1
|
Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci 2023; 24:12716. [PMID: 37628897 PMCID: PMC10454025 DOI: 10.3390/ijms241612716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear. At first glance, such issues are huge hurdles in the way of immortalized cells translation into medicine. However, there are certain ways to overcome such barriers that we describe in this review. We determined four major areas of usage of immortalized cells for practical medicinal purposes, and each has its own means to negate the drawbacks associated with immortalization. Moreover, here we describe specific fields of application of immortalized cells in which these problems are of much lesser concern, for example, in some cases where the possibility of malignant growth is not there at all. In general, we can conclude that immortalized cells have their niches in certain areas of practical medicine where they can successfully compete with other therapeutic approaches, and more preclinical and clinical trials with them should be expected.
Collapse
Affiliation(s)
- Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
2
|
Orthobiologic Interventions for Muscle Injuries. Phys Med Rehabil Clin N Am 2023; 34:181-198. [DOI: 10.1016/j.pmr.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Liu J, Liao Z, Wang J, Xiang H, Zhu X, Che X, Tang Y, Xie J, Mao C, Zhao H, Xiong Y. Research on skeletal muscle impact injury using a new rat model from a bioimpact machine. Front Bioeng Biotechnol 2022; 10:1055668. [PMID: 36452210 PMCID: PMC9701740 DOI: 10.3389/fbioe.2022.1055668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 08/26/2023] Open
Abstract
Introduction: Skeletal muscle impact injury occurs frequently during sports, falls, and road traffic accidents. From the reported studies on skeletal muscle injury, it is difficult to determine the injury parameters. Therefore, we developed a new model of gastrocnemius impact injury in rats with a bioimpact machine, with which the experimental operation could be conducted in feasibility from the recorded parameters. Through this novel model, we study the skeletal muscle impact injury mechanisms by combining temporal and spatial variation. Methods: The gastrocnemius of anesthetized rats was injured by a small pneumatic-driven bioimpact machine; the moving speed and impact force were determined, and the whole impact process was captured by a high-speed camera. We observed the general condition of rats and measured the changes in injured calf circumference, evaluating calf injuries using MRI, gait analysis system, and pathology at different times after the injury. Results: The gastrocnemius was injured at an impact speed of 6.63 m/s ± 0.25 m/s and a peak force of 1,556.80 N ± 110.79 N. The gait analysis system showed that the footprint area of the RH limb decreased significantly on the first day and then increased. The calf circumference of the injured limb increased rapidly on the first day post-injury and then decreased in the next few days. MRI showed edema of subcutaneous and gastrocnemius on the first day, and the area of edema decreased over the following days. HE staining showed edema of cells, extensive hyperemia of blood vessels, and infiltration of inflammatory cells on the first day. Cell edema was alleviated day by day, but inflammatory cell infiltration was the most on the third day. TEM showed that the sarcoplasmic reticulum was dilated on the first day, the mitochondrial vacuolation was obvious on the second day, and the glycogen deposition was prominent on the fifth day. Conclusion: In our experiment, we developed a new and effective experimental animal model that was feasible to operate; the injured area of the gastrocnemius began to show "map-like" changes in the light microscope on the third day. Meanwhile, the gastrocnemius showed a trend of "edema-mitochondrial vacuolation-inflammatory cell aggregation" after impact injury.
Collapse
Affiliation(s)
- Jun Liu
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhikang Liao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingkun Wang
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongyi Xiang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiyan Zhu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xingping Che
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuqian Tang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Chengyi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Xiong
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Luo Z, Qi B, Sun Y, Chen Y, Lin J, Qin H, Wang N, Shi R, Shang X, Chen S, Chen J. Engineering Bioactive M2 Macrophage-Polarized, Anti-inflammatory, miRNA-Based Liposomes for Functional Muscle Repair: From Exosomal Mechanisms to Biomaterials. SMALL 2022; 18:e2201957. [PMID: 35802903 DOI: 10.1002/smll.202201957] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Indexed: 02/05/2023]
Abstract
Severe inflammation and myogenic differentiation disorder are the major obstacles to skeletal muscle healing after injury. MicroRNAs (miRNAs) play an important role as regulatory molecules during the process of muscle healing, but the detailed mechanism of miRNA-mediated intercellular communication between myoblasts and macrophages remains unclear. Here, it is reported that myoblasts secrete miRNAs-enriched exosomes in the inflammatory environment, through which miR-224 is transferred into macrophages to inhibit M2 polarization. Further data demonstrate that WNT-9a may be a direct target of miR-224 for macrophage polarization. In turn, the secretome of M1 macrophages impairs myogenic differentiation and promotes proliferation. Single-cell integration analysis suggests that the elevation of exosome-derived miR-224 is caused by the activation of the key factor E2F1 in myoblasts and demonstrates the RB/E2F1/miR-224/WNT-9a axis. In vivo results show that treatment with antagomir-224 or liposomes containing miR-224 inhibitors suppresses fibrosis and improves muscle recovery. These findings indicate the importance of the crosstalk between myoblasts and macrophages via miRNA-containing exosomes in the regulation of macrophage polarization and myogenic differentiation/proliferation during muscle healing. This study provides a strategy for treating muscle injury through designing an M2 polarization-enabling anti-inflammatory and miRNA-based bioactive material.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Haocheng Qin
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200433, P. R. China
| | - Ning Wang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiliang Shang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| |
Collapse
|
5
|
Jiang X, Yang J, Liu F, Tao J, Xu J, Zhang M. Embryonic stem cell-derived mesenchymal stem cells alleviate skeletal muscle injury induced by acute compartment syndrome. Stem Cell Res Ther 2022; 13:313. [PMID: 35841081 PMCID: PMC9284828 DOI: 10.1186/s13287-022-03000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acute compartment syndrome (ACS), a well-known complication of musculoskeletal injury, results in muscle necrosis and cell death. Embryonic stem cell-derived mesenchymal stem cells (ESC-MSCs) have been shown to be a promising therapy for ACS. However, their effectiveness and potentially protective mechanism remain unknown. The present study was designed to investigate the efficacy and underlying mechanism of ESC-MSCs in ACS-induced skeletal muscle injury. Method A total of 168 male Sprague–Dawley (SD) rats underwent 2 h of intracompartmental pressure elevation by saline infusion into the anterior compartment of the left hindlimb to establish the ACS model. ESC-MSCs were differentiated from the human embryonic stem cell (ESC) line H9. A dose of 1.2 × 106 of ESC-MSCs was intravenously injected during fasciotomy. Post-ACS assessments included skeletal edema index, serum indicators, histological analysis, apoptosis, fibrosis, regeneration, and functional recovery of skeletal muscle. Then, fluorescence microscopy was used to observe the distribution of labeled ESC-MSCs in vivo, and western blotting and immunofluorescence analyses were performed to examine macrophages infiltration in skeletal muscle. Finally, we used liposomal clodronate to deplete macrophages and reassess skeletal muscle injury in response to ESC-MSC therapy. Result ESC-MSCs significantly reduced systemic inflammatory responses, ACS-induced skeletal muscle edema, and cell apoptosis. In addition, ESC-MSCs inhibited skeletal muscle fibrosis and increased regeneration and functional recovery of skeletal muscle after ACS. The beneficial effects of ESC-MSCs on ACS-induced skeletal muscle injury were accompanied by a decrease in CD86-positive M1 macrophage polarization and an increase in CD206-positive M2 macrophage polarization. After depleting macrophages with liposomal clodronate, the beneficial effects of ESC-MSCs were attenuated. Conclusion Our findings suggest that embryonic stem cell-derived mesenchymal stem cells infusion could effectively alleviate ACS-induced skeletal muscle injury, in which the beneficial effects were related to the regulation of macrophages polarization.
Collapse
Affiliation(s)
- Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China. .,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China. .,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Abstract
ABSTRACT As human life expectancy continues to increase and the birth rate continues to decline, the phenomenon of aging is becoming more prominent worldwide. Therefore, addressing the problems associated with global aging has become a current research focus. The main manifestations of human aging are structural degeneration and functional decline of aging tissues and organs, quality of life decline, decreased ability to resist diseases, and high incidence rates of a variety of senile degenerative diseases. Thus far, no ideal treatments have been found. Stem cell (SC) therapies have broad application prospects in the field of regenerative medicine due to the inherent biological characteristics of SCs, such as their plasticity, self-renewal, and multidirectional differentiation potential. Thus, SCs could delay or even reverse aging. This manuscript reviews the causes of human aging, the biological characteristics of SCs, and research progress on age reversal.
Collapse
Affiliation(s)
- Le Chang
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Weiwen Fan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xinghua Pan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| | - Xiangqing Zhu
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| |
Collapse
|
7
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
8
|
Huang Y, Lu D, Ma W, Liu J, Ning Q, Tang F, Li L. miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages. Mol Immunol 2022; 143:68-76. [PMID: 35042119 DOI: 10.1016/j.molimm.2022.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease with major clinical manifestations of human limb joint invasion, joint synovitis, and symmetrical lesions. In recent years, bone marrow mesenchymal stem cells (BMSCs) have been found to have low immunogenicity and immunomodulatory effects, which can regulate other types of cells through exosomes. However, the effect of BMSCs on immune response in the progression of RA has not been fully elucidated. AIMS The current research aimed to investigate the therapeutic effect of microRNA (miR)-223 in exosomes secreted by BMSCs on immune response in the progression of RA. METHODS Firstly, BMSCs were isolated and extracted, and then the influence of BMSCs on the level of inflammatory cytokines was detected by enzyme linked immunosorbent assay (ELISA). Exosomes from BMSCs were extracted and characterized. Some key autoimmune response genes and their protein products were detected in vivo and in vitro by real-time quantitative PCR, western blot and ELISA. Finally, the targeting relationship between miR-223 and NLR family pyrin domain-containing 3 (NLRP3) was predicted by bioanalytical software and verified by luciferase reporter assay and rescue experiments in vitro. RESULTS Exosomes from BMSCs could inhibit the release of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-18 (IL-18), and NLRP3 activation in macrophages and RA rats. In addition, we predicted online that miR-223 could target NLRP3 and provided a possible regulation pathway for the anti-inflammatory effects of BMSCs-secreted exosomes. Furthermore, we further confirmed that miR-223 could target and inhibit the expression of NLRP3. CONCLUSION Taken together, these findings suggest that miR-223 carried by BMSCs-derived exosomes targets NLRP3 to regulate the activation of inflammasomes, which therefore can be served as a possible therapy for RA.
Collapse
Affiliation(s)
- Ying Huang
- School of clinical medicine, Guizhou Medical University, Beijing Road, Guiyang, Guizhou Province, 550004, China; Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, 550003, China.
| | - Daomin Lu
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, 550003, China
| | - Wukai Ma
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, 550003, China.
| | - Jun Liu
- School of clinical medicine, Guizhou Medical University, Beijing Road, Guiyang, Guizhou Province, 550004, China; Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Guiyang, Guizhou Province, 550004, China
| | - Qiaoyi Ning
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, 550003, China
| | - Fang Tang
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, 550003, China
| | - Long Li
- School of clinical medicine, Guizhou Medical University, Beijing Road, Guiyang, Guizhou Province, 550004, China; Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Guiyang, Guizhou Province, 550004, China.
| |
Collapse
|
9
|
Xu J, Ye Z, Han K, Zheng T, Zhang T, Dong S, Jiang J, Yan X, Cai J, Zhao J. Infrapatellar Fat Pad Mesenchymal Stromal Cell-Derived Exosomes Accelerate Tendon-Bone Healing and Intra-articular Graft Remodeling After Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2022; 50:662-673. [PMID: 35224997 DOI: 10.1177/03635465211072227] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Exosomes derived from mesenchymal stromal cells (MSCs) reportedly enhance the healing process. However, no studies have investigated the effect of exosomes from infrapatellar fat pad (IPFP) MSCs on tendon-bone healing and intra-articular graft remodeling after anterior cruciate ligament reconstruction (ACLR). PURPOSE To evaluate the in vivo effect of exosomes from IPFP MSCs on tendon-bone healing and intra-articular graft remodeling in a rat model of ACLR. STUDY DESIGN Controlled laboratory study. METHODS A total of 90 skeletally mature male Sprague Dawley rats underwent unilateral ACLR using an autograft. All rats were randomly divided into 3 groups: sham injection (SI) group (n = 30), control injection (CI) group (n = 30), and IPFP MSC-derived exosome injection (IMEI) group (n = 30). At 2, 4, and 8 weeks postoperatively, tendon-bone healing and intra-articular graft remodeling were evaluated via biomechanical testing, micro-computed tomography, and histological analysis; macrophage polarization was evaluated using immunohistochemical staining. RESULTS Biomechanical testing demonstrated a significantly higher failure load and stiffness in the IMEI group than in the SI and CI groups at 4 and 8 weeks postoperatively. Moreover, a thinner graft-to-bone healing interface with more fibrocartilage was observed in the IMEI group at both time points. Micro-computed tomography revealed greater new bone ingrowth in the IMEI group than in the other groups, as demonstrated by smaller mean bone tunnel areas and a larger bone volume/total volume ratio. Additionally, more cellular infiltration was observed in the intra-articular graft in the IMEI group than in the other groups at 4 weeks, followed by more regularly organized fibers with mature collagen at 8 weeks. Notably, similar trends of macrophage polarization were found at both the graft-to-bone interface and the intra-articular graft in the IMEI group, with significantly fewer proinflammatory M1 macrophages and larger numbers of reparative M2 macrophages than in the SI and CI groups. CONCLUSION IPFP MSC-derived exosomes accelerated tendon-bone healing and intra-articular graft remodeling after ACLR, which may have resulted from the immunomodulation of macrophage polarization. CLINICAL RELEVANCE The IPFP can be easily harvested by most orthopaedic surgeons. Exosomes from IPFP MSCs, constituting a newly emerging cell-free approach, may represent a treatment option for improving tendon-bone healing and intra-articular graft remodeling after ACLR.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zheng
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shikui Dong
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 2021; 13:1762-1782. [PMID: 34909122 PMCID: PMC8641021 DOI: 10.4252/wjsc.v13.i11.1762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute muscle injuries are one of the most common injuries in sports. Severely injured muscles are prone to re-injury due to fibrotic scar formation caused by prolonged inflammation. How to regulate inflammation and suppress fibrosis is the focus of promoting muscle healing. Recent studies have found that myoblasts and macrophages play important roles in the inflammatory phase following muscle injury; however, the crosstalk between these two types of cells in the inflammatory environment, particularly the exosome-related mechanisms, had not been well studied.
AIM To evaluate the effects of exosomes from inflammatory C2C12 myoblasts (IF-C2C12-Exos) on macrophage polarization and myoblast proliferation/differentiation.
METHODS A model of inflammation was established in vitro by lipopolysaccharide stimulation of myoblasts. C2C12-Exos were isolated and purified from the supernatant of myoblasts by gradient centrifugation. Multiple methods were used to identify the exosomes. Gradient concentrations of IF-C2C12-Exos were added to normal macrophages and myoblasts. PKH67 fluorescence tracing was used to identify the interaction between exosomes and cells. Microscopic morphology, Giemsa stain, and immunofluorescence were carried out for histological analysis. Additionally, ELISA assays, flow cytometry, and western blot were conducted to analyze molecular changes. Moreover, myogenic proliferation was assessed by the BrdU test, scratch assay, and CCK-8 assay.
RESULTS We found that the PKH-67-marked C2C12-Exos can be endocytosed by both macrophages and myoblasts. IF-C2C12-Exos induced M1 macrophage polarization and suppressed the M2 phenotype in vitro. In addition, these exosomes also stimulated the inflammatory reactions of macrophages. Furthermore, we demonstrated that IF-C2C12-Exos disrupted the balance of myoblast proliferation/differentiation, leading to enhanced proliferation and suppressed fibrogenic/myogenic differentiation.
CONCLUSION IF-C2C12-Exos can induce M1 polarization, resulting in a sustained and aggravated inflammatory environment that impairs myoblast differentiation, and leads to enhanced myogenic proliferation. These results demonstrate why prolonged inflammation occurs after acute muscle injury and provide a new target for the regulation of muscle regeneration.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ya-Ying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin-Rong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bei-Jie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji-Wu Chen
- Department of Sports Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Administration of Nrf-2-Modified Hair-Follicle MSCs Ameliorates DSS-Induced Ulcerative Colitis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9930187. [PMID: 34745427 PMCID: PMC8566060 DOI: 10.1155/2021/9930187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is a common chronic nonspecific intestinal inflammation of unknown etiology associated with a low cure rate and a high relapse rate. Hair follicle mesenchymal stem cells (HF-MSCs) are a class of pluripotent stem cells that have differentiation potential and strong proliferation ability. Nuclear factor red system related factor (Nrf-2) is a key factor in the oxidative stress response. Dextran sulfate sodium- (DSS-) induced rat UC models closely mimic human UC in terms of symptoms and histological changes. Animals were divided into five groups, including a healthy group and UC model rats treated with normal saline, Nrf-2, HF-MSCs, or Nrf-2-expressing HF-MSC group. Based on the expression of intestinal stem cells, inflammatory factors, anti-inflammatory factors, and disease activity index scores, Nrf-2-expressing HF-MSCs had the most obvious therapeutic effect under the same treatment regimen. This study provided a new potential clinical treatment option for ulcerative colitis.
Collapse
|
12
|
Gu C, Feng J, Waqas A, Deng Y, Zhang Y, Chen W, Long J, Huang S, Chen L. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Front Cell Dev Biol 2021; 9:709204. [PMID: 34568322 PMCID: PMC8458970 DOI: 10.3389/fcell.2021.709204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, biomaterial scaffolds have been widely applied in the field of tissue engineering and regenerative medicine. Due to different production methods, unique types of three-dimensional (3D) scaffolds can be fabricated to meet the structural characteristics of tissues and organs, and provide suitable 3D microenvironments. The therapeutic effects of stem cell (SC) therapy in tissues and organs are considerable and have attracted the attention of academic researchers worldwide. However, due to the limitations and challenges of SC therapy, exosome therapy can be used for basic research and clinical translation. The review briefly introduces the materials (nature or polymer), shapes (hydrogels, particles and porous solids) and fabrication methods (crosslinking or bioprinting) of 3D scaffolds, and describes the recent progress in SC/exosome therapy with 3D scaffolds over the past 5 years (2016-2020). Normal SC/exosome therapy can improve the structure and function of diseased and damaged tissues and organs. In addition, 3D scaffold-based SC/exosome therapy can significantly improve the structure and function cardiac and neural tissues for the treatment of various refractory diseases. Besides, exosome therapy has the same therapeutic effects as SC therapy but without the disadvantages. Hence, 3D scaffold therapy provides an alternative strategy for treatment of refractory and incurable diseases and has entered a transformation period from basic research into clinical translation as a viable therapeutic option in the future.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Yushu Deng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Beckenkamp LR, da Fontoura DMS, Korb VG, de Campos RP, Onzi GR, Iser IC, Bertoni APS, Sévigny J, Lenz G, Wink MR. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev Rep 2021; 16:776-791. [PMID: 32556945 DOI: 10.1007/s12015-020-09986-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cell-based therapies, mainly due to their unique biological properties such as multipotency, self-renewal and trophic/immunomodulatory effects. However, clinical use has proven complex due to limitations such as high variability of MSCs preparations and high number of cells required for therapies. These challenges could be circumvented with cell immortalization through genetic manipulation, and although many studies show that such approaches are safe, little is known about changes in other biological properties and functions of MSCs. In this study, we evaluated the impact of MSCs immortalization with the TERT gene on the purinergic system, which has emerged as a key modulator in a wide variety of pathophysiological conditions. After cell immortalization, MSCs-TERT displayed similar immunophenotypic profile and differentiation potential to primary MSCs. However, analysis of gene and protein expression exposed important alterations in the purinergic signaling of in vitro cultured MSCs-TERT. Immortalized cells upregulated the CD39/NTPDase1 enzyme and downregulated CD73/NT5E and adenosine deaminase (ADA), which had a direct impact on their nucleotide/nucleoside metabolism profile. Despite these alterations, adenosine did not accumulate in the extracellular space, due to increased uptake. MSCs-TERT cells presented an impaired in vitro immunosuppressive potential, as observed in an assay of co-culture with lymphocytes. Therefore, our data suggest that MSCs-TERT have altered expression of key enzymes of the extracellular nucleotides/nucleoside control, which altered key characteristics of these cells and can potentially change their therapeutic effects in tissue engineering in regenerative medicine.
Collapse
Affiliation(s)
- L R Beckenkamp
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - D M S da Fontoura
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - V G Korb
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - R P de Campos
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G R Onzi
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - I C Iser
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - A P S Bertoni
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - J Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec city, QC, G1V 4G2, Canada
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
14
|
Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, Saccone V. Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Front Bioeng Biotechnol 2021; 9:652970. [PMID: 34095095 PMCID: PMC8172230 DOI: 10.3389/fbioe.2021.652970] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells found in different tissues: bone marrow, peripheral blood, adipose tissues, skeletal muscle, perinatal tissues, and dental pulp. MSCs are able to self-renew and to differentiate into multiple lineages, and they have been extensively used for cell therapy mostly owing to their anti-fibrotic and immunoregulatory properties that have been suggested to be at the basis for their regenerative capability. MSCs exert their effects by releasing a variety of biologically active molecules such as growth factors, chemokines, and cytokines, either as soluble proteins or enclosed in extracellular vesicles (EVs). Analyses of MSC-derived secretome and in particular studies on EVs are attracting great attention from a medical point of view due to their ability to mimic all the therapeutic effects produced by the MSCs (i.e., endogenous tissue repair and regulation of the immune system). MSC-EVs could be advantageous compared with the parental cells because of their specific cargo containing mRNAs, miRNAs, and proteins that can be biologically transferred to recipient cells. MSC-EV storage, transfer, and production are easier; and their administration is also safer than MSC therapy. The skeletal muscle is a very adaptive tissue, but its regenerative potential is altered during acute and chronic conditions. Recent works demonstrate that both MSCs and their secretome are able to help myofiber regeneration enhancing myogenesis and, interestingly, can be manipulated as a novel strategy for therapeutic interventions in muscular diseases like muscular dystrophies or atrophy. In particular, MSC-EVs represent promising candidates for cell free-based muscle regeneration. In this review, we aim to give a complete picture of the therapeutic properties and advantages of MSCs and their products (MSC-derived EVs and secreted factors) relevant for skeletal muscle regeneration in main muscular diseases.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Alessia Ventura
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Bone Marrow-Mesenchymal Stromal Cell Secretome as Conditioned Medium Relieves Experimental Skeletal Muscle Damage Induced by Ex Vivo Eccentric Contraction. Int J Mol Sci 2021; 22:ijms22073645. [PMID: 33807453 PMCID: PMC8036477 DOI: 10.3390/ijms22073645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined the effects of MSC secretome as conditioned medium (MSC-CM) on ex vivo murine extensor digitorum longus muscle injured by forced eccentric contraction (EC). By combining morphological (light and confocal laser scanning microscopies) and electrophysiological analyses we demonstrated the capability of MSC-CM to attenuate EC-induced tissue structural damages and sarcolemnic functional properties’ modifications. MSC-CM was effective in protecting myofibers from apoptosis, as suggested by a reduced expression of pro-apoptotic markers, cytochrome c and activated caspase-3, along with an increase in the expression of pro-survival AKT factor. Notably, MSC-CM also reduced the EC-induced tissue redistribution and extension of telocytes/CD34+ stromal cells, distinctive cells proposed to play a “nursing” role for the muscle resident myogenic satellite cells (SCs), regarded as the main players of regeneration. Moreover, it affected SC functionality likely contributing to replenishment of the SC reservoir. This study provides the necessary groundwork for further investigation of the effects of MSC secretome in the setting of skeletal muscle injury and regenerative medicine.
Collapse
|
16
|
Luo Z, Lin J, Sun Y, Wang C, Chen J. Bone Marrow Stromal Cell-Derived Exosomes Promote Muscle Healing Following Contusion Through Macrophage Polarization. Stem Cells Dev 2021; 30:135-148. [PMID: 33323007 DOI: 10.1089/scd.2020.0167] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle contusion is among the most common injuries in traumatology and clinics of sports medicine. The injured muscle is vulnerable to re-injury owing to fibrosis formation. Given that the bone marrow stromal cell-derived exosomes (BMSC-Exos) displayed promising therapeutic effect for various tissues, we used BMSC-Exos to treat skeletal muscle contusion and investigated its effects on muscle healing. In this study, the in vivo model of skeletal muscle contusion was established by subjecting the tibialis anterior of young male mice to hit injury, and the in vitro inflammation model was established by lipopolysaccharide treatment on macrophages. Macrophage depletion model was built by intraperitoneal injection with clodronate-containing liposomes. Exosomes were isolated and purified from the supernatant of BMSCs using gradient centrifugation. Nanoparticle tracking analysis, transmission electron microscope, and western blot were used to identify the exosomes. HE stain, Masson stain, immunofluorescence, and biomechanical testing were carried out on the muscle tissue. In addition, enzyme-linked immunosorbent assay (ELISA) assays, real-time qPCR, flow cytometry, and PKH67 fluorescence trace were conducted in vitro. Intramuscular injection of BMSC-Exos to mice after muscle contusion alleviated inflammation level, reduced fibrosis size, promoted muscle regeneration, and improved biomechanical property. After macrophages depletion, the effects of BMSC-Exos were inhibited. In vitro, PKH-67 fluorescence was internalized into macrophages. BMSC-Exos promoted M2 macrophages polarization both in vivo and in vitro. At the same time, BMSC-Exos reduced the production of inflammatory cytokines under the inflammatory microenvironment and upregulated anti-inflammatory factors expression. In conclusion, BMSC-Exos attenuated muscle contusion injury and promoted muscle healing in mice by modifying the polarization status of macrophages and suppressing the inflammatory reaction.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenghui Wang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Priester C, MacDonald A, Dhar M, Bow A. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers. Pharmaceuticals (Basel) 2020; 13:E344. [PMID: 33114710 PMCID: PMC7692540 DOI: 10.3390/ph13110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.
Collapse
Affiliation(s)
- Caitlin Priester
- Department of Animal Science, University of Tennessee, Knoxville, TN 37998, USA;
| | - Amber MacDonald
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| |
Collapse
|
18
|
Murray IR, Makaram NS, Sherman SL, Safran MR, LaPrade RF, Abrams GD. We Need Robust Nomenclature for Orthobiologics: Letter to Editor. Am J Sports Med 2020; 48:NP52-NP54. [PMID: 32997530 DOI: 10.1177/0363546520947043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Chiu CH, Chan YS. We Need Robust Nomenclature for Orthobiologics: Response. Am J Sports Med 2020; 48:NP55-NP56. [PMID: 32997528 DOI: 10.1177/0363546520947029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Biocompatibility of Bone Marrow-Derived Mesenchymal Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration. J Clin Med 2020; 9:jcm9061711. [PMID: 32498432 PMCID: PMC7355977 DOI: 10.3390/jcm9061711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in stem cell therapy have led to an increased interest within the auditory community in exploring the potential of mesenchymal stem cells (MSCs) in the treatment of inner ear disorders. However, the biocompatibility of MSCs with the inner ear, especially when delivered non-surgically and in the immunocompetent cochlea, is not completely understood. In this study, we determined the effect of intratympanic administration of rodent bone marrow MSCs (BM-MSCs) on the inner ear in an immunocompetent rat model. The administration of MSCs did not lead to the generation of any oxidative stress in the rat inner ear. There was no significant production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-12, due to BM-MSCs administration into the rat cochlea. BM-MSCs do not activate caspase 3 pathway, which plays a central role in sensory cell damage. Additionally, transferase dUTP nick end labeling (TUNEL) staining determined that there was no significant cell death associated with the administration of BM-MSCs. The results of the present study suggest that trans-tympanic administration of BM-MSCs does not result in oxidative stress or inflammatory response in the immunocompetent rat cochlea.
Collapse
|