1
|
Kystaubayev A, Abzalbekov A, Ramazanova B, Lokshin V, Iskakov M. The impact of COVID-19 on the male reproductive system. JBRA Assist Reprod 2024; 28:604-610. [PMID: 39254469 PMCID: PMC11622392 DOI: 10.5935/1518-0557.20240048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE The relevance of the study is determined by the deepening understanding of the global consequences of the coronavirus pandemic, which affect not only lung health but also a wide range of other body systems. In light of new data on the long-term effects of coronavirus infection, this study is highly significant. The purpose of this study is to investigate the impact of coronavirus infection on the male reproductive system and assess its potential influence on male fertility to refine the mechanisms of damage and provide recommendations for medical care. METHODS The study utilised a combination of methods, including a meta-analysis of medical organisation databases, analysis of clinical cases, representative sample method, and quantitative survey method. These approaches allowed for a comprehensive and multifaceted view of the problem. RESULTS The samples of sperm showed a noticeable decrease in progressive motility, sperm concentration, and volume, especially in patients with moderate and severe symptoms of COVID-19, whereas patients with mild symptoms only experienced a decrease in progressive motility and overall sperm motility. The survey identified symptoms of male reproductive system dysfunction after recovering from COVID-19. Predominant symptoms included decreased libido (15%), impotence (13%), and infections of the genital organs (12%). Most surveyed men lacked sufficient awareness of other aspects of male reproductive health, including infections, genetic defects, chronic diseases, and available medical services. CONCLUSIONS As a result of the study, it was concluded that coronavirus infection can have a negative impact on the male reproductive system. The practical value of this study lies in improving approaches to medical care for men who have recovered from COVID-19 and creating preventive programmes.
Collapse
Affiliation(s)
- Abzal Kystaubayev
- Asfendiyarov Kazakh National Medical University, Department of
Microbiology, Virology. Almaty, Republic of Kazakhstan
| | - Askhan Abzalbekov
- Kazakh-Russian Medical University, Department of Urology and
Andrology. Almaty, Republic of Kazakhstan
| | - Bakyt Ramazanova
- Asfendiyarov Kazakh National Medical University, Department of
Microbiology, Virology. Almaty, Republic of Kazakhstan
| | - Vyacheslav Lokshin
- International Academy of Fertility Science. Almaty, Republic of
Kazakhstan
| | - Muhammed Iskakov
- Asfendiyarov Kazakh National Medical University, Department of
Health Politics and Management. Almaty, Republic of Kazakhstan
| |
Collapse
|
2
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
3
|
Dabizzi S, Maggi M, Torcia MG. Update on known and emergent viruses affecting human male genital tract and fertility. Basic Clin Androl 2024; 34:6. [PMID: 38486154 PMCID: PMC10941432 DOI: 10.1186/s12610-024-00222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Many viruses infect the male genital tract with harmful consequences at individual and population levels. In fact, viral infections may induce damage to different organs of the male genital tract (MGT), therefore compromising male fertility. The oxidative stress, induced during viral-mediated local and systemic inflammation, is responsible for testicular damage, compromising germinal and endocrine cell functions. A reduction in sperm count, motility, number of normal sperm and an increase in DNA fragmentation are all common findings in the course of viral infections that, however, generally regress after infection clearance. In some cases, however, viral shedding persists for a long time leading to unexpected sexual transmission, even after the disappearance of the viral load from the blood.The recent outbreak of Zika and Ebola Virus evidenced how the MGT could represent a reservoir of dangerous emergent viruses and how new modalities of surveillance of survivors are strongly needed to limit viral transmission among the general population.Here we reviewed the evidence concerning the presence of relevant viruses, including emergent and re-emergent, on the male genital tract, their route of entry, their adverse effects on male fertility and the pattern of viral shedding in the semen.We also described laboratory strategies to reduce the risk of horizontal or vertical cross-infection in serodiscordant couples undergoing assisted reproductive technologies.
Collapse
Affiliation(s)
- Sara Dabizzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for the Prevention, Diagnosis and Treatment of Infertility, Azienda Ospedaliera Universitaria Careggi Hospital, Florence, Italy.
| | - Mario Maggi
- Endocrinology Unit, Azienda Ospedaliera Universitaria Careggi Hospital, Florence, Italy.
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, Florence, Italy.
| | - Maria Gabriella Torcia
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for the Prevention, Diagnosis and Treatment of Infertility, Azienda Ospedaliera Universitaria Careggi Hospital, Florence, Italy
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Kalfas T, Kaltsas A, Symeonidis EN, Symeonidis A, Zikopoulos A, Moustakli E, Tsiampali C, Tsampoukas G, Palapela N, Zachariou A, Sofikitis N, Dimitriadis F. COVID-19 and Male Infertility: Is There a Role for Antioxidants? Antioxidants (Basel) 2023; 12:1483. [PMID: 37627478 PMCID: PMC10451649 DOI: 10.3390/antiox12081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), jeopardizes male fertility because of the vulnerability of the male reproductive system, especially the testes. This study evaluates the effects of the virus on testicular function and examines the potential role of antioxidants in mitigating the damage caused by oxidative stress (OS). A comprehensive PubMed search examined exocrine and endocrine testicular function alteration, the interplay between OS and COVID-19-induced defects, and the potential benefit of antioxidants. Although the virus is rarely directly detectable in sperm and testicular tissue, semen quality and hormonal balance are affected in patients, with some changes persisting throughout a spermatogenesis cycle. Testicular pathology in deceased patients shows defects in spermatogenesis, vascular changes, and inflammation. Acute primary hypogonadism is observed mainly in severely infected cases. Elevated OS and sperm DNA fragmentation markers suggest redox imbalance as a possible mechanism behind the fertility changes. COVID-19 vaccines appear to be safe for male fertility, but the efficacy of antioxidants to improve sperm quality after infection remains unproven due to limited research. Given the limited and inconclusive evidence, careful evaluation of men recovering from COVID-19 seeking fertility improvement is strongly recommended.
Collapse
Affiliation(s)
| | - Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (A.S.)
| | - Asterios Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (A.S.)
| | - Athanasios Zikopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Efthalia Moustakli
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | | | - Georgios Tsampoukas
- Department of Urology, Oxford University Hospital NHS Trust, Oxford OX3 7LE, UK;
| | - Natalia Palapela
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (A.S.)
| |
Collapse
|