1
|
Putri IL, Fatchiyah, Pramono C, Bachtiar I, Latief FDE, Utomo B, Rachman A, Soesilawati P, Hakim L, Rantam FA, Perdanakusuma DS. Alveolar Repair Using Cancellous Bone and Beta Tricalcium Phosphate Seeded With Adipose-Derived Stem Cell. Cleft Palate Craniofac J 2024; 61:555-565. [PMID: 36237116 DOI: 10.1177/10556656221132372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Adipose-derived stem cells (ADSCs) have been subject of several studies due to their abundance, ease of preparation, and application in bone regeneration. We aim to compare effectiveness of alveolar reconstruction utilizing human cancellous freeze-dried graft (HCG) and beta tricalcium phosphate (BTP), both seeded with human ADSC (hADSC) and autologous bone graft (ABG). MATERIAL AND METHODS A 5 × 5 mm alveolar defect in 36 male Wistar rats were treated using: ABG (C), HCG-hADSC (H1), and BTP-hADSC (H2). At 1 and 8 weeks after surgery, runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osterix (OSX), and bone morphogenetic protein 2 (BMP2; g/mL) were quantified using immunohistochemistry, while bone tissue volume (BV, mm3), bone tissue volume fraction (BF, percentage), and trabecular thickness of bone (TT, mm) were assessed using micro-computed tomography (CT). RESULTS One week after surgery, H2 was higher in RUNX2, OSX, ALP, and BMP2 than C (P < .05). Only RUNX2 and OSX were found to be higher in H1 than C, while ALP and BMP2 were higher in H2 than H1. Micro-CT revealed that H2 had a higher TT than C and C had a higher TT than H1 (P < .05). Eight weeks after surgery, both H2 and H1 was higher in RUNX2, OSX, ALP, and BMP2 than C (P < .05). RUNX2 and BMP2 were found to be higher in H1 than H2. Micro-CT revealed that H2 had higher BV and TT than C and H1 (P < .05). CONCLUSIONS Exogenous hADSC strengthened the effectiveness of HCG and BTP to accelerate osteogenesis, osteoconduction, and osteoinduction. The latter was the most successful in bone formation, followed by HCG and ABG.
Collapse
Affiliation(s)
- Indri Lakhsmi Putri
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fatchiyah
- Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia
| | - Coen Pramono
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Indra Bachtiar
- Regenic Laboratory, Stem Cell and Cancer Institute, Jakarta, Indonesia
| | - Fourier Dzar Eljabbar Latief
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia
| | - Budi Utomo
- Department of Community Health Sciences, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Arif Rachman
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Pratiwi Soesilawati
- Department of Oral Biology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Lukman Hakim
- Department of Urology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - David Sontani Perdanakusuma
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
2
|
Comprehensive Analysis of Novel Genes and Pathways Associated with Osteogenic Differentiation of Adipose Stem Cells. DISEASE MARKERS 2022; 2022:4870981. [PMID: 36133435 PMCID: PMC9484926 DOI: 10.1155/2022/4870981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Background. Adipose-derived stem cells (ADSCs) are an important alternative source of mesenchymal stem cells (MSCs) and show great promise in tissue engineering and regenerative medicine applications. However, identifying the novel genes and pathways and finding the underlying mechanisms regulating ADSCs osteogenic differentiation remain urgent. Methods. We downloaded the gene expression profiles of GSE63754 and GSE37329 from the Gene Expression Omnibus (GEO) Database. We derived differentially expressed genes (DEGs) before and after ADSC osteogenic differentiation, followed by Gene Ontology (GO) functional and KEGG pathway analysis and protein-protein interaction (PPI) network analysis. 211 differentially expressed genes (142 upregulated genes and 69 downregulated genes) were aberrantly expressed. GO analysis revealed that these DEGs were associated with extracellular matrix organization, protein extracellular matrix, and semaphorin receptor binding. Conclusions. Our study provides novel genes and pathways that play important roles in regulating ADSC osteogenic differentiation, which may have potential therapeutic targets for clinic.
Collapse
|
3
|
Chiang YC, Yeh HW, Hu SM, Wu CY, Wu TY, Chen CH, Liao PC, Guan ZY, Cheng NC, Chen HY. Vapor construction and modification of stem cell-laden multicomponent scaffolds for regenerative therapeutics. Mater Today Bio 2022; 13:100213. [PMID: 35198961 PMCID: PMC8850674 DOI: 10.1016/j.mtbio.2022.100213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
Tissue engineering based on the combined use of isolated cells, scaffolds, and growth factors is widely used; however, the manufacture of cell-preloaded scaffolds faces challenges. Herein, we fabricated a multicomponent scaffold with multiple component accommodations, including bioactive molecules (BMs), such as fibroblast growth factor-2 (FGF-2) and l-ascorbic acid 2-phosphate (A2-P), and living cells of human adipose-derived stem cells (hASCs), within one scaffold construct. We report an innovative fabrication process based on vapor-phased construction using iced templates for vapor sublimation. Simultaneously, the vaporized water molecules were replaced by vapor deposition of poly-p-xylylene (PPX, USP Class VI, highly compatible polymer, FDA-approved records), forming a three-dimensional and porous scaffold matrix. More importantly, a multicomponent modification was achieved based on using nonvolatile solutes, including bioactive molecules of FGF-2 and A2-P, and living cells of hASCs, to prepare iced templates for sublimation. Additionally, the fabrication and construction resulted in a multicomponent scaffold product comprising the devised molecules, cells, and vapor-polymerized poly-p-xylylene as the scaffold matrix. The clean and dry fabrication process did not require catalysts, initiators or plasticizers, and potentially harmful solvents, and the scaffold products were produced in simple steps within hours of the processing time. Cell viability analysis showed a high survival rate (approximately 86.4%) for the accommodated hASCs in the fabricated scaffold product, and a surprising multilineage differentiation potential of hASCs was highly upregulated because of synergistic guidance by the same accommodated FGF-2 and A2-P components. Proliferation and self-renewal activities were also demonstrated with enhancement of the multicomponent scaffold product. Finally, in vivo calvarial defect studies further revealed that the constructed scaffolds provided blood vessels to grow into the bone defect areas with enhancement, and the induced conduction of osteoblast growth also promoted bone healing toward osseointegration. The reported scaffold construction technology represents a prospective tissue engineering scaffold product to enable accommodable and customizable versatility to control the distribution and composition of loading delicate BMs and living hASCs in one scaffold construct and demonstrates unlimited applications in tissue engineering repair and regenerative medicine applications.
Collapse
Affiliation(s)
- Yu-Chih Chiang
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
- School of Dentistry, Colleage of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsiao-Wen Yeh
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048, Taiwan
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shu-Man Hu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Yu Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Ying Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Hung Chen
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048, Taiwan
| | - Pei-Chun Liao
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Zhen-Yu Guan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, 10002, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Pereira AR, Lipphaus A, Ergin M, Salehi S, Gehweiler D, Rudert M, Hansmann J, Herrmann M. Modeling of the Human Bone Environment: Mechanical Stimuli Guide Mesenchymal Stem Cell-Extracellular Matrix Interactions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4431. [PMID: 34442954 PMCID: PMC8398413 DOI: 10.3390/ma14164431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies.
Collapse
Affiliation(s)
- Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Mert Ergin
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | | | - Maximilian Rudert
- Department of Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research, Translational Center for Regenerative Therapies, 97082 Wuerzburg, Germany;
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
5
|
Wu CY, Guo CL, Yang YC, Huang CW, Zeng JY, Guan ZY, Chiang YC, Wang PY, Chen HY. Parylene-Based Porous Scaffold with Functionalized Encapsulation of Platelet-Rich Plasma and Living Stem Cells for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2020; 3:7193-7201. [PMID: 35019377 DOI: 10.1021/acsabm.0c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A scaffold was fabricated to synergistically encapsulate living human adipose-derived stem cells (hASCs) and platelet-rich plasma (PRP) based on a vapor-phase sublimation and deposition process. During the process, ice templates were prepared using sterile water as the solvent and were used to accommodate the sensitive living cells and PRP molecules. Under controlled processing conditions, the ice templates underwent vapor sublimation to evaporate water molecules, while at the same time, vapor-phase deposition of poly-p-xylylene (Parylene, USP Class VI highly biocompatible) occurred to replace the templates, and the final construction yielded a scaffold with Parylene as the matrix, with simultaneously encapsulated living hASCs and PRP molecules. Evaluation of the fabricated synergistic scaffold for the proliferation activities toward the encapsulated hASCs indicated significant augmentation of cell proliferation contributed by the PRP ingredients. In addition, osteogenic activity in the early stage by alkaline phosphatase expression and later stage with calcium mineralization indicated significant enhancement toward osteogenetic differentiation of the encapsulated hASCs, which were guided by the PRP molecules. By contrast, examinations of adipogenic activity by lipid droplet formation revealed an inhibition of adipogenesis with decreased intracellular lipid accumulation, and a statistically significant downregulation of adipogenic differentiation was postulated for the scaffold products when compared to the osteogenetic results and the control experiments. The reported fabrication method featured a clean and simple process to construct scaffolds that combined delicate living hASCs and PRP molecules inside the structure. The resultant synergistic scaffold and the selected commercially available hASCs and PRP are emerging as tissue engineering tools that provide multifunctionality for tissue repair and regeneration.
Collapse
Affiliation(s)
- Chih-Yu Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei 11579, Taiwan
| | - Yen-Ching Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chao-Wei Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jun-Yu Zeng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Zhen-Yu Guan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chih Chiang
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei 10048, Taiwan
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,China Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Huang X, Cen X, Zhang B, Liao Y, Zhao Z, Zhu G, Zhao Z, Liu J. The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis. J Cell Mol Med 2019; 23:8432-8441. [PMID: 31633307 PMCID: PMC6850935 DOI: 10.1111/jcmm.14726] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Bone defects caused heavy social and economic burdens worldwide. Nel‐like molecule, type 1 (NELL‐1) could enhance the osteogenesis and the repairment of bone defects, while the specific mechanism remains to be elucidated. Circular RNAs (circRNAs) have been found to play critical roles in the tissue development and serve as biomarkers for various diseases. However, it remains unclear that the expression patterns of circRNAs and the roles of them played in recombinant NELL‐1‐induced osteogenesis of human adipose‐derived stem cells (hASCs). In this study, we performed RNA‐sequencing to investigate the expression profiles of circRNAs in recombinant NELL‐1‐induced osteogenic differentiation and identified two key circRNAs, namely circRFWD2 and circINO80. These two circRNAs were confirmed to be up‐regulated during recombinant NELL‐1‐induced osteogenesis, and knockdown of them affected the positive effect of NELL‐1 on osteogenesis. CircRFWD2 and circINO80 could interact with hsa‐miR‐6817‐5p, which could inhibit the osteogenesis. Silencing hsa‐miR‐6817‐5p could partially reverse the negative effect of si‐circRFWD2 and si‐circINO80 on the osteogenesis. Therefore, circRFWD2 and circINO80 could regulate the expression of hsa‐miR‐6817‐5p and influence the recombinant NELL‐1‐induced osteogenic differentiation of hASCs. It opens a new window to better understanding the effects of NELL‐1 on the osteogenic differentiation of hASCs and provides potential molecular targets and novel methods for bone regeneration efficiently and safely.
Collapse
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Rectal advancement flap plus adipose lipofilling (RAFAL) for the treatment of rectourethral fistulas after radical prostatectomy. Tech Coloproctol 2019; 23:1003-1007. [DOI: 10.1007/s10151-019-02078-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
|
8
|
Kunisch E, Gunnella F, Wagner S, Dees F, Maenz S, Bossert J, Jandt KD, Kinne RW. The poly (l-lactid-co-glycolide; PLGA) fiber component of brushite-forming calcium phosphate cement induces the osteogenic differentiation of human adipose tissue-derived stem cells. ACTA ACUST UNITED AC 2019; 14:055012. [PMID: 31465298 DOI: 10.1088/1748-605x/ab3544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A brushite-forming calcium phosphate cement (CPC) was mechanically stabilized by addition of poly (l-lactid-co-glycolide; PLGA) fibers (≤10% w/w). It proved highly biocompatible and its fiber component enhanced bone formation in a sheep lumbar vertebroplasty model. However, possible effects on the osteogenic differentiation of resident mesenchymal stem cells (MSCs) remained unexplored. The present study used a novel approach, simultaneously analyzing the influence of a solid CPC scaffold and its relatively low PLGA proportion (a mimicry of natural bone) on osteogenic, chondrogenic, and adipogenic differentiation, as well as the pluripotency of human adipose tissue-derived mesenchymal stem cells (hASCs). hASCs were cultured on CPC discs with/without PLGA fibers (5% and 10%) in the absence of osteogenic medium for 3, 7, and 14 d. Gene expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, collagen I, osteonectin, osteopontin, osteocalcin), chondrogenic markers (collagen II, Sox9, aggrecan), adipogenic markers (PPARG, Leptin, and FABP4), and pluripotency markers (Nanog, Tert, Rex) was analyzed by RT-PCR. The ability of hASCs to synthesize alkaline phosphatase was also evaluated. Cell number and viability were determined by fluorescein diacetate/propidium iodide staining. Compared to pure CPC, cultivation of hASCs on fiber-reinforced CPC transiently induced the gene expression of Runx2 and osterix (day 3), and long-lastingly augmented the expression of alkaline phosphatase (and its enzyme activity), collagen I, and osteonectin (until day 14). In contrast, augmented expression of all chondrogenic, adipogenic, and pluripotency markers was limited to day 3, followed by significant downregulation. Cultivation of hASCs on fiber-reinforced CPC reduced the cell number, but not the proportion of viable cells (viability > 95%). The PLGA component of fiber-reinforced, brushite-forming CPC supports long-lasting osteogenic differentiation of hASCs, whereas chondrogenesis, adipogenesis, and pluripotency are initially augmented, but subsequently suppressed. In view of parallel animal results, PLGA fibers may represent an interesting clinical target for future improvement of CPC- based bone regeneration.
Collapse
Affiliation(s)
- Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bidve P, Prajapati N, Kalia K, Tekade R, Tiwari V. Emerging role of nanomedicine in the treatment of neuropathic pain. J Drug Target 2019; 28:11-22. [PMID: 30798636 DOI: 10.1080/1061186x.2019.1587444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropathic pain (NeP) is a complex chronic pain condition associated with nerve injury. Approximately, 7-10% of the general population across the globe is suffering from this traumatic condition, but the existing treatment strategies are inadequate to deliver pain relief and are associated with severe adverse effects. To overcome these limitations, lot of research is focussed on developing new molecules with high potency and fewer side effects, novel cell and gene-based therapies and modification of the previously approved drugs by different formulation aspects. Nanomedicine has attracted a lot of attention in the treatment of many diverse pathological conditions because of their unique physiochemical and biological properties. In this manuscript, we highlighted the emerging role of nanomedicine in different therapies (drug, cell and gene), also we emphasised on the challenges associated with nanomedicine such as development of well-characterised nanoformulation, scaling of batches with reproducible results and toxicity along with this we discussed about the future of nanomedicine in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Pankaj Bidve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Namrata Prajapati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rakesh Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
10
|
Şafak AS, Avşar Abdik E, Abdik H, Taşlı PN, Şahin F. A Novel Approach to Septal Perforation Repair: Septal Cartilage Cells Induce Chondrogenesis of hASCs In Vitro. Appl Biochem Biotechnol 2019; 188:942-951. [PMID: 30740625 DOI: 10.1007/s12010-019-02964-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the effect of medium harvested from septal cartilage cells on chondrogenic differentiation of adipose stem cells (hASCs) and to compare/contrast its properties to those of a commonly used standard medium formulation in terms of induction and maintenance of chondrogenic hASCs. Differentiation was carried out under three different conditions: septal cartilage medium-SCM, chondrogenic differentiation medium-CM, and 50:50 mixture of CM/SCM. Mesenchymal stem cells (MSCs) markers were determined by flow cytometry. The cytotoxic and apoptotic effects were determined by MTS and Annexin V assay, respectively. The differentiation status of the cells was confirmed by Alcian blue staining, and quantitative real-time flow cytometry showed that hASCs were positive for MSCs, negative for hematopoietic stem cells and endothelial cell surface markers. According to MTS analysis, the first condition was not toxic at any concentration tested. Annexin V assay revealed that the application of different concentrations of SCM did not result in any cell death. The Alcian blue and gene expression analyses showed that the cells in the SCM group underwent the highest cartilage cell formation. The observed increase in chondrogenesis may offer better treatment options for the cartilage defects seen in nasal septum perforation.
Collapse
Affiliation(s)
- Ayşe Sezim Şafak
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
11
|
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19082200. [PMID: 30060511 PMCID: PMC6121360 DOI: 10.3390/ijms19082200] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala 133101, India.
| | - Rajni Dubey
- Graduate Institute Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yue-Hua Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Feng-Chou Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Basic medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
12
|
Qi L, Knapton EK, Zhang X, Zhang T, Gu C, Zhao Y. Pre-culture Sudan Black B treatment suppresses autofluorescence signals emitted from polymer tissue scaffolds. Sci Rep 2017; 7:8361. [PMID: 28827657 PMCID: PMC5567053 DOI: 10.1038/s41598-017-08723-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/17/2017] [Indexed: 01/21/2023] Open
Abstract
In tissue engineering, autofluorescence of polymer scaffolds often lowers the image contrast, making it difficult to examine cells and subcellular structures. Treating the scaffold materials with Sudan Black B (SBB) after cell fixation can effectively suppress autofluorescence, but this approach is not conducive to live cell imaging. Post-culture SBB treatment also disrupts intracellular structures and leads to reduced fluorescence intensity of the targets of interest. In this study, we introduce pre-culture SBB treatment to suppress autofluorescence, where SBB is applied to polymeric scaffold materials before cell seeding. The results show that the autofluorescence signals emitted from polycaprolactone (PCL) scaffolds in three commonly used fluorescence channels effectively decrease without diminishing the fluorescence signals emitted from the cells. The pre-culture SBB treatment does not significantly affect cell viability. The autofluorescence suppressive effect does not substantially diminish during the culturing period up to 28 days. The results also show that cell migration, proliferation, and myogenic differentiation in pre-culture SBB-treated groups do not exhibit statistical difference from the non-treated groups. As such, this approach greatly improves the fluorescence image quality for examining live cell behaviors and dynamics while the cells are cultured within autofluorescent polymer scaffolds.
Collapse
Affiliation(s)
- Lin Qi
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Erin K Knapton
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Xu Zhang
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Tongwen Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Yi Zhao
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
13
|
Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review. Stem Cells Int 2017; 2017:8354640. [PMID: 28757880 PMCID: PMC5516750 DOI: 10.1155/2017/8354640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissues hold great promise in bone tissue engineering since they are available in large quantities as a waste material. The buccal fat pad (BFP) is a specialized adipose tissue that is easy to harvest and contains a rich blood supply, and its harvesting causes low complications for patients. This review focuses on the characteristics and osteogenic capability of stem cells derived from BFP as a valuable cell source for bone tissue engineering. An electronic search was performed on all in vitro and in vivo studies that used stem cells from BFP for the purpose of bone tissue engineering from 2010 until 2016. This review was organized according to the PRISMA statement. Adipose-derived stem cells derived from BFP (BFPSCs) were compared with adipose tissues from other parts of the body (AdSCs). Moreover, the osteogenic capability of dedifferentiated fat cells (DFAT) derived from BFP (BFP-DFAT) has been reported in comparison with BFPSCs. BFP is an easily accessible source of stem cells that can be obtained via the oral cavity without injury to the external body surface. Comparing BFPSCs with AdSCs indicated similar cell yield, morphology, and multilineage differentiation. However, BFPSCs proliferate faster and are more prone to producing colonies than AdSCs.
Collapse
|
14
|
Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold. J Craniofac Surg 2017; 27:727-32. [PMID: 27092915 DOI: 10.1097/scs.0000000000002567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (β-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/β-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/β-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/β-TCP. The current combination of hASCs and HA/β-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects.
Collapse
|
15
|
Brini AT, Coccè V, Ferreira LMJ, Giannasi C, Cossellu G, Giannì AB, Angiero F, Bonomi A, Pascucci L, Falchetti ML, Ciusani E, Bondiolotti G, Sisto F, Alessandri G, Pessina A, Farronato G. Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel. Expert Opin Drug Deliv 2016; 13:789-98. [PMID: 26986001 DOI: 10.1517/17425247.2016.1167037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Gingival tissue is composed of cell types that contribute to the body's defense against many agents in oral environment, wound healing and tissue regeneration. Thanks to their easy and scarcely invasive withdrawal procedure, interdental papilla provide a good source of mesenchymal stromal cells (GinPa-MSCs). We isolated GinPa-MSCs and verified their ability to uptake/release the anticancer agent Paclitaxel (PTX). METHODS In vitro expanded GinPa-MSCs were characterized for CD markers by FACS, tested for differentiation ability and analyzed by TEM. Their ability to uptake/release PTX was assessed according to a standardized procedure. RESULTS The CD expression and chondro-adipo-osteo differentiation ability confirmed the mesenchymal feature of GinPa-MSCs. Surprisingly, 28% of GinPa-MSCs expressed CD14 marker and had an impressive pinocytotic activity. GinPa-MSCs were able to take up and release a sufficient amount of PTX to demonstrate effective in vitro activity against pancreatic carcinoma cells, suggesting that the drug was not inactivated. CONCLUSIONS The procedure to obtain MSCs from interdental papilla is less invasive than that used for both bone marrow and adipose tissue, GinPa-MSCs are easy to expand and can be efficiently loaded with PTX. Taken together these qualities suggest that GinPa-MSCs may prove to be a good tool for cell-mediated drug delivery in cancer, particularly if related to stomatognathic system.
Collapse
Affiliation(s)
- Anna Teresa Brini
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy.,b I.R.C.C.S. Istituto Ortopedico Galeazzi , Milan , Italy
| | - Valentina Coccè
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy.,d Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Maxillofacial and Dental Unit, Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Lorena M Josè Ferreira
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Chiara Giannasi
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Gianguido Cossellu
- c Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Unit of Orthodontics and Paediatric Dentistry, School of Dentistry, Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Aldo Bruno Giannì
- d Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Maxillofacial and Dental Unit, Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Francesca Angiero
- e Department of Medical Sciences and Diagnostic Integrated , S. Martino Hospital, University of Genoa , Genoa Italy
| | - Arianna Bonomi
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Luisa Pascucci
- f Department of Veterinary Medicine , University of Perugia , Perugia , Italy
| | | | - Emilio Ciusani
- h Laboratory of Clinical Pathology and Neurogenetic Medicine , Fondazione IRCCS Neurological Institute Carlo Besta , Milan , Italy
| | - Gianpietro Bondiolotti
- i Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Francesca Sisto
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Giulio Alessandri
- j Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases , IRCCS Neurological Institute C. Besta , Milan , Italy
| | - Augusto Pessina
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Giampietro Farronato
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy.,c Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Unit of Orthodontics and Paediatric Dentistry, School of Dentistry, Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| |
Collapse
|
16
|
|
17
|
Petrangeli E, Coroniti G, Brini AT, de Girolamo L, Stanco D, Niada S, Silecchia G, Morgante E, Lubrano C, Russo MA, Salvatori L. Hypoxia Promotes the Inflammatory Response and Stemness Features in Visceral Fat Stem Cells From Obese Subjects. J Cell Physiol 2016. [PMID: 26224080 DOI: 10.1002/jcp.25113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low-grade chronic inflammation is a salient feature of obesity and many associated disorders. This condition frequently occurs in central obesity and is connected to alterations of the visceral adipose tissue (AT) microenvironment. Understanding how obesity is related to inflammation may allow the development of therapeutics aimed at improving metabolic parameters in obese patients. To achieve this aim, we compared the features of two subpopulations of adipose-derived stem cells (ASC) isolated from both subcutaneous and visceral AT of obese patients with the features of two subpopulations of ASC from the same isolation sites of non-obese individuals. In particular, the behavior of ASC of obese versus non-obese subjects during hypoxia, which occurs in obese AT and is an inducer of the inflammatory response, was evaluated. Obesity deeply influenced ASC from visceral AT (obV-ASC); these cells appeared to exhibit clearly distinguishable morphology and ultrastructure as well as reduced proliferation, clonogenicity and expression of stemness, differentiation and inflammation-related genes. These cells also exhibited a deregulated response to hypoxia, which induced strong tissue-specific NF-kB activation and an NF-kB-mediated increase in inflammatory and fibrogenic responses. Moreover, obV-ASC, which showed a less stem-like phenotype, recovered stemness features after hypoxia. Our findings demonstrated the peculiar behavior of obV-ASC, their influence on the obese visceral AT microenvironment and the therapeutic potential of NF-kB inhibitors. These novel findings suggest that the deregulated hyper-responsiveness to hypoxic stimulus of ASC from visceral AT of obese subjects may contribute via paracrine mechanisms to low-grade chronic inflammation, which has been implicated in obesity-related morbidity.
Collapse
Affiliation(s)
- Elisa Petrangeli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,CNR, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Giuseppe Coroniti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna T Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | | | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianfranco Silecchia
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Emanuela Morgante
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Luisa Salvatori
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy
| |
Collapse
|
18
|
Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter. Bone Res 2016; 4:15036. [PMID: 26848404 PMCID: PMC4738199 DOI: 10.1038/boneres.2015.36] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering.
Collapse
|
19
|
de Girolamo L, Niada S, Arrigoni E, Di Giancamillo A, Domeneghini C, Dadsetan M, Yaszemski MJ, Gastaldi D, Vena P, Taffetani M, Zerbi A, Sansone V, Peretti GM, Brini AT. Repair of osteochondral defects in the minipig model by OPF hydrogel loaded with adipose-derived mesenchymal stem cells. Regen Med 2016; 10:135-51. [PMID: 25835479 DOI: 10.2217/rme.14.77] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM Critical knee osteochondral defects in seven adult minipigs were treated with oligo(polyethylene glycol)fumarate (OPF) hydrogel combined with autologous or human adipose-derived stem cells (ASCs), and evaluated after 6 months. METHODS Four defects were made on the peripheral part of right trochleas (n = 28), and treated with OPF scaffold alone or pre-seeded with ASCs. RESULTS A better quality cartilage tissue characterized by improved biomechanical properties and higher collagen type II expression was observed in the defects treated by autologous or human ASC-loaded OPF; similarly this approach induced the regeneration of more mature bone with upregulation of collagen type I expression. CONCLUSION This study provides the evidence that both porcine and human adipose-derived stem cells associated to OPF hydrogel allow improving osteochondral defect regeneration in a minipig model.
Collapse
Affiliation(s)
- Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi; Via R. Galeazzi 4, 20161 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mellor LF, Mohiti-Asli M, Williams J, Kannan A, Dent MR, Guilak F, Loboa EG. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source. Tissue Eng Part A 2015; 21:2323-33. [PMID: 26035347 DOI: 10.1089/ten.tea.2014.0572] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously shown that elevating extracellular calcium from a concentration of 1.8 to 8 mM accelerates and increases human adipose-derived stem cell (hASC) osteogenic differentiation and cell-mediated calcium accretion, even in the absence of any other soluble osteogenic factors in the culture medium. However, the effects of elevated calcium on hASC chondrogenic differentiation have not been reported. The goal of this study was to determine the effects of varied calcium concentrations on chondrogenic differentiation of hASC. We hypothesized that exposure to elevated extracellular calcium (8 mM concentration) in a chondrogenic differentiation medium (CDM) would inhibit chondrogenesis of hASC when compared to basal calcium (1.8 mM concentration) controls. We further hypothesized that a full osteochondral construct could be engineered by controlling local release of calcium to induce site-specific chondrogenesis and osteogenesis using only hASC as the cell source. Human ASC was cultured as micromass pellets in CDM containing transforming growth factor-β1 and bone morphogenetic protein 6 for 28 days at extracellular calcium concentrations of either 1.8 mM (basal) or 8 mM (elevated). Our findings indicated that elevated calcium induced osteogenesis and inhibited chondrogenesis in hASC. Based on these findings, stacked polylactic acid nanofibrous scaffolds containing either 0% or 20% tricalcium phosphate (TCP) nanoparticles were electrospun and tested for site-specific chondrogenesis and osteogenesis. Histological assays confirmed that human ASC differentiated locally to generate calcified tissue in layers containing 20% TCP, and cartilage in the layers with no TCP when cultured in CDM. This is the first study to report the effects of elevated calcium on chondrogenic differentiation of hASC, and to develop osteochondral nanofibrous scaffolds using a single cell source and controlled calcium release to induce site-specific differentiation. This approach holds great promise for osteochondral tissue engineering using a single cell source (hASC) and single scaffold.
Collapse
Affiliation(s)
- Liliana F Mellor
- 1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina
| | - Mahsa Mohiti-Asli
- 1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina
| | - John Williams
- 1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina
| | - Arthi Kannan
- 1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina
| | - Morgan R Dent
- 1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina
| | - Farshid Guilak
- 2 Departments of Orthopedic Surgery and Biomedical Engineering, Duke University Medical Center , Durham, North Carolina
| | - Elizabeth G Loboa
- 1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
21
|
Li Z, Yi J, Huang B, Wu X, Qiao W, Luo X, Chen Z. Ultraviolet irradiation enhanced bioactivity and biological response of mesenchymal stem cells on micro-arc oxidized titanium surfaces. Dent Mater J 2015; 34:135-47. [PMID: 25736258 DOI: 10.4012/dmj.2014-125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This present study investigated the effect of ultraviolet (UV) irradiation on bioactivity of micro-arc oxidized (MAO) titanium surface in vitro by cell culture medium immersion test and interactions with rat-derived mesenchymal stem cells (MSCs). UV-irradiated MAO surface exhibited no obvious changes in surface roughness, morphology, and phase composition when compared with MAO-only surface. However, in cell culture medium immersion test, markedly more bone-like apatite was formed on UV-modified samples than on MAO sample. Rat bone marrow- and adipose tissue-derived MSCs cultured on UV-modified samples displayed accelerated attachment, significant higher levels of alkaline phosphatase (ALP) activity, and up-regulated osteogenesis-related mRNA expression than MAO sample. XPS results provided direct evidence that the amount of basic hydroxyl groups increased with UV irradiation time, which could be one of the key mechanisms underlying their improved bioactivity.
Collapse
Affiliation(s)
- Zhipeng Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, 74 Zhong Shan Er Road, Guangzhou 510055 Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Niada S, Ferreira LM, Arrigoni E, Addis A, Campagnol M, Broccaioli E, Brini AT. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res Ther 2014; 4:148. [PMID: 24330736 PMCID: PMC4054958 DOI: 10.1186/scrt359] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/13/2023] Open
Abstract
Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Methods ASCs were isolated from interscapular subcutaneous adipose tissue (ScI) and buccal fat pads of six swine. Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their growth in the presence of autologous and heterologous serum were also assessed. Results Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both ScI- and BFP-pASCs showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli. Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum. Conclusions Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be applied in preclinical studies of periodontal and bone-defect regeneration.
Collapse
|
23
|
In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Ann Plast Surg 2014; 72:225-33. [PMID: 23221992 DOI: 10.1097/sap.0b013e31825f70f5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adult stem cells have recently drawn considerable attention for potential cell therapy applications. However, critical details about their specific in vivo environments and cellular activities are unclear. Adipose tissue-derived mesenchymal stem cells (ASCs) are attractive candidates for treating bone defects, but most studies focus on delivery of in vitro-differentiated cells. We assessed various scaffolding materials for the ability to support osteogenic differentiation of undifferentiated human ASCs in vivo, in athymic nude rat calvaria. Twenty-four 9- to 10-week-old athymic nude Sprague-Dawley rats (250 g) were used in these experiments. Fat tissue from 3 patients was harvested from abdominal tissue discarded during reconstructive breast surgery by transverse rectus abdominis myocutaneous flap, performed at the Asan Medical Center after resection of breast cancer. Human ASCs were extracted from discarded adipose tissue and isolated based on standard International Society for Cellular Therapy protocols. Adipose tissue-derived mesenchymal stem cells were seeded on polylactic glycolic acid, atelocollagen, and hydroxyapatite scaffolds, and osteogenesis was evaluated using bone mineral densitometry, histology, immunohistochemistry, and reverse transcription polymerase chain reaction. The gross appearance of scaffolds seeded with ASCs was strikingly different from that of scaffolds alone. Bone mineral densitometry analysis revealed a 2- to 3-fold increase in mineral density in ASC-seeded scaffolds. In addition, undifferentiated ASCs seeded onto hydroxyapatite scaffolds, but not onto collagen or polylactic glycolic acid scaffolds, expressed human messenger RNA for osteogenic markers such as alkaline phosphatase, osteopontin, osteocalcin, and osteonectin. These results indicate that undifferentiated human ASCs can differentiate into osteocytes or osteoblasts in athymic nude rat calvaria, and the importance of appropriate scaffolding for in vivo ASC differentiation.
Collapse
|
24
|
Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:470983. [PMID: 25197647 PMCID: PMC4147203 DOI: 10.1155/2014/470983] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a highly invalidating disease resulting as consequence of a lesion or disease affecting the somatosensory system. All the pharmacological treatments today in use give a long lasting pain relief only in a limited percentage of patients before pain reappears making NP an incurable disease. New approaches are therefore needed and research is testing stem cell usage. Several papers have been written on experimental neuropathic pain treatment using stem cells of different origin and species to treat experimental NP. The original idea was based on the capacity of stem cell to offer a totipotent cellular source for replacing injured neural cells and for delivering trophic factors to lesion site; soon the researchers agreed that the capacity of stem cells to contrast NP was not dependent upon their regenerative effect but was mostly linked to a bidirectional interaction between the stem cell and damaged microenvironment resident cells. In this paper we review the preclinical studies produced in the last years assessing the effects induced by several stem cells in different models of neuropathic pain. The overall positive results obtained on pain remission by using stem cells that are safe, of easy isolation, and which may allow an autologous transplant in patients may be encouraging for moving from bench to bedside, although there are several issues that still need to be solved.
Collapse
|
25
|
Isolation, characterization, differentiation, and application of adipose-derived stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:55-105. [PMID: 20091288 DOI: 10.1007/10_2009_24] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.Isolation of stromal cell fractions involves centrifugation, digestion, and filtration, resulting in an adherent cell population containing mesenchymal stem cells; these can be subdivided by cell sorting and cultured under common conditions.They seem to have comparable properties to bone marrow-derived mesenchymal stem cells in their differentiation abilities as well as a favorable angiogenic and anti-inflammatory cytokine secretion profile and therefore have become widely used in tissue engineering and clinical regenerative medicine.
Collapse
|
26
|
Manochantr S, U-pratya Y, Kheolamai P, Rojphisan S, Chayosumrit M, Tantrawatpan C, Supokawej A, Issaragrisil S. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord. Intern Med J 2014; 43:430-9. [PMID: 23176558 DOI: 10.1111/imj.12044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 10/23/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND The role of bone marrow-derived mesenchymal stromal cells (BM-MSC) in preventing the incidence and ameliorating the severity of graft-versus-host disease (GvHD) has recently been reported. However, as the collection of BM-MSC is an invasive procedure, more accessible sources of MSC are desirable. AIM This study aimed to explore the alternative sources of MSC from amnion, placenta, Wharton's jelly and umbilical cord, which are usually discarded. METHODS MSC from those tissues were isolated using mechanical dissociation and enzymatic digestion. Their capacity for proliferation and differentiation, and ability to suppress alloreactive T-lymphocytes were studied and compared with those of BM-MSC. RESULTS MSC derived from amnion, placenta, Wharton's jelly and umbilical cord were similar to BM-MSC regarding the cell morphology, the immunophenotype as well as the differentiation ability. These MSC also elicited a similar degree of immunosuppression, as evidenced by the inhibition of alloreactive T-lymphocytes in the mixed lymphocyte reaction, compared with that of BM-MSC. MSC from umbilical cord and Wharton's jelly had a higher proliferative capacity, whereas those from amnion and placenta had a lower proliferative capacity compared with BM-MSC. CONCLUSION The results obtained from this study suggest that MSC from amnion, placenta, Wharton's jelly and umbilical cord can therefore be potentially used for substituting BM-MSC in several therapeutic applications, including the treatment of GvHD.
Collapse
Affiliation(s)
- S Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
27
|
van den Broek LJ, Kroeze KL, Waaijman T, Breetveld M, Sampat-Sardjoepersad SC, Niessen FB, Middelkoop E, Scheper RJ, Gibbs S. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27. Tissue Eng Part A 2013; 20:197-209. [PMID: 23980822 DOI: 10.1089/ten.tea.2013.0123] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation factors. Our findings have implications for the choice of cell type (ASC or dermal fibroblast) to be used in regenerative medicine strategies and indicate the importance of taking into account interactions with the wound bed when developing advanced therapies for difficult-to-close cutaneous wounds.
Collapse
Affiliation(s)
- Lenie J van den Broek
- 1 Department of Dermatology, VU University Medical Center , Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D'Amico G, Fagioli F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Pessina A, Torre ML, Italian Mesenchymal Stem Cell Group. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 2013; 19:2459-73. [PMID: 23278600 PMCID: PMC3788322 DOI: 10.2174/1381612811319130015] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects.
Collapse
Affiliation(s)
- Laura de Girolamo
- Laboratorio di Biotecnologie applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zanetti AS, McCandless GT, Chan JY, Gimble JM, Hayes DJ. In vitro human adipose-derived stromal/stem cells osteogenesis in akermanite:poly-ε-caprolactone scaffolds. J Biomater Appl 2013; 28:998-1007. [PMID: 23796629 DOI: 10.1177/0885328213490974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study compared the metabolic activity, cell proliferation and osteogenic differentiation of human adipose-derived stromal/stem cells cultured on four different scaffolds (poly-ε-caprolactone, akermanite:poly-ε-caprolactone composites, akermanite and β-tricalcium phosophate) with or without osteogenic media supplementation for up to 21 days. The hypothesis was that human adipose-derived stromal/stem cells osteogenesis in akermanite-containing scaffolds would be greater than the other scaffold types independent of the media supplementation. According to the results, human adipose-derived stromal/stem cells loaded on different scaffolds and cultured in both media conditions displayed significant changes in the metabolic activity and cell proliferation. After 21 days of culture in osteogenic medium, the human adipose-derived stromal/stem cells loaded onto akermanite-based scaffolds had greater calcium deposition and osteocalcin expression relative to human adipose-derived stromal/stem cells loaded onto β-tricalcium phosophate and poly-ε-caprolactone. In vivo investigations are needed to further assess the bone tissue engineering potential of human adipose-derived stromal/stem cells loaded to akermanite:poly-ε-caprolactone composites.
Collapse
Affiliation(s)
- Andrea S Zanetti
- 1Department of Biological Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, LA, USA
| | | | | | | | | |
Collapse
|
30
|
Broccaioli E, Niada S, Rasperini G, Ferreira LM, Arrigoni E, Yenagi V, Brini AT. Mesenchymal Stem Cells from Bichat's Fat Pad: In Vitro Comparison with Adipose-Derived Stem Cells from Subcutaneous Tissue. Biores Open Access 2013; 2:107-17. [PMID: 23593563 PMCID: PMC3620540 DOI: 10.1089/biores.2012.0291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stem/stromal cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Since Bichat's fat pad is easily accessible for dentists and maxillo-facial surgeons, we compared the features of ASCs from Bichat's fat pad (BFP-ASCs) with human ASCs from subcutaneous adipose tissue (SC-ASCs). BFP-ASCs isolated from a small amount of tissue were characterized for their stemness and multidifferentiative ability. They showed an important clonogenic ability and the typical mesenchymal stem cell immunophenotype. Moreover, when properly induced, osteogenic and adipogenic differentiation markers, such as alkaline phosphatase activity, collagen deposition and lipid vacuoles formation, were promptly observed. Growth of both BFP-ASCs and SC-ASCs in the presence of human serum and their adhesion to natural and synthetic scaffolds were also assessed. Both types of ASCs adapted rapidly to human autologous or heterologous sera, increasing their proliferation rate compared to standard culture condition, and all the cells adhered finely to bone, periodontal ligament, collagen membrane, and polyglycol acid filaments that are present in the oral cavity or are commonly used in oral surgery. At last, we showed that amelogenin seems to be an early osteoinductive factor for BFP-ASCs, but not SC-ASCs, in vitro. We conclude that Bichat's fat pad contains BFP-ASCs with stemness features that are able to differentiate and adhere to biological supports and synthetic materials. They are also able to proliferate in the presence of human serum. For all these reasons we propose BFP-ASCs for future therapies of periodontal defects and bone regeneration.
Collapse
Affiliation(s)
- Eugenio Broccaioli
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan , Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Fang GW, Liu XS, Lv TZ, Shu HS, Shao H. A new choice for the treatment of segmental tibial bone defects: Intramedullary nail internal fixation combined adipose-derived stem cells technique. Med Hypotheses 2013; 80:422-4. [DOI: 10.1016/j.mehy.2012.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 10/16/2012] [Accepted: 12/31/2012] [Indexed: 01/22/2023]
|
32
|
Arrigoni E, de Girolamo L, Di Giancamillo A, Stanco D, Dellavia C, Carnelli D, Campagnol M, Domeneghini C, Brini AT. Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization. J Orthop Sci 2013; 18:331-9. [PMID: 23344932 DOI: 10.1007/s00776-012-0349-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the last few years, several attempts have been made to treat large bone loss, including the use of tissue engineering with osteoinductive scaffolds and cells. This study highlights the role of mesenchymal stem cells from adipose tissue (ASCs; adipose-derived stem cells) in a rabbit bone regeneration model. METHODS We compared the neoformed bone tissues achieved by treating critical tibial defects with either hydroxyapatite alone (HA, group I) or hydroxyapatite-autologous ASC constructs (ASCs-HA, group II), investigating their histomorphometric, immunohistochemical and biomechanical properties. RESULTS After eight weeks of follow-up, we observed advanced maturation and a spatial distribution of new bone that was more homogeneous in the inner parts of the pores in group II, not just along the walls (as seen in group I). The new tissue expressed osteogenic markers, and biomechanical tests suggested that the newly formed bone in group II had a higher mineral content than that in group I. Although variability in differentiation was observed among the different cell populations in vitro, no differences in bone healing were observed in vivo; the variability seen in vitro was probably due to local microenvironment effects. CONCLUSIONS Tibial defects treated with rabbit ASCs-HA showed an improved healing process when compared to the process that occurred when only the scaffold was used. We suggest that implanted ASCs ameliorate the bone reparative process either directly or by recruiting resident progenitor cells.
Collapse
Affiliation(s)
- Elena Arrigoni
- Department of Biomedical, Surgical, Dental Sciences, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arrigoni E, Niada S, Ferreira L, De Girolamo L, Brini A. Two Bone Substitutes Analyzedin Vitroby Porcine and Human Adipose-Derived Stromal Cells. Int J Immunopathol Pharmacol 2013; 26:51-9. [DOI: 10.1177/03946320130260s107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- E. Arrigoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - S. Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - L.M. Ferreira
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - A.T. Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| |
Collapse
|
34
|
Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera. Ann Plast Surg 2012; 69:331-7. [PMID: 22907186 DOI: 10.1097/sap.0b013e31826239f0] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Parry-Romberg disease is a rare condition that results in progressive hemifacial atrophy, involving the skin, dermis, subcutaneous fat, muscle, and, finally, cartilage and bone. Patients have been treated with dermofat or fat grafts or by microvascular free flap transfer. We hypothesized that adipose-derived stem cells (ASCs) may improve the results of microfat grafting through enhancing angiogenesis. We evaluated the utility of ASC in microfat grafting of patients with Parry-Romberg disease by measuring the change in the hemifacial volumes after injection of ASCs with microfat grafts or microfat grafts alone. METHODS In April 2008, this investigation was approved by the Korean Food and Drug Administration and the institutional review board of the Asan Medical Center (Seoul, Korea) that monitor investigator-initiated trials. Between May 2008 and January 2009, 10 volunteers with Parry-Romberg disease (5 men and 5 women; mean age, 28 y) were recruited; 5 received ASC and microfat grafts and 5 received microfat grafts only. The mean follow-up period was 15 months. Adipose-derived stem cells were obtained from abdominal fat by liposuction and were cultured for 2 weeks. On day 14, patients were injected with fat grafts alone or plus (in the test group) 1 × 10 ASCs. Patients were evaluated postoperatively using a 3-dimensional camera and 3-dimensional CT scans, and grafted fat volumes were objectively calculated. RESULTS Successful outcomes were evident in all 5 patients receiving microfat grafts and ASCs, and the survival of grafted fat was better than in patients receiving microfat grafts alone. Before surgery, the mean difference between ipsilateral and contralateral hemiface volume in patients receiving microfat grafts and ASCs was 21.71 mL decreasing to 4.47 mL after surgery. Overall resorption in this ASC group was 20.59%. The mean preoperative difference in hemiface volume in those receiving microfat grafts alone was 8.32 mL decreasing to 3.89 mL after surgery. Overall resorption in this group was 46.81%. The preoperative and postoperative volume differences between the groups was statistically significant (P = 0.002; random-effects model [SAS 9.1]). CONCLUSIONS Adipose-derived stem cells enhance the survival of fat grafted into the face. A microfat graft with simultaneous ASC injection may be used to treat Parry-Romberg disease without the need for microvascular free flap transfer.
Collapse
|
35
|
|
36
|
Banka S, Mukudai Y, Yoshihama Y, Shirota T, Kondo S, Shintani S. A combination of chemical and mechanical stimuli enhances not only osteo- but also chondro-differentiation in adipose-derived stem cells. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Maroni P, Brini AT, Arrigoni E, de Girolamo L, Niada S, Matteucci E, Bendinelli P, Desiderio MA. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors. Biochem Biophys Res Commun 2012; 428:271-7. [PMID: 23085045 DOI: 10.1016/j.bbrc.2012.10.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/08/2012] [Indexed: 01/19/2023]
Abstract
The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) γ. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPARγ and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPARγ/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPARγ target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal a role for HDACs in orchestrating osteo-differentiation of hASCs at transcriptional level, and might provide new insights into the modulation of hASCs-based regenerative therapy.
Collapse
|
38
|
New perspectives in cell delivery systems for tissue regeneration: natural-derived injectable hydrogels. J Appl Biomater Funct Mater 2012; 10:67-81. [PMID: 22865572 DOI: 10.5301/jabfm.2012.9418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 01/11/2023] Open
Abstract
Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.
Collapse
|
39
|
Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater 2012; 101:187-99. [PMID: 22997152 DOI: 10.1002/jbm.b.32817] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/28/2012] [Accepted: 08/07/2012] [Indexed: 12/24/2022]
Abstract
In the past decade, substantial strides have been taken toward the use of human adipose-derived stromal/stem cells (hASC) in the regeneration of bone. Since the discovery of the hASC osteogenic potential, many models have combined hASC with biodegradable scaffold materials. In general, rats and immunodeficient (nude) mice models for nonweight bearing bone formation have led the way to assess hASC osteogenic potential in vivo. The goal of this review is to present an overview of the recent literature describing hASC osteogenesis in conjunction with three-dimensional scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Andrea S Zanetti
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Louisiana, USA
| | | | | | | |
Collapse
|
40
|
Shi Y, Niedzinski JR, Samaniego A, Bogdansky S, Atkinson BL. Adipose-derived stem cells combined with a demineralized cancellous bone substrate for bone regeneration. Tissue Eng Part A 2012; 18:1313-21. [PMID: 22500696 DOI: 10.1089/ten.tea.2011.0357] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from cadaveric adipose tissue can be obtained in large quantities, and have been reported in the literature to be capable of inducing bone formation in vivo and ex vivo.( 1-6 ) The hypothesis tested whether a demineralized cancellous bone matrix (DCBM) can provide an effective substrate for selection and retention of stem cells derived from the stromal vascular fraction (SVF) of adipose. Human cadaveric adipose tissue was recovered from a donor and digested. The resulting SVF-containing MSCs were seeded onto the demineralized bone allografts, after which the nonadherent cells were washed off. The MSCs were characterized using a flow cytometer and tri-lineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) in vitro. The stem cell-seeded allografts were also characterized for cell number, adherence to the DCBM, osteogenic activity (alkaline phosphatase and Alizarin Red staining), and bone morphorgenic protein (BMP) quantity. Flow cytometry identified a mean total of 7.2% MSCs in SVF and 87.2% MSCs after culture. The stem cells showed the capability of differentiating into bone, cartilage, and fat. On the 21 stem cell-seeded bone allografts, there were consistent, attached, viable cells (100,744±22,762 cells/cube). An assessment of donor age, gender, and body mass index revealed no significant differences in cell numbers. Enzyme-linked immunosorbent assay revealed the presence of BMP-2 and BMP-7. In conclusion, this bone graft contains three key elements for bone regeneration: adhered osteogenic stem cells, 3D osteoconductive bone scaffold, and osteoinductive BMP signal. It therefore has the potential to be effective for bone regeneration.
Collapse
Affiliation(s)
- Yaling Shi
- AlloSource, 6278 S. Troy Circle, Centennial, CO 80111, USA.
| | | | | | | | | |
Collapse
|
41
|
Gamie Z, Tran GT, Vyzas G, Korres N, Heliotis M, Mantalaris A, Tsiridis E. Stem cells combined with bone graft substitutes in skeletal tissue engineering. Expert Opin Biol Ther 2012; 12:713-29. [DOI: 10.1517/14712598.2012.679652] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int 2012; 2012:980353. [PMID: 22448175 PMCID: PMC3289837 DOI: 10.1155/2012/980353] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023] Open
Abstract
While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs), adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs), as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.
Collapse
|
43
|
Cenni E, Perut F, Baglìo SR, Fiorentini E, Baldini N. Recent highlights on bone stem cells: a report from Bone Stem Cells 2009, and not only…. J Cell Mol Med 2011; 14:2614-21. [PMID: 20874718 PMCID: PMC4373490 DOI: 10.1111/j.1582-4934.2010.01175.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of stem cells has opened new prospects for the treatment of orthopaedic conditions characterized by large bone defects. However, many issues still exist to which answers are needed before routine, large-scale application becomes possible. Bone marrow stromal cells (MSC), which are clonogenic, multipotential precursors present in the bone marrow stroma, are generally employed for bone regeneration. Stem cells with multilineage differentiation similar to MSC have also been demonstrated in adipose tissue, peripheral blood, umbilical cord and amniotic fluid. Each source presents its own advantages and drawbacks. Unfortunately, no unique surface antigen is expressed by MSC, and this hampers simple MSC enrichment from heterogeneous populations. MSC are identified through a combination of physical, morphological and functional assays. Different in vitro and in vivo models have been described for the research on bone stem cells. These models should predict the in vivo bone healing capacity of MSC and if the induced osteogenesis is similar to the physiological one. Although stem cells offer an exciting possibility of a renewable source of cells and tissues for replacement, orthopaedic applications often represent case reports whereas controlled randomized trials are still lacking. Further biological aspects of bone stem cells should be elucidated and a general consensus on the best models, protocols and proper use of scaffolds and growth factors should be achieved.
Collapse
Affiliation(s)
- Elisabetta Cenni
- Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | | | | | | |
Collapse
|
44
|
de Girolamo L, Arrigoni E, Stanco D, Lopa S, Di Giancamillo A, Addis A, Borgonovo S, Dellavia C, Domeneghini C, Brini AT. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects. J Orthop Res 2011; 29:100-8. [PMID: 20607837 DOI: 10.1002/jor.21184] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adipose-derived stem cells (ASCs) may represent a novel and efficient tool to promote bone regeneration. In this study, rabbit ASCs were expanded in culture and used for the regeneration of full-thickness bone defects in the proximal epiphysis of tibia of 12 New Zealand rabbits. Defects were implanted with graft material as follows: untreated (control), empty hydroxyapatite (HA) disk, ASCs alone, and HA disk seeded with ASCs. Each isolated ASCs population was tested in vitro: they all showed a high proliferation rate, a marked clonogenic ability, and osteogenic differentiation potential. Eight weeks after implantation, macroscopic analyses of all the samples showed satisfactory filling of the lesions without any significant differences in term of stiffness between groups treated with or without cells (p > 0.05). In both the scaffold-treated groups, a good osteointegration was radiographically observed. Even if HA was not completely reabsorbed, ASCs-loaded HA displayed a higher scaffold resorption than the unloaded ones. Histological analyses showed that the osteogenic abilities of the scaffold-treated defects was greater than those of scaffold-free samples, and in particular new formed bone was more mature and more similar to native bone in presence of ASCs. These results demonstrated that autologous ASCs-HA constructs is a potential treatment for the regeneration of bone defects.
Collapse
|
45
|
Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater 2010; 5:062001. [PMID: 20924139 DOI: 10.1088/1748-6041/5/6/062001] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.
Collapse
Affiliation(s)
- Jeong Min Seong
- Department of Preventive and Social Dentistry & Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Park JR, Jung JW, Seo MS, Kang SK, Lee YS, Kang KS. DNER modulates adipogenesis of human adipose tissue-derived mesenchymal stem cells via regulation of cell proliferation. Cell Prolif 2010; 43:19-28. [PMID: 20070733 DOI: 10.1111/j.1365-2184.2009.00650.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES In recent years, obesity has become a global epidemic, highlighting the necessity for basic research into mechanisms underlying growth of adipose tissue and differentiation of stem cells into adipocytes, in humans. For better understanding of cell signalling in adipogenesis, the role of DNER (delta/Notch-like EGF-related receptor) in adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAMSC) was investigated. MATERIALS AND METHODS To assess the role of DNER in hAMSC adipogenesis, hAMSCs were transfected with DNER small interfering RNA (siDNER). Real-time quantitative reverse transcriptase polymerase chain reactions to assess expression levels of adipogenesis-related genes regulated by siDNER, cell cycle and immunoblot analyses were performed. RESULTS First, it was determined that DNER mRNA was profoundly expressed in hAMSCs and reduced during adipogenic differentiation. Knockdown of DNER altered cell morphology, inhibited proliferation and increased frequency and efficiency of adipogenesis in hAMSC. Expression of CCAAT/enhancer-binding protein delta increased and proportion of cells in S phase decreased by knockdown of DNER, using specific siRNA. Moreover, adipocyte-specific genes including peroxisome proliferator-activated receptor gamma, fatty acid binding protein 4 and perilipin were up-regulated in siDNER compared to the siControl group during adipogenesis in hAMSC. CONCLUSIONS These results indicate that DNER knockdown in hAMSC accelerated onset of adipogenic differentiation by bypassing mitotic clonal expansion during the early stages of adipogenesis.
Collapse
Affiliation(s)
- J-R Park
- Laboratory of Stem Cell and Tumor Biology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
de Girolamo L, Lopa S, Arrigoni E, Sartori MF, Baruffaldi Preis FW, Brini AT. Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy 2010; 11:793-803. [PMID: 19878065 DOI: 10.3109/14653240903079393] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AIMS Several authors have demonstrated that adipose tissue contains multipotent cells capable of differentiation into several lineages, including bone, cartilage and fat. METHODS This study compared human adipose-derived stem cells (hASC) isolated from 26 female donors, under 35 and over 45 years old, showing differences in their cell numbers and proliferation, and evaluated their in vitro adipocytic and osteoblastic differentiation potential. RESULTS The cellular yield of hASC from older donors was significantly greater than that from younger donors, whereas their clonogenic potential appeared slightly reduced. There were no significant discrepancies between hASC isolated from young and elderly women regarding their in vitro adipocytic differentiation, whereas the osteoblastic potential was significantly reduced by aging. We also assessed the influence of hydroxyapatite (HAP) and silicon carbide (SiC-PECVD) on hASC. Even when cultured on scaffolds, hASC from younger donors had better differentiation into osteoblast-like cells than hASC from older donors; their differentiation ability was up-regulated by the presence of HAP, whereas SiC-PECVD produced no significant effect on hASC osteoblastic differentiation. CONCLUSIONS The large numbers of hASC resident in adipose tissue and their differentiation features suggest that they could be used for a successful bone regeneration process in vivo. We have shown that age does not seem to affect cell viability and in vitro adipocytic differentiation significantly, whereas it does affects osteoblastic differentiation, in the absence and presence of two-dimensional and three-dimensional scaffolds.
Collapse
Affiliation(s)
- Laura de Girolamo
- Department of Medical Pharmacology, Faculty of Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Arrigoni E, Lopa S, de Girolamo L, Stanco D, Brini AT. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res 2009; 338:401-11. [PMID: 19882172 DOI: 10.1007/s00441-009-0883-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/09/2009] [Indexed: 01/01/2023]
Abstract
One of the most important issues in orthopaedic surgery is the loss of bone resulting from trauma, infections, tumours or congenital deficiency. In view of the hypothetical future application of mesenchymal stem cells isolated from human adipose tissue in regenerative medicine, we have analysed and characterized adipose-derived stem cells (ASCs) isolated from adipose tissue of rat, rabbit and pig. We have compared their in vitro osteogenic differentiation abilities for exploitation in the repair of critical osteochondral defects in autologous pre-clinical models. The number of pluripotent cells per millilitre of adipose tissue is variable and the yield of rabbit ASCs is lower than that in rat and pig. However, all ASCs populations show both a stable doubling time during culture and a marked clonogenic ability. After exposure to osteogenic stimuli, ASCs from rat, rabbit and pig exhibit a significant increase in the expression of osteogenic markers such as alkaline phosphatase, extracellular calcium deposition, osteocalcin and osteonectin. However, differences have been observed depending on the animal species and/or differentiation period. Rabbit and porcine ASCs have been differentiated on granules of clinical grade hydroxyapatite (HA) towards osteoblast-like cells. These cells grow and adhere to the scaffold, with no inhibitory effect of HA during osteo-differentiation. Such in vitro studies are necessary in order to select suitable pre-clinical models to validate the use of autologous ASCs, alone or in association with proper biomaterials, for the repair of critical bone defects.
Collapse
Affiliation(s)
- Elena Arrigoni
- Department of Medical Pharmacology, Faculty of Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | |
Collapse
|
49
|
Diederichs S, Röker S, Marten D, Peterbauer A, Scheper T, van Griensven M, Kasper C. Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z®RP platform. Biotechnol Prog 2009; 25:1762-71. [DOI: 10.1002/btpr.258] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Catapano G, Klein J. The Times They are A-Changing - A year of transition. Int J Artif Organs 2008; 31:997-1001. [DOI: 10.1177/039139880803101202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- G. Catapano
- Department of Chemical Engineering and Materials, University of Calabria, Rende (CS) - Italy
| | - J.B. Klein
- Kidney Disease Program, University of Louisville, Louisville (KY) - USA
| |
Collapse
|