1
|
Yu Z, Peng Y, Gao J, Zhou M, Shi L, Zhao F, Wang C, Tian X, Feng L, Huo X, Zhang B, Liu M, Fang D, Ma X. The p23 co-chaperone is a succinate-activated COX-2 transcription factor in lung adenocarcinoma tumorigenesis. SCIENCE ADVANCES 2023; 9:eade0387. [PMID: 37390202 PMCID: PMC10313168 DOI: 10.1126/sciadv.ade0387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
P23, historically known as a heat shock protein 90 (HSP90) co-chaperone, exerts some of its critical functions in an HSP90-independent manner, particularly when it translocates into the nucleus. The molecular nature underlying how this HSP90-independent p23 function is achieved remains as a biological mystery. Here, we found that p23 is a previously unidentified transcription factor of COX-2, and its nuclear localization predicts the poor clinical outcomes. Intratumor succinate promotes p23 succinylation at K7, K33, and K79, which drives its nuclear translocation for COX-2 transcription and consequently fascinates tumor growth. We then identified M16 as a potent p23 succinylation inhibitor from 1.6 million compounds through a combined virtual and biological screening. M16 inhibited p23 succinylation and nuclear translocation, attenuated COX-2 transcription in a p23-dependent manner, and markedly suppressed tumor growth. Therefore, our study defines p23 as a succinate-activated transcription factor in tumor progression and provides a rationale for inhibiting p23 succinylation as an anticancer chemotherapy.
Collapse
Affiliation(s)
- Zhenlong Yu
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Yulin Peng
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Meirong Zhou
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Lei Shi
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Feng Zhao
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Chao Wang
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Xiangge Tian
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Lei Feng
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Xiaokui Huo
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Baojing Zhang
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Min Liu
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaochi Ma
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
2
|
Gong Z, Huang W, Wang B, Liang N, Long S, Li W, Zhou Q. Interplay between cyclooxygenase‑2 and microRNAs in cancer (Review). Mol Med Rep 2021; 23:347. [PMID: 33760116 PMCID: PMC7974460 DOI: 10.3892/mmr.2021.11986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor‑associated inflammation and aberrantly expressed biomarkers have been demonstrated to play crucial roles in the cancer microenvironment. Cyclooxygenase‑2 (COX‑2), a prominent inflammatory factor, is highly expressed in tumor cells and contributes to tumor growth, recurrence and metastasis. Overexpression of COX‑2 may occur at both transcriptional and post‑transcriptional levels. Thus, an improved understanding of the regulatory mechanisms of COX‑2 can facilitate the development of novel antitumor therapies. MicroRNAs (miRNAs) are a group of small non‑coding RNAs that act as translation repressors of target mRNAs, and play vital roles in regulating cancer development and progression. The present review discusses the association between miRNAs and COX‑2 expression in different types of cancer. Understanding the regulatory role of miRNAs in COX‑2 post‑transcription can provide novel insight for suppressing COX‑2 expression via gene silencing mechanisms, which offer new perspectives and future directions for the development of novel COX‑2 selective inhibitors based on miRNAs.
Collapse
Affiliation(s)
- Zexiong Gong
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Weiguo Huang
- Cancer Research Institute, Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Songkai Long
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Wanjun Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Qier Zhou
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| |
Collapse
|
3
|
COX-2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:87-104. [PMID: 33119867 DOI: 10.1007/978-3-030-50224-9_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumorigenesis is a multistep, complicated process, and many studies have been completed over the last few decades to elucidate this process. Increasingly, many studies have shifted focus toward the critical role of the tumor microenvironment (TME), which consists of cellular players, cell-cell communications, and extracellular matrix (ECM). In the TME, cyclooxygenase-2 (COX-2) has been found to be a key molecule mediating the microenvironment changes. COX-2 is an inducible form of the enzyme that converts arachidonic acid into the signal transduction molecules (thromboxanes and prostaglandins). COX-2 is frequently expressed in many types of cancers and has been closely linked to its occurrence, progression, and prognosis. For example, COX-2 has been shown to (1) regulate tumor cell growth, (2) promote tissue invasion and metastasis, (3) inhibit apoptosis, (4) suppress antitumor immunity, and (5) promote sustainable angiogenesis. In this chapter, we summarize recent advances of studies that have evaluated COX-2 signaling in TME.
Collapse
|
4
|
Abstract
Breast cancer has a high incidence worldwide. The results of substantial studis reveal that inflammation plays an important role in the initiation, development, and aggressiveness of many malignancies. The use of celecoxib, a novel NSAID, is repetitively associated with the reduced risk of the occurrence and progression of a number of types of cancer, particularly breast cancer. This observation is also substantiated by various meta-analyses. Clinical trials have been implemented on integration treatment of celecoxib and shown encouraging results. Celecoxib could be treated as a potential candidate for antitumor agent. There are, nonetheless, some unaddressed questions concerning the precise mechanism underlying the anticancer effect of celecoxib as well as its activity against different types of cancer. In this review, we discuss different mechanisms of anticancer effect of celecoxib as well as preclinical/clinical results signifying this beneficial effect.
Collapse
Affiliation(s)
- Jieqing Li
- Department of Breast Surgery, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China.,Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,Department of Nuclear Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| |
Collapse
|
5
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol 2018; 234:5683-5699. [PMID: 30341914 DOI: 10.1002/jcp.27411] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
6
|
Papazahariadou M, Athanasiadis GI, Papadopoulos E, Symeonidou I, Hatzistilianou M, Castellani ML, Bhattacharya K, Shanmugham LN, Conti P, Frydas S. Involvement of NK Cells against Tumors and Parasites. Int J Biol Markers 2018; 22:144-53. [PMID: 17549670 DOI: 10.1177/172460080702200208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells’ surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.
Collapse
Affiliation(s)
- M Papazahariadou
- Laboratory of Parasitology, Veterinary Faculty, Aristotele University, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Höing B, Kanaan O, Altenhoff P, Petri R, Thangavelu K, Schlüter A, Lang S, Bankfalvi A, Brandau S. Stromal versus tumoral inflammation differentially contribute to metastasis and poor survival in laryngeal squamous cell carcinoma. Oncotarget 2018; 9:8415-8426. [PMID: 29492204 PMCID: PMC5823564 DOI: 10.18632/oncotarget.23865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022] Open
Abstract
In solid tumors the biology and clinical course are strongly influenced by the interaction of tumor cells and infiltrating stromal host cells. The aim of this study was to assess the relative importance of stromal vs. tumoral inflammation for metastasis and survival in patients with laryngeal squamous cell carcinoma (LSCC). In 110 patients with tissues from histologically proven LSCC the expression of CD45, CD11b, CD3, MMP-9 and COX-2 was semiquantitatively analyzed in stromal regions and tumor nests. CD45, CD11b, CD3 and MMP-9 positive cells were more abundant in stroma whereas COX-2 was predominantly expressed in epithelial tumor nests. High expression of stromal CD45 and CD11b on immune cells in tumor regions correlated with COX-2 expression on tumor cells. High levels of CD45 in stroma as well as CD11b and COX-2 in tumor nests were associated with increased metastasis. In contrast, high frequencies of CD3 cells in the tumor core area were associated with reduced metastasis. Overall survival was reduced in patients with high stromal CD45, high tumoral CD11b and high tumoral COX-2 expression. This is the first study which separately analyzes peritumoral stroma and tumor core area in laryngeal squamous cell carcinoma in terms of CD45, CD11b, CD3, MMP-9 and COX-2 expression. Our results indicate that stroma and tumor islands need to be considered as two separate compartments in the inflammatory tumor microenvironment. Inflammatory stromal leukocytes, abundant myeloid cells in tumor regions and high expression of COX-2 on tumor cells are linked to metastatic disease and poor overall survival.
Collapse
Affiliation(s)
- Benedikt Höing
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Oliver Kanaan
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Petra Altenhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Robert Petri
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Kruthika Thangavelu
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Anke Schlüter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Pappalardo S, Puzzo S, Cappello V, Mastrangelo F, Adamo G, Caraffa A, Tetè S. The Efficacy of Four Ways of Administrating Dexamethasone during Surgical Extraction of Partially Impacted Lower Third Molars. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0700500306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoids are drugs noted for their potent anti-inflammatory effect and long lasting half-life. Various studies have been carried out to identify which of these molecules is best for reducing the post-operative sequelae after surgical extraction of the impacted lower third molar. This study examines four different ways of administering dexamethasone after surgical extraction of impacted lower third molars: endoalveolar application, submucous injection, intravenous administration and intramuscular injection, with the aim of identifying which method gives the least discomfort to the patient in regard to reduction of pain, edema and post-operative lock-jaw. Results show that a greater reduction of the post-operative sequelae was obtained in the group of patients treated with dexamethasone intravenously. Satisfying results were also obtained in the group treated with a topical administration of dexamethasone in powder form and in the group which was given dexamethasone through an intramuscular injection. These last two groups had similar results. Instead, the results obtained in the group that received dexamethasone through local submucous injection were not satisfactory.
Collapse
Affiliation(s)
| | | | | | - F. Mastrangelo
- Department of Oral Sciences, University of Chieti, Italy
| | | | - A. Caraffa
- Orthopedic and Traumatology Division, University of Perugia, Italy
| | - S. Tetè
- Department of Oral Sciences, University of Chieti, Italy
| |
Collapse
|
9
|
Tripodi D, Latrofa M, D'Ercole S. Microbiological Aspects and Inflammatory Response of Pulp Tissue in Traumatic Dental Lesions. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0700500301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Traumatic dental lesions are more frequently found in the pediatric population, with a major involvement, in 80% of the cases, of the superior central incisors. The exposure of the dental pulp leads to major morphological changes in dental tissue, such as discolouring, acute pulp inflammation, chronic inflammation and necrosis. This article reviews the various studies published on the different types of inflammatory response of the pulp tissue following traumatic events, from the microbiological and histological point of view of various techniques.
Collapse
Affiliation(s)
| | | | - S. D'Ercole
- Laboratory of Clinical Microbiology, Department of Biomedical Sciences, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Bergman M, Djaldetti M, Salman H, Bessler H. Inflammation and colorectal cancer: does aspirin affect the interaction between cancer and immune cells? Inflammation 2011. [PMID: 20349206 DOI: 10.1007/s10753-0109203-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effect of aspirin on colon-cancer-cell-induced cytokine secretion by peripheral blood mononuclear cells (PBMC) was examined. Aspirin was added to human colon cancer cells (HT-29 and RKO) or to PBMC incubated separately or jointly. The secretion of IFNγ, IL-6, and IL-10 induced by HT-29 cells was decreased, that of IL-1β was slightly increased, whereas IL-1ra production was not affected. With RKO cells, aspirin reduced IL-6, IL-1ra, and IL-10 synthesis and enhanced IFNγ secretion, while IL-1β remained unchanged. Conditioned media from colon cancer cells incubated without or with aspirin stimulated cytokine productions by PBMC similarly, suggesting that aspirin acts on the cell-to-cell interaction between cancer cells and PBMC. The results indicate that aspirin alter the balance between pro- and anti-inflammatory cytokines generated by interaction between colon cancer and immune cells disclosing an additional role of the drug in affecting inflammation-induced colon cancer.
Collapse
Affiliation(s)
- Michael Bergman
- Department of Medicine C, Rabin Medical Center-Hasharon Hospital, Petah-Tiqva, Israel
| | | | | | | |
Collapse
|
11
|
Inflammation and colorectal cancer: does aspirin affect the interaction between cancer and immune cells? Inflammation 2011; 34:22-8. [PMID: 20349206 DOI: 10.1007/s10753-010-9203-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of aspirin on colon-cancer-cell-induced cytokine secretion by peripheral blood mononuclear cells (PBMC) was examined. Aspirin was added to human colon cancer cells (HT-29 and RKO) or to PBMC incubated separately or jointly. The secretion of IFNγ, IL-6, and IL-10 induced by HT-29 cells was decreased, that of IL-1β was slightly increased, whereas IL-1ra production was not affected. With RKO cells, aspirin reduced IL-6, IL-1ra, and IL-10 synthesis and enhanced IFNγ secretion, while IL-1β remained unchanged. Conditioned media from colon cancer cells incubated without or with aspirin stimulated cytokine productions by PBMC similarly, suggesting that aspirin acts on the cell-to-cell interaction between cancer cells and PBMC. The results indicate that aspirin alter the balance between pro- and anti-inflammatory cytokines generated by interaction between colon cancer and immune cells disclosing an additional role of the drug in affecting inflammation-induced colon cancer.
Collapse
|
12
|
André N, Padovani L, Pasquier E. Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy? Future Oncol 2011; 7:385-94. [DOI: 10.2217/fon.11.11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metronomic scheduling of anticancer treatment (MSAT) is progressively gaining interest after the antiangiogenic properties of metronomic chemotherapy and its potential to overcome drug resistance was initially described in 2000. MSAT has now grown beyond the anticipated scope of antiangiogenic chemotherapy, with accumulating evidence demonstrating that these treatments may also act by stimulating an antitumor immune response and could ultimately lead to reinduction of tumor dormancy. An increasing number of drugs, not initially developed as anticancer agents, are currently being used in metronomic protocols in order to increase treatment efficacy. Interestingly, these ‘repositioned’ agents can target cancer cells, the tumor vasculature or, more broadly, the tumor microenvironment. Malignant tumors are no longer regarded as simple congregations of cancer cells but as genuine tissues with various components such as blood vessels, fibroblasts, inflammatory cells and an extracellular matrix. These different components and their multiple interactions play a crucial role in tumor development and response to treatment. Therefore, future anticancer treatments will have to take into account the tumor microenvironment and aim to target the different cellular and molecular participants encompassed in a tumor, as well as their specific interactions. In this article, we explain why MSAT represents a very attractive strategy for developing next-generation multitarget therapies.
Collapse
Affiliation(s)
- Nicolas André
- INSERM-UMR 911, Cytosquelette et Intégration des Signaux du Micro-Environnement Tumoral, CRO2, Université d’Aix-Marseille, Marseille, France; Hematology & Pediatric Oncology Department, Children Hospital of ‘La Timone’, AP-HM, Bd Jean Moulin 13885, Marseille Cedex 5, France
| | - Laetitia Padovani
- Service de Radiothérapie, Hôpital pour Enfants de ‘La Timone’, AP-HM, Marseille, France
| | - Eddy Pasquier
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
13
|
Promotion of interferon-gamma production by natural killer cells via suppression of murine peritoneal macrophage prostaglandin E2 production using intravenous anesthetic propofol. Int Immunopharmacol 2010; 10:1200-8. [DOI: 10.1016/j.intimp.2010.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/10/2010] [Accepted: 06/26/2010] [Indexed: 01/24/2023]
|
14
|
Roschek B, Fink RC, Li D, McMichael M, Tower CM, Smith RD, Alberte RS. Pro-inflammatory enzymes, cyclooxygenase 1, cyclooxygenase 2, and 5-lipooxygenase, inhibited by stabilized rice bran extracts. J Med Food 2009; 12:615-23. [PMID: 19627211 DOI: 10.1089/jmf.2008.0133] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rice bran, the outer bran and germ of the kernel and a by-product of rice milling, is rich in phytonutrients but has been underutilized because of lipid content instability. New methods for the processing of rice bran have yielded a stabilized form that is increasingly used in foods and dietary supplements. Recent studies have documented a role for stabilized rice bran (SRB) in treating diabetes and arthritis, although little is known of the bioactive compounds that impart these health benefits. Here we characterize the chemical composition of three extracts of SRB and identify the functional bioactives contributing to the inhibitory properties against three key pro-inflammatory enzymes (cyclooxygenase [COX] 1, COX2, and 5-lipoxygenase [5-LOX]) that control the inflammatory cascade involved in impaired joint health, pain, and arthritis. One extract (SRB-AI) demonstrated significant COX1 and COX2 inhibitory activities with 50% inhibitory concentration (IC(50)) values for COX1 and COX2 of 305 and 29 microg/mL, respectively, but no 5-LOX inhibition. The second extract (SRB-AII) inhibited COX1, COX2, and 5-LOX with IC(50) values of 310, 19, and 396 microg/mL, respectively. The third extract (SRB-AIII), a blend of SRB-AI and SRB-AIII, inhibited COX1, COX2, and 5-LOX with respective IC(50) values of 48, 11, and 197 microg/mL. Analysis of the extracts by direct analysis in real time time of flight-mass spectrometry revealed that SRB-AI, SRB-AII, and SRB-AIII contain over 620, 770, and 810 compounds, respectively. Of these, 17 were identified as key bioactives for COX and/or LOX inhibition. These SRB extracts have applications for functional foods and dietary supplements for control of inflammation and joint health.
Collapse
Affiliation(s)
- Bill Roschek
- HerbalScience Group LLC, Naples, Florida 34110, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De Petris G. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. THE JOURNAL OF IMMUNOLOGY 2009. [PMID: 19109152 DOI: 10.4049/jimmunol.182.1.216] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRAS(G12D) mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E(2) and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Pinku Mukherjee
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL. Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 2007; 67:8865-73. [PMID: 17875728 DOI: 10.1158/0008-5472.can-07-0767] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase 2 (COX-2) overexpression and production of prostaglandin E(2) (PGE(2)) by head and neck squamous cell carcinomas (HNSCC) induce type 1 regulatory T (Tr1) cells and contribute to carcinogenesis by creating a tolerogenic milieu. To test this hypothesis, CD4(+)CD25(-) T cells obtained from the peripheral blood of 10 normal donors were cocultured with autologous dendritic cells, irradiated HNSCC cells and cytokines, interleukin 2 (IL-2), IL-10, and IL-15. HNSCC cells were either COX-2 negative, constitutively expressed COX-2, were transfected with COX-2, or had COX-2 expression knocked down by small interfering RNA. Other modifications included coculture plus or minus the COX-inhibitor, Diclofenac, or synthetic PGE(2) in the absence of HNSCC. Lymphocytes proliferating in 10-day cocultures were phenotyped by flow cytometry, studied for cytokine production by ELISA and for suppressor function in CFSE inhibition assays plus or minus anti-IL-10 or anti-transforming growth factor-beta(1) (TGF-beta(1)) monoclonal antibodies (mAb). COX-2(+) HNSCC or exogenous PGE(2) induced outgrowth of Tr1 cells with the CD3(+)CD4(+)CD25(-)IL2Rbeta(+)IL2Rgamma(+)FoxP3(+)CTLA-4(+)IL-10(+)TGF-beta(1)(+)IL-4(-) phenotype and high suppressor functions (range, 46-68%). Small interfering RNA knockout of COX-2 gene in HNSCC led to outgrowth of lymphocytes with decreased IL2Rgamma (P = 0.0001), FoxP3 (P = 0.05), and IL-10 (P = 0.035) expression and low suppressor activity (range, 26-34%). Whereas COX-2(+) cocultures contained IL-10 and TGF-beta(1) (medians, 615 and 824 pg/mL), cytokine levels were decreased (P < 0.0001) in COX-2(-) cocultures. Inhibition of COX-2 enzymatic activity in HNSCC abrogated outgrowth of Tr1 cells. Neutralizing mAbs to IL-10 and/or TGF-beta(1) abolished Tr1-mediated suppression. COX-2 overexpression in HNSCC plays a major role in the induction of Tr1 cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Christoph Bergmann
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
17
|
Pannone G, Sanguedolce F, De Maria S, Farina E, Lo Muzio L, Serpico R, Emanuelli M, Rubini C, De Rosa G, Staibano S, Macchia L, Bufo P. Cyclooxygenase isozymes in oral squamous cell carcinoma:a real-time RT-PCR study with clinic pathological correlations. Int J Immunopathol Pharmacol 2007; 20:317-24. [PMID: 17624243 DOI: 10.1177/039463200702000211] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
COX-2 expression in tumour cells has been associated with carcinogenesis in many human neoplasms, including head and neck cancer, while the COX-1 isoform of the cyclooxygenase enzyme is constitutively expressed in normal tissues. We measured COX-1 and COX-2 m-RNA expression in samples of both oral cancer and matched oral mucosa from 22 patients by RealTime RT-PCR; clinic pathological data (grading, TNM staging, inflammation, follow-up) of all patients were available for statistical evaluation. Most of the tumor samples in our study expressed at least one cyclooxygenase enzyme (COX-1 or COX-2 mRNA) more than their matched normal oral mucosa (p<0.05), with no correlation with the entity of inflammation, and a significant inverse relationship was found between COX-1 and COX-2 in each sample. Higher levels of COX-2 expression were associated with poor disease-free survival (p<0.05), but not with overall survival and higher tumor stage and grade. Our results suggest that COX-1 may play a role in oral carcinogenesis, and could be regarded as a potential therapeutic target by chemo preventive drugs; moreover, COX-2 expression might be addressed as a new prognostic tool in the clinical management of OSCC.
Collapse
Affiliation(s)
- G Pannone
- Department of Surgical Sciences, Institute of Pathology and Cytopathology, University of Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Basu NK, Kole L, Basu M, McDonagh AF, Owens IS. Targeted inhibition of glucuronidation markedly improves drug efficacy in mice - a model. Biochem Biophys Res Commun 2007; 360:7-13. [PMID: 17586469 PMCID: PMC2034522 DOI: 10.1016/j.bbrc.2007.05.224] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/18/2007] [Indexed: 01/28/2023]
Abstract
Finding UDP-glucuronosyltransferases (UGT) require protein kinase C-mediated phosphorylation is important information that allows manipulation of this critical system. UGTs glucuronidate numerous aromatic-like chemicals derived from metabolites, diet, environment and, inadvertently, therapeutics to reduce toxicities. As UGTs are inactivated by downregulating PKCs with reversibly-acting dietary curcumin, we determined the impact of gastro-intestinal glucuronidation on free-drug uptake and efficacy using immunosuppressant, mycophenolic acid (MPA), in mice. Expressed in COS-1 cells, mouse GI-distributed Ugt1a1 glucuronidates curcumin and MPA and undergoes irreversibly and reversibly dephosphorylation by PKC-specific inhibitor calphostin-C and general-kinase inhibitor curcumin, respectively, with parallel effects on activity. Moreover, oral curcumin-administration to mice reversibly inhibited glucuronidation in GI-tissues. Finally, successive oral administration of curcumin and MPA to antigen-treated mice increased serum free MPA and immunosuppression up to 9-fold. Results indicate targeted inhibition of GI glucuronidation in mice markedly improved free-chemical uptake and efficacy using MPA as a model.
Collapse
Affiliation(s)
- Nikhil K. Basu
- Corresponding authors at: National Institutes of Health, Building 10, Room 8D-42, Bethesda, MD 20892-1830, E-mail addresses, telephone and fax numbers: ; 301-496-6091, and 301-480-8042; , 301-496-8825, 301-451-4288
| | - Labanyamoy Kole
- Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mousumi Basu
- Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Antony F. McDonagh
- Division of Gastroenterology and the Liver Center, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143
| | - Ida S. Owens
- Corresponding authors at: National Institutes of Health, Building 10, Room 8D-42, Bethesda, MD 20892-1830, E-mail addresses, telephone and fax numbers: ; 301-496-6091, and 301-480-8042; , 301-496-8825, 301-451-4288
| |
Collapse
|
19
|
Shanmugham LN, Petrarca C, Castellani ML, Symeonidou I, Frydas S, Vecchiet J, Falasca K, Tetè S, Conti P, Salini V. IL-1beta induces alkaline phosphatase in human phagocytes. Arch Med Res 2007; 38:39-44. [PMID: 17174721 DOI: 10.1016/j.arcmed.2006.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 05/19/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alkaline phosphatase (ALPase) is found in blood plasma or serum and leukocytes and regulates intercellular processes, maintaining phosphoryl metabolites in a steady state, as well as synthesizing and hydrolyzing phosphate esters on membranes. ALPase supervises the active transport of inorganic phosphates, fats, proteins, carbohydrates and the sodium/potassium pump mechanisms. The formed elements of blood such as polymorphonuclear (PMNs) leucocytes, macrophages (MP) and some lymphocytes are high in ALPase concentrations. METHODS In this study we have tested whether the interleukin-1 receptor antagonist (IL-lra) could influence ALPase generation in IL-1beta or lipopolysaccharide (LPS)-stimulated neutrophils and MP. Human neutrophils were isolated from heparin-anticoagulated blood drawn from healthy individuals by centrifugation in a two-step gradient, Ficoll-Hypaque. ALPase activity was assessed spectrophotometrically in test tubes containing isolated neutrophils and adherence PBMCs treated with LPS, IL-1beta and IL-1ra, alone or in combination. RESULTS IL-lbeta or LPS enhanced ALPase in both PMNs and MP, whereas IL-1ra could not inhibit ALPase activity. We performed time course experiments at 0 min, 5 min, 1 h, 24 h, and 43 h (LPS 20 microg/mL, IL-1beta 10 ng/mL). No significant increase in ALPase activity was seen until 1 h; however, there was a rapid rise over the next few hours. In another set of experiments using IL-1ra (500 ng/mL), there was no difference between treated cells and control cells. The combination of IL-1beta plus IL-1ra did not reduce the ability of IL-1beta to induce ALPase activity. CONCLUSIONS These data suggest that IL-1beta stimulates ALPase through other mechanisms than the release of arachidonic acid products, which are inhibited by IL-lra.
Collapse
Affiliation(s)
- Lakshmi N Shanmugham
- Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|