A, Sheean AJ, Christ GJ, Francis MP. Assembled Cell-Decorated Collagen (AC-DC) Fiber Bioprinted Implants with Musculoskeletal Tissue Properties Promote Functional Recovery in Volumetric Muscle Loss. Adv Healthc Mater 2022; 11:e2101357. [PMID: 34879177 PMCID: PMC8890793 DOI: 10.1002/adhm.202101357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/26/2021] [Indexed: 02/03/2023]
Abstract
Musculoskeletal tissue injuries, including volumetric muscle loss (VML), are commonplace and often lead to permanent disability and deformation. Addressing this healthcare need, an advanced biomanufacturing platform, assembled cell-decorated collagen (AC-DC) bioprinting, is invented to rapidly and reproducibly create living biomaterial implants, using clinically relevant cells and strong, microfluidic wet-extruded collagen microfibers. Quantitative analysis shows that the directionality and distribution of cells throughout AC-DC implants mimic native musculoskeletal tissue. AC-DC bioprinted implants further approximate or exceed the strength and stiffness of human musculoskeletal tissue and exceed collagen hydrogel tensile properties by orders of magnitude. In vivo, AC-DC implants are assessed in a critically sized muscle injury in the hindlimb, with limb torque generation potential measured over 12 weeks. Both acellular and cellular implants promote functional recovery compared to the unrepaired group, with AC-DC implants containing therapeutic muscle progenitor cells promoting the highest degree of recovery. Histological analysis and automated image processing of explanted muscle cross-sections reveal increased total muscle fiber count, median muscle fiber size, and increased cellularization for injuries repaired with cellularized implants. These studies introduce an advanced bioprinting method for generating musculoskeletal tissue analogs with near-native biological and biomechanical properties with the potential to repair myriad challenging musculoskeletal injuries.
Collapse
Affiliation(s)
| | - Jonathan Turner
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | | | | | - Anna A. Bulysheva
- Depeartment of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Olivia Sergeant
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | - Michael Rariden
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | - Alessia Randazzo
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | - Andrew J. Sheean
- Department of Orthopaedic Surgery, San Antonio Military Medical Center, USAF 59 MDW, San Antonio, TX, USA
| | - George J. Christ
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | | |
Collapse
|
23
|
Jiang R, Wang Y, Liu J, Wu Z, Wang D, Deng Q, Yang C, Zhou Q. Gut microbiota is involved in the antidepressant effects of adipose-derived mesenchymal stem cells in chronic social defeat stress mouse model. Psychopharmacology (Berl) 2022; 239:533-549. [PMID: 34981181 DOI: 10.1007/s00213-021-06037-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Growing evidence supports the role of microbiota in regulating gut-brain interactions and, thus, contributing to the pathogenesis of depression and the antidepressant actions. Adipose-derived mesenchymal stem cells (ADSCs), as important members of the stem cell family, were demonstrated to alleviate depression behaviors. However, the role of gut microbiota in ADSCs alleviating depression in chronic social defeat stress (CSDS) model is unknown. OBJECTIVES To examine the effects of ADSCs on depression symptoms and detect the changes in the composition of gut microbiota. RESULTS We found that ADSCs administration significantly ameliorated CSDS-induced depression behaviors, which was accompanied by alteration in the gut microbiota. The principal co-ordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota among the groups. Remarkably, receiver operating characteristic (ROC) curves revealed that order Micrococcales, order Rhizobiales and species Bacteroides acidifaciens are potentially important biomarkers for the antidepressant effects of ADSCs in CSDS model. CONCLUSIONS ADSCs are effective in treating depression behaviors in CSDS model, which might be partly due to the regulation of abnormal composition of gut microbiota. Thus, ADSCs offer a promising therapeutic strategy for treating depression in patients.
Collapse
Affiliation(s)
- Riyue Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junbi Liu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
24
|
Chun SW, Kim W, Lee SY, Lim CY, Kim K, Kim JG, Park CH, Hong SH, Yoo HJ, Chung SG. A randomized controlled trial of stem cell injection for tendon tear. Sci Rep 2022; 12:818. [PMID: 35039529 PMCID: PMC8764049 DOI: 10.1038/s41598-021-04656-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 11/09/2022] Open
Abstract
Tendons have limited reparative ability and perform a relatively simple mechanical function via the extracellular matrix. Thus, the injured tendon might be treated successfully by stem cell transplantation. We performed a randomized, controlled study to investigate the effects of mesenchymal stem cell injection for treating partial tears in the supraspinatus tendon. We enrolled 24 patients with shoulder pain lasting more than 3 months and partial tears in the supraspinatus tendon. Participants were assigned to three groups: stem cells in fibrin glue, normal saline/fibrin glue mixture, and normal saline only, with which intra-lesional injection was performed. Pain at activity and rest, shoulder function and tear size were evaluated. For safety measures, laboratory tests were taken and adverse events were recorded at every visit. Participants were followed up at 6, 12 weeks, 6, 12 months and 2 years after injection. The primary outcome measure was the improvement in pain at activity at 3 months after injection. Twenty-three patients were included in the final analysis. Primary outcome did not differ among groups (p = 0.35). A mixed effect model revealed no statistically significant interactions. Only time significantly predicted the outcome measure. All participants reported transient pain at the injection site. There were no differences in post-injection pain duration or severity. Safety measures did not differ between groups, and there were no persistent adverse events. Stem cell injection into supraspinatus partial tears in patients with shoulder pain lasting more than 3 months was not more effective than control injections.ClinicalTrials.gov Identifier: NCT02298023.
Collapse
Affiliation(s)
- Se-Woong Chun
- Department of Rehabilitation Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Gyeongsangnam-do, Republic of Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea
| | - Sang Yoon Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Chai-Young Lim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Keewon Kim
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong-Gil Kim
- Armed Forces Daejeon Hospital, Daejeon, Republic of Korea
| | - Chul-Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Hwan Hong
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun G Chung
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea. .,Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Institute of Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Palumbo Piccionello A, Riccio V, Senesi L, Volta A, Pennasilico L, Botto R, Rossi G, Tambella AM, Galosi L, Marini C, Vullo C, Gigante A, Zavan B, De Francesco F, Riccio M. Adipose micro-grafts enhance tendinopathy healing in ovine model: An in vivo experimental perspective study. Stem Cells Transl Med 2021; 10:1544-1560. [PMID: 34398527 PMCID: PMC8550708 DOI: 10.1002/sctm.20-0496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
In Europe, approximatively 100 000 to 500 000 tendon repairs are performed every year. These procedures are associated with a considerable rate of postoperative complications (from 6% to 11%). Autologous micro-grafts (AAMG) and stromal vascular fraction (SVF) have been shown to improve tendon healing in 60% to 70% of treated rodents. The purpose of this study was to evaluate the effects of AAMG in a sheep model with tendinopathy. We used sheep models because, as a large animal, they are more comparable to humans. The hypothesis was that SVF injection would improve tendon healing compared with the control group, reducing inflammatory and matrix degrading, while increasing anti-inflammatory expression and collagen synthesis in the early stage of tendon injury. Sixteen Apennine sheep aged 2 to 5 years underwent 500 UI type I collagenase injection into both common calcaneal tendons (CCT) to induce tendinopathy. After 15 days (T0), one CCT in every ovine underwent randomly to 2.5 mL of AAMG obtained by mechanical disruption and the contralateral CCTs received no treatment. Clinical, ecographic, and sonographic evaluations were performed after 4 weeks (T1) and 8 weeks (T2). Histological, immunohistochemical, real-time polymerase chain reaction (RT-PCR), and biomechanical evaluations were performed at T2. At T2, the treated group showed a final tendon diameter (9.1 ± 1.4 mm) and a hardness expression (62%) that were similar to the original healthy tendon (8.1 ± 1.1 mm; 100%), with a significant recovery compared with the control group (9.5 ± 1.7 mm; 39%). Moreover, histological analysis of the treated group revealed an improvement in the fiber orientation score, fiber edema score, infiltrative-inflammatory process, and necrosis score (4.3 ± 3.3) compared with control group (8.8 ± 2.9). Immunohistochemically, the treated group showed high expression of collagen 1, Factor VIII and significantly low expression of collagen 3. These data were confirmed by RT-PCR analysis. The study findings suggested that AAMGs obtained through mechanical disruption present a safe, efficient, and reliable technique, enhancing tendon healing.
Collapse
Affiliation(s)
| | - Valentina Riccio
- School of Biosciences and Veterinary Medicine, University of CamerinoMatelicaItaly
| | - Letizia Senesi
- Department of Plastic and Reconstructive Surgery‐Hand Surgery UnitAzienda ‘OspedaliRiuniti’ AnconaAnconaItaly
| | - Antonella Volta
- Department of Veterinary Medicine ScienceUniversity of ParmaParmaItaly
| | - Luca Pennasilico
- School of Biosciences and Veterinary Medicine, University of CamerinoMatelicaItaly
| | - Riccardo Botto
- School of Biosciences and Veterinary Medicine, University of CamerinoMatelicaItaly
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of CamerinoMatelicaItaly
| | | | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of CamerinoMatelicaItaly
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of CamerinoMatelicaItaly
| | - Cecilia Vullo
- School of Biosciences and Veterinary Medicine, University of CamerinoMatelicaItaly
| | - Antonio Gigante
- Clinical Orthopaedics, Department of Clinical and Molecular SciencePolytechnic University of MarcheAnconaItaly
| | - Barbara Zavan
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Francesco De Francesco
- Department of Plastic and Reconstructive Surgery‐Hand Surgery UnitAzienda ‘OspedaliRiuniti’ AnconaAnconaItaly
| | - Michele Riccio
- Department of Plastic and Reconstructive Surgery‐Hand Surgery UnitAzienda ‘OspedaliRiuniti’ AnconaAnconaItaly
| |
Collapse
|
26
|
Cho WS, Chung SG, Kim W, Jo CH, Lee SU, Lee SY. Mesenchymal Stem Cells Use in the Treatment of Tendon Disorders: A Systematic Review and Meta-Analysis of Prospective Clinical Studies. Ann Rehabil Med 2021; 45:274-283. [PMID: 34496470 PMCID: PMC8435464 DOI: 10.5535/arm.21078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the efficacy and safety of mesenchymal stem cells (MSCs) therapy in patients with tendon disorders enrolled in prospective clinical studies. Methods We systematically searched prospective clinical studies that investigated the effects of MSC administration on human tendon disorders with at least a 6-month follow-up period in the PubMed-MEDLINE, EMBASE, and Cochrane Library databases. The primary outcome of interest was the change in pain on motion related to tendon disorders. Meta-regression analyses were performed to assess the relationship between MSC dose and pooled effect sizes in each cell dose. Results Four prospective clinical trials that investigated the effect of MSCs on tendon disorders were retrieved. MSCs showed a significant pooled effect size (overall Hedges’ g pooled standardized mean difference=1.868; 95% confidence interval, 1.274–2.462; p<0.001). The treatment with MSCs improved all the aspects analyzed, namely pain, functional scores, radiological parameters (magnetic resonance image or ultrasonography), and arthroscopic findings. In the meta-regression analysis, a significant cell dose-dependent response in pain relief (Q=9.06, p=0.029) was observed. Conclusion Our meta-analysis revealed that MSC therapy may improve pain, function, radiological, and arthroscopic parameters in patients with tendon disorders. A strong need for large-scale randomized controlled trials has emerged to confirm the long-term functional improvement and adverse effects of MSC therapies in tendon disorders.
Collapse
Affiliation(s)
- Woo Sup Cho
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sun Gun Chung
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Kim
- Department of Orthopedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Chris H Jo
- Department of Orthopedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Shi-Uk Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Sang Yoon Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
27
|
Yao Z, Li J, Xiong H, Cui H, Ning J, Wang S, Ouyang X, Qian Y, Fan C. MicroRNA engineered umbilical cord stem cell-derived exosomes direct tendon regeneration by mTOR signaling. J Nanobiotechnology 2021; 19:169. [PMID: 34090456 PMCID: PMC8180131 DOI: 10.1186/s12951-021-00906-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Background Exosomes are extracellular vesicles of nano-structures and represent an emerging nano-scale acellular therapy in recent years. Tendon regeneration is a sophisticated process in the field of microsurgery due to its poor natural healing ability. To date, no successful long-term solution has been provided for the healing of tendon injuries. Functional recovery requires advanced treatment strategies. Human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos) are considered as promising cell-free therapeutic agents. However, few studies reported their potential in the tendon repair previously. In this study, we explored the roles and underlying mechanisms of HUMSC-Exos in the tendon regeneration. Results Expression of tendon‐specific markers in, and collagen deposition by, tendon-derived stem cells (TDSCs) treated with HUMSC-Exos increased in vitro. In a rat Achilles tendon injury model, treatment with HUMSC-Exos improved the histological structure, enhanced tendon-specific matrix components, and optimized biomechanical properties of the Achilles tendon. Findings in miRNA sequencing indicated a significant increase in miR-29a-3p in HUMSC-Exo-treated Achilles tendons. Next, luciferase assay in combination with western blot identified phosphatase and tensin homolog (PTEN) as the specific target of miR-29a-3p. Furthermore, we applied a miR-29a-3p-specific agonist to engineer HUMSC-Exos. These HUMSC-Exos overexpressing miR-29a-3p amplified the gain effects of HUMSC-Exos on tendon healing in vivo. To explore the underlying mechanisms, a transforming growth factor-β1 (TGF-β1) inhibitor (SB-431542), mTOR inhibitor (rapamycin), and engineered HUMSC-Exos were employed. The results showed that TGF-β1 and mTOR signaling were involved in the beneficial effects of HUMSC-Exos on tendon regeneration. Conclusion The findings in our study suggest that PTEN/mTOR/TGF-β1 signaling cascades may be a potential pathway for HUMSC-Exos to deliver miR-29a-3p for tendon healing and implicate a novel therapeutic strategy for tendon regeneration via engineered stem cell-derived exosomes. Graphic abstract ![]()
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Haomin Cui
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiexin Ning
- Department of Plastics, Binzhou People's Hospital, Binzhou, 256610, China
| | - Shikun Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xingyu Ouyang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yun Qian
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
28
|
Zhang Z, Li Y, Zhang T, Shi M, Song X, Yang S, Liu H, Zhang M, Cui Q, Li Z. Hepatocyte Growth Factor-Induced Tendon Stem Cell Conditioned Medium Promotes Healing of Injured Achilles Tendon. Front Cell Dev Biol 2021; 9:654084. [PMID: 33898452 PMCID: PMC8059769 DOI: 10.3389/fcell.2021.654084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Tendon repair is a medical challenge. Our present study investigated the effectiveness of acellular therapy consisting of conditioned medium (CM) of tendon stem cells (TSCs) induced with hepatocyte growth factor (HGF) in promoting the healing of injured Achilles tendon in a rat model. Proteomic analysis of soluble substances in the CM was performed using an array chip, and bioinformatic analysis was carried out to evaluate interactions among the factors. The effects of CM on viability and migratory capacity of tendon fibroblasts derived from rats with ruptured Achilles tendon were evaluated with the Cell Counting Kit 8 and wound healing assay, respectively. The expression of extracellular matrix (ECM)-related protein was assessed by western blotting. Rats with Achilles tendon injury were treated with CM by local injection for 2 weeks, and the organization of tendon fibers at the lesion site was evaluated by hematoxylin and eosin and Masson's trichrome staining of tissue samples. The deposition and degradation of ECM proteins and the expression of inflammatory factors at the lesion site were evaluated by immunohistochemistry and immunofluorescence. Biomechanical testing was carried out on the injured tendons to assess functional recovery. There were 12 bioactive molecules in the CM, with HGF as the hub of the protein-protein interaction network. CM treatment enhanced the viability and migration of tendon fibroblasts, altered the expression of ECM proteins, promoted the organization of tendon fibers, suppressed inflammation and improved the biomechanics of the injured Achilles tendon. These results suggest that HGF stimulates the secretion of soluble secretory products by TSCs and CM promotes the repair and functional recovery of ruptured Achilles tendon. Thus, HGF-induced TSC CM has therapeutic potential for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutian Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Song
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Bochon K, Zielniok K, Gawlak M, Zawada K, Zarychta-Wiśniewska W, Siennicka K, Struzik S, Pączek L, Burdzińska A. The Effect of L-Ascorbic Acid and Serum Reduction on Tenogenic Differentiation of Human Mesenchymal Stromal Cells. Int J Stem Cells 2021; 14:33-46. [PMID: 33122467 PMCID: PMC7904532 DOI: 10.15283/ijsc20023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives Despite significant improvement in the treatment of tendon injuries, the full tissue recovery is often not possible because of its limited ability to auto-repair. The transplantation of mesenchymal stromal cells (MSCs) is considered as a novel approach in the treatment of tendinopathies. The question about the optimal culture conditions remains open. In this study we aimed to investigate if serum reduction, L-ascorbic acid supplementation or a combination of both factors can induce tenogenic differentiation of human adipose-derived MSCs (ASCs). Methods and Results Human ASCs from 3 healthy donors were used in the study. The tested conditions were: 0.5 mM of ascorbic acid 2-phosphate (AA-2P), reduced serum content (2% FBS) or combination of these two factors. The combination of AA-2P and 2% FBS was the only experimental condition that caused a significant increase of the expression of all analyzed genes related to tenogenesis (SCLERAXIS, MOHAWK, COLLAGEN_1, COLLAGEN_3, DECORIN) in comparison to the untreated control (evaluated by RT-PCR, 5th day of experiment). Moreover, this treatment significantly increased the synthesis of SCLERAXIS, MOHAWK, COLLAGEN_1, COLLAGEN_3 proteins at the same time point (evaluated by Western blot method). Double immunocytochemical staining revealed that AA-2P significantly increased the extracellular deposition of both types of collagens. Semi-quantitative Electron Spin Resonance analysis of ascorbyl free radical revealed that AA-2P do not induce harmful transition metals-driven redox reactions in cell culture media. Conclusions Obtained results justify the use of reduced content of serum with the addition of 0.5 mM of AA-2P in tenogenic inducing media.
Collapse
Affiliation(s)
- Karolina Bochon
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Zielniok
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Gawlak
- Department of Pharmacodynamics and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Zawada
- Department of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Sławomir Struzik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Burdzińska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Chen W, Sun Y, Gu X, Cai J, Liu X, Zhang X, Chen J, Hao Y, Chen S. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials 2021; 271:120714. [PMID: 33610048 DOI: 10.1016/j.biomaterials.2021.120714] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023]
Abstract
Rotator cuff repair is a common surgery in sports medicine. During the surgery, torn tendon was re-fixed onto the bony surface. The majority of patients gain good results. However, re-tear occurs in some patients. The reason under this phenomenon is that the normal tendon-bone enthesis cannot be reconstructed. In order to strengthen the tendon-bone healing and promote enthesis regeneration, numerous manners are tested, among which stem cell related therapies are preferred. Stem cells, due to the ability of multi-lineage differentiation, are widely used in regenerative medicine. However, safety and ethics concerns limit its clinical use. Recent studies found that it is the secretome of stem cells that is biologically effective. On ground of this, we, in the current study, collected the conditioned medium of human bone marrow-derived stem cells (hBMSC-CM) and tested whether this acellular method could promote tendon-bone healing in a rat model of rotator cuff repair. By using histological, radiological, and biomechanical methods, we found that hBMSC-CM promoted tendon-bone healing of the rat rotator cuff. Then, we noticed that hBMSC-CM exerted an impact on macrophage polarization both in vivo and in vitro by inhibiting M1 phenotype and promoting M2 phenotype. Further, we proved that the benefit of hBMSC-CM on tendon-bone healing was related to its regulation on macrophage. Finally, we proved that, hBMSC-CM influenced macrophage polarization, which was, at least partially, related to Smad2/3 signaling pathway. Based on the experiments above, we confirmed the benefit of hBMSC-CM on tendon-bone healing, which relied on its immune-regulative property. Considering the accessibility and safety of acellular hBMSC-CM, we believe it is a promising candidate clinically for tendon-bone healing.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xueping Gu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xingyu Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
31
|
Kamm JL, Riley CB, Parlane N, Gee EK, McIlwraith CW. Interactions Between Allogeneic Mesenchymal Stromal Cells and the Recipient Immune System: A Comparative Review With Relevance to Equine Outcomes. Front Vet Sci 2021; 7:617647. [PMID: 33521090 PMCID: PMC7838369 DOI: 10.3389/fvets.2020.617647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Despite significant immunosuppressive activity, allogeneic mesenchymal stromal cells (MSCs) carry an inherent risk of immune rejection when transferred into a recipient. In naïve recipients, this immune response is initially driven by the innate immune system, an immediate reaction to the foreign cells, and later, the adaptive immune system, a delayed response that causes cell death due to recognition of specific alloantigens by host cells and antibodies. This review describes the actions of MSCs to both suppress and activate the different arms of the immune system. We then review the survival and effectiveness of the currently used allogeneic MSC treatments.
Collapse
Affiliation(s)
- J Lacy Kamm
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christopher B Riley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Natalie Parlane
- Hopkirk Laboratory, AgResearch, Palmerston North, New Zealand
| | - Erica K Gee
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medical Institute, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
32
|
Park H, Kim IG, Wu Y, Cho H, Shin J, Park SA, Chung E. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and
3D
printing polycaprolactone scaffolds using a rat model. Head Neck 2020; 43:833-848. [DOI: 10.1002/hed.26540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hanaro Park
- Department of Otorhinolaryngology‐Head & Neck Surgery Samsung Changwon Hospital, Sungkyunkwan University School of Medicine Changwon South Korea
| | - In Gul Kim
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Yanru Wu
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Hana Cho
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Jung‐Woog Shin
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Su A Park
- Department of Nature‐Inspired Nanoconvergence Systems Korea Institute of Machinery and Materials Daejeon Republic of Korea
| | - Eun‐Jae Chung
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| |
Collapse
|
33
|
Yea JH, Kim I, Sym G, Park JK, Lee AY, Cho BC, Bae TS, Kim BJ, Jo CH. Regeneration of a full-thickness defect in rotator cuff tendon with umbilical cord-derived mesenchymal stem cells in a rat model. PLoS One 2020; 15:e0235239. [PMID: 33166292 PMCID: PMC7652329 DOI: 10.1371/journal.pone.0235239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Although rotator cuff disease is a common cause of shoulder pain, there is still no treatment method that could halt or reveres its development and progression. The purpose of this study was to investigate the efficacy of umbilical cord-derived mesenchymal stem cells (UC MSCs) on the regeneration of a full-thickness rotator cuff defect (FTD) in a rat model. We injected either UC MSCs or saline to the FTD and investigated macroscopic, histological and biomechanical results and cell trafficking. Treatment with UC MSCs improved macroscopic appearance in terms of tendon thickness at two weeks, and inflammation, defect size, swelling/redness and connection surrounding tissue and slidability at four weeks compared to the saline group. Histologically, UC MSCs induced the tendon matrix formation recovering collagen organization, nuclear aspect ratio and orientation angle of fibroblast as well as suppressing cartilage-related glycosaminoglycan compared to saline group at four weeks. The UC MSCs group also improved ultimate failure load by 25.0% and 19.0% and ultimate stress by 27.3% and 26.8% at two and four weeks compared to saline group. UC MSCs labeled with PKH26 exhibited 5.3% survival at four weeks compared to three hours after injection. This study demonstrated that UC MSCs regenerated the FTD with tendon tissue similar properties to the normal tendon in terms of macroscopic, histological and biomechanical characteristics in a rat model.
Collapse
Affiliation(s)
- Ji-Hye Yea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - InJa Kim
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Gayoung Sym
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Kyung Park
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ah-Young Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong Chan Cho
- Department of Biomedical Engineering, Collage of Science and Engineering, Jungwon University, Goesan-gun, Chungcheongbuk-do, Korea
| | - Tae Soo Bae
- Department of Biomedical Engineering, Collage of Science and Engineering, Jungwon University, Goesan-gun, Chungcheongbuk-do, Korea
| | - Byoung Jae Kim
- Department of Obstetrics & Gynecology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chris Hyunchul Jo
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
35
|
Wang HN, Huang YC, Ni GX. Mechanotransduction of stem cells for tendon repair. World J Stem Cells 2020; 12:952-965. [PMID: 33033557 PMCID: PMC7524696 DOI: 10.4252/wjsc.v12.i9.952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tendon is a mechanosensitive tissue that transmits force from muscle to bone. Physiological loading contributes to maintaining the homeostasis and adaptation of tendon, but aberrant loading may lead to injury or failed repair. It is shown that stem cells respond to mechanical loading and play an essential role in both acute and chronic injuries, as well as in tendon repair. In the process of mechanotransduction, mechanical loading is detected by mechanosensors that regulate cell differentiation and proliferation via several signaling pathways. In order to better understand the stem-cell response to mechanical stimulation and the potential mechanism of the tendon repair process, in this review, we summarize the source and role of endogenous and exogenous stem cells active in tendon repair, describe the mechanical response of stem cells, and finally, highlight the mechanotransduction process and underlying signaling pathways.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
36
|
Desai S, Jayasuriya CT. Implementation of Endogenous and Exogenous Mesenchymal Progenitor Cells for Skeletal Tissue Regeneration and Repair. Bioengineering (Basel) 2020; 7:E86. [PMID: 32759659 PMCID: PMC7552784 DOI: 10.3390/bioengineering7030086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Harnessing adult mesenchymal stem/progenitor cells to stimulate skeletal tissue repair is a strategy that is being actively investigated. While scientists continue to develop creative and thoughtful ways to utilize these cells for tissue repair, the vast majority of these methodologies can ultimately be categorized into two main approaches: (1) Facilitating the recruitment of endogenous host cells to the injury site; and (2) physically administering into the injury site cells themselves, exogenously, either by autologous or allogeneic implantation. The aim of this paper is to comprehensively review recent key literature on the use of these two approaches in stimulating healing and repair of different skeletal tissues. As expected, each of the two strategies have their own advantages and limitations (which we describe), especially when considering the diverse microenvironments of different skeletal tissues like bone, tendon/ligament, and cartilage/fibrocartilage. This paper also discusses stem/progenitor cells commonly used for repairing different skeletal tissues, and it lists ongoing clinical trials that have risen from the implementation of these cells and strategies. Lastly, we discuss our own thoughts on where the field is headed in the near future.
Collapse
Affiliation(s)
| | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and the Rhode Island Hospital, Providence, RI 02903, USA;
| |
Collapse
|
37
|
Wang Z, Zhu H, Dai S, Liu K, Ge C. Alleviation of medial meniscal transection-induced osteoarthritis pain in rats by human adipose derived mesenchymal stem cells. Stem Cell Investig 2020; 7:10. [PMID: 32695803 DOI: 10.21037/sci-2020-003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Knee osteoarthritis (KOA) is a degenerative joint disorder manifested with deformity, pain, and functional disability due to damage of the articular cartilage. Cell therapy with mesenchymal stem cells (MSCs) holds great promise to alleviate or even cure the degenerative diseases including KOA. However, the evidence of efficacy of human adipose tissue-derived MSCs (hAdMSCs) on KOA therapy remains limited. Here, we evaluate the therapeutic efficacy of hAdMSCs for KOA, using a medial meniscal transection (MMT) rat model. Our study demonstrated that intra-articular injection of 1.25×106 hAdMSCs significantly attenuated MMT-induced joint pain in a KOA rats model. The results of this study provide strong evidence that hAdMSCs-based therapy can be regarded as a prominent treatment option for patients with KOA.
Collapse
Affiliation(s)
- Zhifeng Wang
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| | - Shuhang Dai
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| | - Ke Liu
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| | - Chenxi Ge
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| |
Collapse
|
38
|
Kokubu S, Inaki R, Hoshi K, Hikita A. Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regen Ther 2020; 14:103-110. [PMID: 31989000 PMCID: PMC6970144 DOI: 10.1016/j.reth.2019.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Achilles tendinopathy is characterized by scar formation or ectopic ossification, both of which result in pain and worsened physical function in athletes and older people. Although cell therapy using adipose-derived stem cells (ASCs) has been shown to be effective for tendinopathy, the underlying mechanisms by which ASCs result in tendon healing in vivo have not yet been fully clarified. METHODS ASCs were obtained from the fat pads of EGFP transgenic mice by collagenase digestion. C57BL/6 mice were used in a collagenase-induced injury model. ASCs were transplanted into injury sites at 1 week after injury. Tendons were harvested at 9 days, 2 weeks, and 4 weeks after transplantation, and analyzed by histological examination and μCT scanning. RESULTS Histological analysis and μCT scanning revealed greater recovery of collagen fibers and suppression of ectopic ossification in the ASC-treated group than in the control group at 2 and 4 weeks after injury. Immunohistochemical analysis identified transplanted ASCs in the tendon core close to peritenon and connective tissue at 2 days and 1 week after transplantation, but not at 3 weeks. Furthermore, while the expression levels of IL-1β, GLUT1, and CA9 were significantly reduced in the ASC group compared to the control group at 9 days after injury, those of VEGF and the number of CD31 positive vessels were significantly increased. CONCLUSION The efficacy of ASCs for tendon repair and the prevention of ectopic ossification in Achilles tendinopathy were demonstrated. Our data suggest that ASCs can modulate inflammation and induce neovascularization in the early stage of tendon injury.
Collapse
Affiliation(s)
- Saeko Kokubu
- Department of Sensory and Motor System Medicine, Department of Oral and Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryoko Inaki
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuto Hoshi
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
39
|
Kunze KN, Burnett RA, Wright-Chisem J, Frank RM, Chahla J. Adipose-Derived Mesenchymal Stem Cell Treatments and Available Formulations. Curr Rev Musculoskelet Med 2020; 13:264-280. [PMID: 32328959 DOI: 10.1007/s12178-020-09624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The use of human adipose-derived mesenchymal stem cells (ADSCs) has gained attention due to its potential to expedite healing and the ease of harvesting; however, clinical evidence is limited, and questions concerning optimal method of delivery and long-term outcomes remain unanswered. RECENT FINDINGS Administration of ADSCs in animal models has been reported to aid in improved healing benefits with enhanced repair biomechanics, superior gross histological appearance of injury sites, and higher concentrations of growth factors associated with healing compared to controls. Recently, an increasing body of research has sought to examine the effects of ADSCs in humans. Several available processing techniques and formulations for ADSCs exist with evidence to suggest benefits with the use of ADSCs, but the superiority of any one method is not clear. Evidence from the most recent clinical studies available demonstrates promising outcomes following treatment of select musculoskeletal pathologies with ADSCs despite reporting variability among ADSCs harvesting and processing; these include (1) healing benefits and pain improvement for rotator cuff and Achilles tendinopathies, (2) improvements in pain and function in those with knee and hip osteoarthritis, and (3) improved cartilage regeneration for osteochondral focal defects of the knee and talus. The limitation to most of this literature is the use of other therapeutic biologics in combination with ADSCs. Additionally, many studies lack control groups, making establishment of causation inappropriate. It is imperative to perform higher-quality studies using consistent, predictable control populations and to standardize formulations of ADSCs in these trials.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Burnett
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Joshua Wright-Chisem
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rachel M Frank
- Department of Orthopaedic Surgery, Division of Sports Medicine, University of Colorado School of Medicine, Boulder, CO, USA
| | - Jorge Chahla
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
40
|
Kwon SS, Kim H, Shin SJ, Lee SY. Optimization of tenocyte lineage-related factors from tonsil-derived mesenchymal stem cells using response surface methodology. J Orthop Surg Res 2020; 15:109. [PMID: 32183870 PMCID: PMC7079471 DOI: 10.1186/s13018-020-01623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to optimize the tenogenic differentiation of mesenchymal stem cells (MSCs), researchers should consider various factors. However, this requires testing numerous experimental settings, which is costly and time-consuming. We aimed to assess the differential effects of transforming growth factor beta-3 (TGF-β3) on the tenogenesis of tonsil-derived MSCs (T-MSCs) and bone marrow-derived MSCs (BM-MSCs) using response surface methodology (RSM). METHODS Bone marrow and tonsillar tissue were collected from four patients; mononuclear cells were separated and treated with 5 or 10 ng/mL of TGF-β3. A full factorial experimental design with a categorical factor of 0 was employed to study the effect of tension based on T-MSCs. Eighty-four trials were fitted with RSM and then used to obtain mathematical prediction models. RESULTS Exposure of T-MSCs and BM-MSCs to TGF-β3 increased the expression of scleraxis (SCX), tenomodulin (TNMD), decorin, collagen I, and tenascin C. Expression of most of these factors reached a maximum after 2-3 days of treatment. The model predicted that the values of the tenocyte lineage-related factors assessed would be significantly increased at 2.5 days of culture with 2.7 ng/mL of TGF-β3 for T-MSCs and at 2.3 days of culture regardless of TGF-β3 concentration for BM-MSCs. CONCLUSIONS This study demonstrated that the RSM prediction of the culture time necessary for the tenogenic differentiation of T-MSCs and BM-MSCs under TGF-β3 stimulation was similar to the experimentally determined time of peak expression of tenocyte-related mRNAs, suggesting the potential of using the RSM approach for optimization of the culture protocol for tenogenesis of MSCs.
Collapse
Affiliation(s)
- Soon-Sun Kwon
- Department of Mathematics, College of Natural Sciences, Ajou University, Suwon, Gyeonggi, Korea
| | - Hyang Kim
- Department of Orthopaedic Surgery, Ewha Womans University Seoul Hospital, Seoul, Korea.,Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Seung Yeol Lee
- Division of Mechanical & Biomedical Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea. .,Department of Orthopaedic Surgery, Myongji Hospital, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
41
|
Maruyama M, Wei L, Thio T, Storaci HW, Ueda Y, Yao J. The Effect of Mesenchymal Stem Cell Sheets on Early Healing of the Achilles Tendon in Rats. Tissue Eng Part A 2020; 26:206-213. [DOI: 10.1089/ten.tea.2019.0163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Le Wei
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Timothy Thio
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Hunter W. Storaci
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yusuke Ueda
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Jeffrey Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
42
|
Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J Orthop Res 2020; 38:7-12. [PMID: 31529731 PMCID: PMC7307866 DOI: 10.1002/jor.24475] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
Ligament and tendon injuries are common problems in orthopedics. There is a need for treatments that can expedite nonoperative healing or improve the efficacy of surgical repair or reconstruction of ligaments and tendons. Successful biologically-based attempts at repair and reconstruction would require a thorough understanding of normal tendon and ligament healing. The inflammatory, proliferative, and remodeling phases, and the cells involved in tendon and ligament healing will be reviewed. Then, current research efforts focusing on biologically-based treatments of ligament and tendon injuries will be summarized, with a focus on stem cells endogenous to tendons and ligaments. Statement of clinical significance: This paper details mechanisms of ligament and tendon healing, as well as attempts to apply stem cells to ligament and tendon healing. Understanding of these topics could lead to more efficacious therapies to treat ligament and tendon injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:7-12, 2020.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Surgery, Baltimore VA Medical Center, Baltimore, Maryland
| | - Jamie L Kator
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Aaron James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Motomi Enamoto-Iwamoto
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| |
Collapse
|
43
|
Chisari E, Rehak L, Khan WS, Maffulli N. Tendon healing in presence of chronic low-level inflammation: a systematic review. Br Med Bull 2019; 132:97-116. [PMID: 31838495 DOI: 10.1093/bmb/ldz035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tendinopathy is a common musculoskeletal condition affecting subjects regardless of their activity level. Multiple inflammatory molecules found in ex vivo samples of human tendons are related to the initiation or progression of tendinopathy. Their role in tendon healing is the subject of this review. SOURCES OF DATA An extensive review of current literature was conducted using PubMed, Embase and Cochrane Library using the term 'tendon', as well as some common terms of tendon conditions such as 'tendon injury OR (tendon damage) OR tendonitis OR tendinopathy OR (chronic tendonitis) OR tendinosis OR (chronic tendinopathy) OR enthesitis' AND 'healing' AND '(inflammation OR immune response)' as either key words or MeSH terms. AREAS OF AGREEMENT An environment characterized by a low level of chronic inflammation, together with increased expression of inflammatory cytokines and growth factors, may influence the physiological tendon healing response after treatment. AREAS OF CONTROVERSY Most studies on this topic exhibited limited scientific translational value because of their heterogeneity. The evidence associated with preclinical studies is limited. GROWING POINTS The role of inflammation in tendon healing is still unclear, though it seems to affect the overall outcome. A thorough understanding of the biochemical mediators of healing and their pathway of pain could be used to target tendinopathy and possibly guide its management. AREAS TIMELY FOR DEVELOPING RESEARCH We require further studies with improved designs to effectively evaluate the pathogenesis and progression of tendinopathy to identify cellular and molecular targets to improve outcomes.
Collapse
Affiliation(s)
- Emanuele Chisari
- University of Catania, Departmento of General Surgery and Medical Specialities, Via Santa Sofia 78, Catania 95123, Italy
| | - Laura Rehak
- Athena Biomedical Innovations, Viale Europa 139, Florence, 50126, Italy
| | - Wasim S Khan
- Division of Trauma and Orthopaedics, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Via Salvador Allende, 43, 84081 Baronissi SA, Italy, Salerno, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D'Aragona, Largo Città di Ippocrate, Salerno, 84131, Italy.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, England.,School of Medicine, Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, England
| |
Collapse
|
44
|
Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an In Vitro Model of Tendon Cell Inflammation. Stem Cells Int 2019; 2019:5620286. [PMID: 31885616 PMCID: PMC6915130 DOI: 10.1155/2019/5620286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) emerged as a promising therapy for tendon pathologies. Microfragmented adipose tissue (μFAT) represents a convenient autologous product for the application of MSC-based therapies in the clinical setting. In the present study, the ability of μFAT to counteract inflammatory processes induced by IL-1β on human tendon cells (TCs) was evaluated. Methods Cell viability and proliferation were evaluated after 48 hours of transwell coculture of TCs and autologous μFAT in the presence or absence of IL-1β. Gene expression of scleraxis, collagen type I and type III, metalloproteinases-1 and -3, and cyclooxygenase-2 was evaluated by real-time RT-PCR. The content of VEGF, IL-1Ra, TNFα, and IL-6 was evaluated by ELISA. Results IL-1β-treated TCs showed augmented collagen type III, metalloproteases, and cyclooxygenase-2 expression. μFAT was able to reduce the expression of collagen type III and metalloproteases-1 in a significant manner, and at the same time, it enhanced the production of VEGF, IL-1Ra, and IL-6. Conclusions In this in vitro model of tendon cell inflammation, the paracrine action of μFAT, exerted by anti-inflammatory molecules and growth factors, was able to inhibit the expression of fibrosis and catabolic markers. Then, these results suggest that the application of μFAT may represent an effective conservative or adjuvant therapy for the treatment of tendon disorders.
Collapse
|
45
|
Reconstruction of Bone Defect Combined with Massive Loss of Periosteum Using Injectable Human Mesenchymal Stem Cells in Biocompatible Ceramic Scaffolds in a Porcine Animal Model. Stem Cells Int 2019; 2019:6832952. [PMID: 31871469 PMCID: PMC6906857 DOI: 10.1155/2019/6832952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/30/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Clinically, in patients who sustain severe open fractures, there is not only a segmental bone defect needed to be reconstructed but also insufficient healing capacity due to concomitant damages to the periosteum and surrounding soft tissues. For studying the reconstruction of bone defects associated with massive loss of periosteum and surrounding soft tissues, there are no well-established preclinical models in large animals in the literature. The purpose of the study was to generate a large animal model of bone defect with massive periosteum loss and to adopt a tissue engineering approach to achieve rapid bony union with stem cells and biomaterials. In this study, a bone defect with massive periosteum stripping was generated in pigs, which was followed by emptying nearby canal marrow including fat and cancellous bone. The stripped periosteum was a mimic to the situation in the Gustilo type 3 open fractures. Bone defects were then reconstructed by impacting the biocompatible ceramic scaffold, morselized tricalcium phosphate (TCP) loaded with human adipose tissue-derived mesenchymal stem cells (hMSCs). Radiological and pathological assessments indicated that TCP and hMSCs synergistically promoted bone healing with increased lamination and ingrowth of vessels. Both bridging periosteum formation and gap filling were induced rapidly. In conclusion, a porcine model of segmental bone loss with damage of surrounding periosteum was created. Reconstruction of such defects with hMSCs and TCP achieved rapid union of bone defects associated with massive periosteal stripping.
Collapse
|
46
|
Kim IG, Wu Y, Park SA, Cho H, Choi JJ, Kwon SK, Shin JW, Chung EJ. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction. Tissue Eng Part A 2019; 25:1478-1492. [DOI: 10.1089/ten.tea.2018.0277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Yanru Wu
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Su A. Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jun Jae Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
The role of biologic agents in the management of common shoulder pathologies: current state and future directions. J Shoulder Elbow Surg 2019; 28:2041-2052. [PMID: 31585784 DOI: 10.1016/j.jse.2019.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023]
Abstract
The field of orthopedic surgery has seen a rapid increase in the use of various biologic agents for the treatment of common musculoskeletal injuries. Most biologic agents attempt to harness or mimic naturally occurring growth factors, cytokines, and anti-inflammatory mediators to improve tissue healing and recovery. The most commonly used biologic agents are platelet-rich plasma and cells derived from bone marrow aspirate and adipose tissue. These agents have become increasingly popular despite a relative dearth of clinical data to support their use. Much confusion exists among patients and physicians in determining the role of these agents in treating common shoulder pathologies, such as glenohumeral osteoarthritis, rotator cuff tears, and tendinopathy. This article reviews the basic science and clinical evidence for the most commonly used biologic agents in the management of common shoulder pathology.
Collapse
|
48
|
Kim IG, Hwang MP, Park JS, Kim S, Kim J, Kang HJ, Subbiah R, Ko UH, Shin JH, Kim C, Choi D, Park K. Stretchable ECM Patch Enhances Stem Cell Delivery for Post-MI Cardiovascular Repair. Adv Healthc Mater 2019; 8:e1900593. [PMID: 31304685 DOI: 10.1002/adhm.201900593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 12/18/2022]
Abstract
Current cell-based therapies administered after myocardial infarction (MI) show limited efficacy due to subpar cell retention in a dynamically beating heart. In particular, cardiac patches generally provide a cursory level of cell attachment due to the lack of an adequate microenvironment. From this perspective, decellularized cell-derived ECM (CDM) is attractive in its recapitulation of a natural biophysical environment for cells. Unfortunately, its weak physical property renders it difficult to retain in its original form, limiting its full potential. Here, a novel strategy to peel CDM off from its underlying substrate is proposed. By physically stamping it onto a polyvinyl alcohol hydrogel, the resulting stretchable extracellular matrix (ECM) membrane preserves the natural microenvironment of CDM, thereby conferring a biological interface to a viscoelastic membrane. Its various mechanical and biological properties are characterized and its capacity to improve cardiomyocyte functionality is demonstrated. Finally, evidence of enhanced stem cell delivery using the stretchable ECM membrane is presented, which leads to improved cardiac remodeling in a rat MI model. A new class of material based on natural CDM is envisioned for the enhanced delivery of cells and growth factors that have a known affinity with ECM.
Collapse
Affiliation(s)
- In Gul Kim
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Department of Otorhinolaryngology‐Head and Neck SurgerySeoul National University Hospital Seoul 03080 Republic of Korea
| | - Mintai P. Hwang
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Meinig School of Biomedical EngineeringCornell University Ithaca NY 14853 USA
| | - Jin Sil Park
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Su‐Hyun Kim
- Center for NeuroscienceKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Jung‐Hyun Kim
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Hyo Jin Kang
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Ramesh Subbiah
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Ung Hyun Ko
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jennifer H. Shin
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Chong‐Hyun Kim
- Center for NeuroscienceKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Donghoon Choi
- Severance Cardiovascular HospitalYonsei University Health System Seoul 03722 Republic of Korea
| | - Kwideok Park
- Center for BiomaterialsKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science and TechnologyUniversity of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
49
|
Sun Y, Chen W, Hao Y, Gu X, Liu X, Cai J, Liu S, Chen J, Chen S. Stem Cell-Conditioned Medium Promotes Graft Remodeling of Midsubstance and Intratunnel Incorporation After Anterior Cruciate Ligament Reconstruction in a Rat Model. Am J Sports Med 2019; 47:2327-2337. [PMID: 31306585 DOI: 10.1177/0363546519859324] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Stem cell-conditioned medium (CM) has been increasingly used in regenerative medicine. However, its effect on graft-host integration after anterior cruciate ligament (ACL) reconstruction (ACLR) remains unclear. PURPOSE To examine the effect of human bone marrow stem cell (hBMSC)-CM on graft-bone integration and graft midsubstance ligamentization in a rat model of ACLR. STUDY DESIGN Controlled laboratory study. METHODS CM was obtained from the supernatant of commercially available hBMSCs in serum-free Dulbecco's modified Eagle medium (DMEM). In a rat model of an ACL injury, isometric ACLR was performed. Three groups were established: CM injection group (CM; n = 40), control injection group (CI; n = 40) with serum-free DMEM injections, and no injection group (NI; n = 40). An intra-articular injection was performed weekly. Micro-computed tomography was conducted at 2, 4, and 8 weeks postoperatively. Histological and biomechanical analyses were conducted at 4 and 8 weeks postoperatively. The NIH3T3 fibroblast was utilized as a model in vitro to examine the effect of CM using the cell counting kit-8 (CCK-8) assay and immunofluorescence staining of Ki-67, α-smooth muscle actin (α-SMA), and collagen 1 (Col 1). RESULTS At 4 and 8 weeks, the femoral and tibial bone tunnel areas as well as the interface between the graft and host bone were smaller, while the bone volume/total volume ratio was higher, in the CM group. Sharpey-like fibers formed at 8 weeks in the CM group. At 4 and 8 weeks, more Col 1 was noticed in the CM group than in the NI group (both P < .001) or CI group (both P < .001). Immunohistochemically, the α-SMA-positive area was up-regulated at the graft-bone interface at 4 weeks (P < .001) and declined at 8 weeks (P < .001) in the CM group compared with the other 2 groups. At the midsubstance, α-SMA expression decreased from 4 to 8 weeks in all groups and was significantly lower in the CM group than in the NI group (P < .01) or CI group (P < .05) at 8 weeks. The CCK-8 assay showed that CM increased NIH3T3 viability (P < .001) and the level of Ki-67 (P < .05), α-SMA (P < .001), and Col 1 (P < .001) in CM-educated NIH3T3 cells. CONCLUSION hBMSC-CM accelerates graft-bone incorporation and midsubstance ligamentization and enhances the proliferation, differentiation, and collagen synthesis of fibroblasts. CLINICAL RELEVANCE Graft-host integration is essential after ACLR. The current study identified a novel agent, that is, hBMSC-CM, as a candidate for promoting integration.
Collapse
Affiliation(s)
- Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuefeng Hao
- Department of Orthopaedic Surgery, Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Xueping Gu
- Department of Orthopaedic Surgery, Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Chen W, Sun Y, Gu X, Hao Y, Liu X, Lin J, Chen J, Chen S. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy. J Tissue Eng Regen Med 2019; 13:1618-1628. [PMID: 31210406 DOI: 10.1002/term.2916] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
Evidence accumulated that mesenchymal stem cell (MSC) therapy ameliorated osteoarthritis (OA) via paracrine effect, whereas conditioned medium (CM) of MSCs contains all the secretomes. In vitro studies have proved its therapeutic effect in OA, but few in vivo evidences were unveiled. This study investigated the effect of MSCs-CM in an animal model of OA. OA was induced by anterior cruciate ligament transaction and destabilization of the medial meniscus in 12 rats bilaterally. The CM group (N = 6) was administered with intraarticular injection of MSCs-CM weekly, whereas the phosphate-buffered saline (PBS) group (N = 6) was injected with PBS. Six rats served as normal control and received sham operation with weekly PBS injection. Rats were sacrificed 8 weeks postoperatively. Gross and histological morphology were analysed. Microcomputed tomography was applied to assess the subchondral bone. Components of extracellular matrix (ECM) including type II collagen (Col II) and aggrecan, and ECM homeostasis-related enzymes (metalloproteinase-13 [MMP-13] and tissue inhibitor of metalloproteinase-1 [TIMP-1]), as well as autophagy markers (Beclin-1 and microtubule-associated protein light chain 3) were evaluated immunohistochemically. Chondrocyte apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining. Gene expression of Col II, aggrecan, MMP-13, and TIMP-1 was confirmed by real-time polymerase chain reaction. Morphological outcomes demonstrated remarkable articular-protective effect of MSCs-CM. Well-maintained subchondral bone structure, significantly more abundant cartilage matrix, notably decreased ratio of MMP-13 to TIMP-1, and inhibited chondrocyte apoptosis with enhanced autophagy were observed in the CM group compared with the PBS group. In conclusion, MSCs-CM demonstrated satisfactory effect in alleviating OA in rats via protecting the microarchitecture of subchondral bone, balancing the ratio of MMP-13 to TIMP-1 in cartilage, and enhancing autophagy, which might provide a new remedy against OA.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueping Gu
- Department of Orthopaedics and Sports Medicine, The Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopaedics and Sports Medicine, The Northern Branch of Suzhou Municipal Hospital, Suzhou, China
| | - Xingwang Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|