1
|
Foody JN, Li GK, Bradley PX, Kuehn SJ, Spritzer CE, Kosinski AS, Wittstein JR, DeFrate LE. A comparison of three methods for establishing an ACL reference length in vivo. J Biomech 2024; 176:112337. [PMID: 39368320 DOI: 10.1016/j.jbiomech.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
As anterior cruciate ligament (ACL) injuries are highly prevalent among active individuals, it is vital to better understand the loading conditions which lead to injury. One method for doing so is through measurement of dynamic, in vivo ACL strain. To measure strain, it is necessary to normalize elongation of the ACL to a 'reference length' which corresponds to the point at which the ligament transitions from being unloaded to carrying tension. The purpose of this study was to compare the length of the ACL in three different positions to evaluate their utility for establishing a reference (or zero-strain) length of the ACL. ACL reference length was determined using three different methods for each of ten healthy participants. Using magnetic resonance and biplanar radiographic imaging techniques, we measured the length of the ACL during supine resting, quiet standing, and anterior/posterior (AP) drawer testing. During the AP drawer testing, the slack-taut transition point was defined as the inflection point of the AP translation vs ACL elongation curve. There was good consistency between the three ACL length measurements (ICC=0.80). Differences in mean ACL length between the three methods were within 1 mm. While determining the precise zero-strain length of the ACL in vivo remains a challenge, the reference positions utilized in this study produce consistent measurements of ACL length. These findings are important because reliable measurements of in vivo ACL strain have the potential to serve as indicators of propensity for injury.
Collapse
Affiliation(s)
- Jacqueline N Foody
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Grace K Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Patrick X Bradley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Sally J Kuehn
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Charles E Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrzej S Kosinski
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Jocelyn R Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Louis E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Bühl L, Müller S, Nüesch C, Boyer KA, Casto E, Mündermann A, Egloff C. Ambulatory knee biomechanics and muscle activity 2 years after ACL surgery: InternalBrace TM-augmented ACL repair versus ACL reconstruction versus healthy controls. BMC Musculoskelet Disord 2023; 24:785. [PMID: 37794432 PMCID: PMC10548591 DOI: 10.1186/s12891-023-06916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Little is known about knee mechanics and muscle control after augmented ACL repair. Our aim was to compare knee biomechanics and leg muscle activity during walking between the legs of patients 2 years after InternalBraceTM-augmented anterior cruciate ligament repair (ACL-IB) and between patients after ACL-IB and ACL reconstruction (ACL-R), and controls. METHODS Twenty-nine ACL-IB, 27 sex- and age-matched ACL-R (hamstring tendon autograft) and 29 matched controls completed an instrumented gait analysis. Knee joint angles, moments, power, and leg muscle activity were compared between the involved and uninvolved leg in ACL-IB (paired t-tests), and between the involved legs in ACL patients and the non-dominant leg in controls (analysis of variance and posthoc Bonferroni tests) using statistical parametric mapping (SPM, P < 0.05). Means and 95% confidence intervals (CI) of differences in discrete parameters (DP; i.e., maximum/minimum) were calculated. RESULTS Significant differences were observed in ACL-IB only in minimum knee flexion angle (DP: 2.4°, CI [-4.4;-0.5]; involved > uninvolved) and maximum knee flexion moment during stance (-0.07Nm/kg, CI [-0.13;-0.00]; involved < uninvolved), and differences between ACL-IB and ACL-R only in maximum knee flexion during swing (DP: 3.6°, CI [0.5;7.0]; ACL-IB > ACL-R). Compared to controls, ACL-IB (SPM: 0-3%GC, P = 0.015; 98-100%, P = 0.016; DP: -6.3 mm, CI [-11.7;-0.8]) and ACL-R (DP: -6.0 mm, CI [-11.4;-0.2]) had lower (maximum) anterior tibia position around heel strike. ACL-R also had lower maximum knee extension moment (DP: -0.13Nm/kg, CI [-0.23;-0.02]) and internal knee rotation moment (SPM: 34-41%GC, P < 0.001; DP: -0.03Nm/kg, CI [-0.06;-0.00]) during stance, and greater maximum semitendinosus activity before heel strike (DP: 11.2%maximum voluntary contraction, CI [0.1;21.3]) than controls. CONCLUSION Our results suggest comparable ambulatory knee function 2 years after ACL-IB and ACL-R, with ACL-IB showing only small differences between legs. However, the differences between both ACL groups and controls suggest that function in the involved leg is not fully recovered and that ACL tear is not only a mechanical disruption but also affects the sensorimotor integrity, which may not be restored after surgery. The trend toward fewer abnormalities in knee moments and semitendinosus muscle function during walking after ACL-IB warrants further investigation and may underscore the importance of preserving the hamstring muscles as ACL agonists. LEVEL OF EVIDENCE Level III, case-control study. TRIAL REGISTRATION clinicaltrials.gov, NCT04429165 (12/06/2020).
Collapse
Affiliation(s)
- Linda Bühl
- Department of Orthopaedics and Traumatology, University Hospital Basel, Spitalstrasse 21, Basel, 4031, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland.
- Department of Clinical Research, University of Basel, Basel, 4031, Switzerland.
| | - Sebastian Müller
- Department of Orthopaedics and Traumatology, University Hospital Basel, Spitalstrasse 21, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, 4031, Switzerland
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Spitalstrasse 21, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, 4031, Switzerland
| | - Katherine A Boyer
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Erica Casto
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Spitalstrasse 21, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, 4031, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Spitalstrasse 21, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, 4031, Switzerland
| |
Collapse
|
3
|
Kim-Wang SY, Spritzer CE, Owusu-Akyaw K, Coppock JA, Goode AP, Englander ZA, Wittstein JR, DeFrate LE. The Predicted Position of the Knee Near the Time of ACL Rupture Is Similar Between 2 Commonly Observed Patterns of Bone Bruising on MRI: Response. Am J Sports Med 2023; 51:NP22-NP24. [PMID: 37392078 DOI: 10.1177/03635465231172184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
|
4
|
Wang C, Qiu J, Wang Y, Li C, Kernkamp WA, Xi X, Yu Y, Li P, Tsai TY. Loaded open-kinetic-chain exercises stretch the anterior cruciate ligament more than closed-kinetic-chain exercises: In-vivo assessment of anterior cruciate ligament length change. Musculoskelet Sci Pract 2023; 63:102715. [PMID: 36604271 DOI: 10.1016/j.msksp.2022.102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Usage of open-kinetic-chain (OKC) or closed-kinetic-chain (CKC) exercises during rehabilitation planning after anterior cruciate ligament (ACL) reconstruction has been debated for decades. However, the ACL elongation pattern during different rehabilitation exercises at different loadings remains unclear. OBJECTIVES This study aimed to determine the effects of OKC and CKC exercises on the length of ACL anteromedial bundle (AMB) and posterolateral bundle (PLB) to provide biomechanical support for making rehabilitation schedules. DESIGN Laboratory Descriptive Study. METHOD Eighteen healthy volunteers were asked to perform two OKC motions, including non-weight-bearing and 10 kg loaded seated knee extension (OKC-0, OKC-10), as well as two CKC motions, including box squat (BS) and deep single-legged lunge (Lunge). Techniques of 2D-to-3D image registration and 3D ligament simulation were used to quantify length changes of ACL. RESULTS The motion which led to the least and most ACL elongation were OKC-0 and OKC-10, respectively. The AMB and PLB were significantly longer in OKC-10 than those in OKC-0 during 0-60° and 0-55° of knee flexion (p < 0.01). Compared with reference length, the AMB and PLB were stretched during 0-30° and 0-10° respectively during OKC-10. During CKC exercises, the AMB and PLB were also stretched from 0 to 25°and 0-5°, respectively. Additionally, no significant difference was found in the length change of ACL bundles between BS and lunge. CONCLUSIONS OKC-0 may be safe for the rehabilitation program after ACL reconstruction, and loaded exercises shall be applied when restricted with >30° in early-stage rehabilitation.
Collapse
Affiliation(s)
- Cong Wang
- School of Biomedical Engineering, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center of Digital Medicine, Ministry of Education, China; TaoImage Medical Technologies Corporation, Shanghai, China
| | - Jiayu Qiu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai, China
| | - Yufan Wang
- School of Biomedical Engineering, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center of Digital Medicine, Ministry of Education, China
| | - Changzhao Li
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Willem A Kernkamp
- Orthopedic Surgery Department, Haaglanden Medical Center, The Hague, the Netherlands
| | - Xin Xi
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pingyue Li
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering, Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center of Digital Medicine, Ministry of Education, China; TaoImage Medical Technologies Corporation, Shanghai, China.
| |
Collapse
|
5
|
Englander ZA, Foody JN, Cutcliffe HC, Wittstein JR, Spritzer CE, DeFrate LE. Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity. Am J Sports Med 2022; 50:2688-2697. [PMID: 35853157 PMCID: PMC9875882 DOI: 10.1177/03635465221107085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quadriceps loading of the anterior cruciate ligament (ACL) may play a role in the noncontact mechanism of ACL injury. Musculoskeletal modeling techniques are used to estimate the intrinsic force of the quadriceps acting at the knee joint. PURPOSE/HYPOTHESIS The purpose of this paper was to develop a novel musculoskeletal model of in vivo quadriceps force during dynamic activity. We used the model to estimate quadriceps force in relation to ACL strain during a single-leg jump. We hypothesized that quadriceps loading of the ACL would reach a local maximum before initial ground contact with the knee positioned in extension. STUDY DESIGN Descriptive laboratory study. METHODS Six male participants underwent magnetic resonance imaging in addition to high-speed biplanar radiography during a single-leg jump. Three-dimensional models of the knee joint, including the femur, tibia, patellofemoral cartilage surfaces, and attachment-site footprints of the patellar tendon, quadriceps tendon, and ACL, were created from the magnetic resonance imaging scans. The bone models were registered to the biplanar radiographs, thereby reproducing the positions of the knee joint at the time of radiographic imaging. The magnitude of quadriceps force was determined for each knee position based on a 3-dimensional balance of the forces and moments of the patellar tendon and the patellofemoral cartilage contact acting on the patella. Knee kinematics and ACL strain were determined for each knee position. RESULTS A local maximum in average quadriceps force of approximately 6500 N (8.4× body weight) occurred before initial ground contact. ACL strain increased concurrently with quadriceps force when the knee was positioned in extension. CONCLUSION This novel participant-specific modeling technique provides estimates of in vivo quadriceps force during physiologic dynamic loading. A local maximum in quadriceps force before initial ground contact may tension the ACL when the knee is positioned in extension. CLINICAL RELEVANCE These data contribute to understanding noncontact ACL injury mechanisms and the potential role of quadriceps activation in these injuries.
Collapse
Affiliation(s)
- Zoë A. Englander
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Jacqueline N. Foody
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | - Hattie C. Cutcliffe
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | | | - Louis E. DeFrate
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA.,Address correspondence to Louis E. DeFrate, ScD, Duke University Medical Center, Room 379, Medical Sciences Research Bldg, Box 3093, Durham, NC 27710, USA ()
| |
Collapse
|
6
|
Englander ZA, Spritzer CE, DeFrate LE. In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography: Response. J Biomech 2020; 109:109918. [PMID: 32660758 DOI: 10.1016/j.jbiomech.2020.109918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Zoë A Englander
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|