1
|
Zhang Y, Kiryu H. Identification of oxidative stress-related genes differentially expressed in Alzheimer's disease and construction of a hub gene-based diagnostic model. Sci Rep 2023; 13:6817. [PMID: 37100862 PMCID: PMC10133299 DOI: 10.1038/s41598-023-34021-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent dementia disorder globally, and there are still no effective interventions for slowing or stopping the underlying pathogenic mechanisms. There is strong evidence implicating neural oxidative stress (OS) and ensuing neuroinflammation in the progressive neurodegeneration observed in the AD brain both during and prior to symptom emergence. Thus, OS-related biomarkers may be valuable for prognosis and provide clues to therapeutic targets during the early presymptomatic phase. In the current study, we gathered brain RNA-seq data of AD patients and matched controls from the Gene Expression Omnibus (GEO) to identify differentially expressed OS-related genes (OSRGs). These OSRGs were analyzed for cellular functions using the Gene Ontology (GO) database and used to construct a weighted gene co-expression network (WGCN) and protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were then constructed to identify network hub genes. A diagnostic model was established based on these hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) and ROC analyses. Immune-related functions were examined by assessing correlations between hub gene expression and immune cell brain infiltration scores. Further, target drugs were predicted using the Drug-Gene Interaction database, while regulatory miRNAs and transcription factors were predicted using miRNet. In total, 156 candidate genes were identified among 11046 differentially expressed genes, 7098 genes in WGCN modules, and 446 OSRGs, and 5 hub genes (MAPK9, FOXO1, BCL2, ETS1, and SP1) were identified by ROC curve analyses. These hub genes were enriched in GO annotations "Alzheimer's disease pathway," "Parkinson's Disease," "Ribosome," and "Chronic myeloid leukemia." In addition, 78 drugs were predicted to target FOXO1, SP1, MAPK9, and BCL2, including fluorouracil, cyclophosphamide, and epirubicin. A hub gene-miRNA regulatory network with 43 miRNAs and hub gene-transcription factor (TF) network with 36 TFs were also generated. These hub genes may serve as biomarkers for AD diagnosis and provide clues to novel potential treatment targets.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Dursun AT, Bayramgürler D, Demirsoy EO, Şikar Aktürk A, Kıran R, Sayman N. Could there be an association between Hashimoto's thyroiditis and demodex infestation? J Cosmet Dermatol 2022; 21:5141-5147. [PMID: 35486704 DOI: 10.1111/jocd.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Human demodex mites are parasites that live in the pilosebaceous unit and can result in the disease demodicosis. While demodicosis may occur as a primary skin disease; immunosuppression, and topical or systemic immunosuppressive treatments can cause secondary demodicosis. It is known that thyroid hormones may cause skin changes, such as xerosis, and thereby may also modulate immune responses in the skin. OBJECTIVES The aim of this study is to investigate whether or not that the changes occurring in the skin of patients with Hashimoto's Thyroiditis (HT) predispose to demodex infestation. METHODS Seventy-eight patients being followed for a diagnosis of HT at Kocaeli University Endocrinology Outpatient Clinic, between January 2019 and March 2020, constituted the patient group. The control group consisted of 41 patients who did not have any chronic systemic or dermatological disease and were shown to have no thyroid disease by laboratory tests. Demodex intensity in the malar regions of the patient and control groups was determined using the standardized skin surface biopsy (SSSB) method and compared with each other. RESULTS HT patients were significantly more likely to have increased demodex density and suggestive SSSB results than the controls (p<0.001, p=0.012, respectively). A significant correlation was found between demodex intensity and the findings of xerosis (p=0.010, p=0.011) and spiny follicular papules (p=0.008, p=0.008) in the patient or control groups, respectively. However, a significant correlation was identified between the demodex density and the symptoms of burning-stinging (p=0.028), and feelings of dryness (p=0.018) roughness (p=0.028) only in the control group. CONSLUSION Xerotic skin and/or impaired immune responses as a result of autoimmune changes in patients with HT may lead to secondary demodicosis.
Collapse
Affiliation(s)
| | | | | | | | - Rebiay Kıran
- Department of Dermatology, University of Kocaeli, Kocaeli, Turkey
| | - Nilgün Sayman
- Department of Dermatology, University of Kocaeli, Kocaeli, Turkey
| |
Collapse
|
3
|
Speranza L, De Lutiis M, Shaik Y, Felaco M, Patruno A, Tetè A, Mastrangelo F, Madhappan B, Castellani M, Conti F, Vecchiet J, Theoharides T, Conti P, Grilli A. Localization and Activity of iNOS in Normal Human Lung Tissue and Lung Cancer Tissue. Int J Biol Markers 2018; 22:226-31. [DOI: 10.1177/172460080702200311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is one of three enzymes generating nitric oxide (NO) from the amino acid L-arginine. iNOS-derived NO plays an important role in several physiological and pathophysiological conditions. NO is a free radical which produces many reactive intermediates that account for its bioactivity. In the human lung, the alveolar macrophage is an important producer of cytokines and this production may be modified by NO. Moreover, high concentrations of NO have been shown to increase nuclear factor KB (NF-kB) activation. Recent investigations of NO expression in tumor tissue indicated that, at least for certain tumors, NO may mediate one or more roles during the growth of human cancer. We have studied iNOS in two tissue groups: normal human lung tissue and human lung cancer tissue. We localized iNOS in these tissues by immunohistochemistry and tested the mRNA expression by RT-PCR, the protein level by Western blot, and the protein activity by radiometric analysis. The results demonstrate different expression, localization and activity of iNOS in normal versus tumor tissue. This is suggestive of a role for NO production from iNOS in human lung cancer because high concentrations of this short molecule may transform to highly reactive compounds such as peroxynitrite (ONOO-); moreover, through the upregulator NF-kB, they can induce a chronic inflammatory state representing an elevated risk for cell transformation to cancer.
Collapse
Affiliation(s)
- L. Speranza
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - M.A. De Lutiis
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - Y.B. Shaik
- Department of Oral Biology and Periodontology Boston University School of Dental Medicine, Boston, MA - USA
| | - M. Felaco
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - A. Patruno
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - A. Tetè
- Department of Oral Sciences, University of Chieti, Chieti - Italy
| | - F. Mastrangelo
- Department of Oral Sciences, University of Chieti, Chieti - Italy
| | - B. Madhappan
- Pharmacology Department, Tufts University, New England Medical Center, Boston, MA - USA
| | | | - F. Conti
- Gynecology Section, University of Chieti, Chieti
| | - J. Vecchiet
- Section of Infectious Diseases, University of Chieti, Chieti
| | - T.C. Theoharides
- Pharmacology Department, Tufts University, New England Medical Center, Boston, MA - USA
| | - P. Conti
- Immunology Division, University of Chieti, Chieti
| | - A. Grilli
- Department of Human Dynamics, University of Chieti, Chieti - Italy
- Leonardo da Vinci Telematic University, Torrevecchia Teatina (Chieti) - Italy
| |
Collapse
|
4
|
Papazahariadou M, Athanasiadis GI, Papadopoulos E, Symeonidou I, Hatzistilianou M, Castellani ML, Bhattacharya K, Shanmugham LN, Conti P, Frydas S. Involvement of NK Cells against Tumors and Parasites. Int J Biol Markers 2018; 22:144-53. [PMID: 17549670 DOI: 10.1177/172460080702200208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells’ surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.
Collapse
Affiliation(s)
- M Papazahariadou
- Laboratory of Parasitology, Veterinary Faculty, Aristotele University, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bei R, Romano M, Caputo M, Sconocchia G, Capuani B, Coppola A, Nucci C, Pastore D, Bellia A, Mancino R, Andreadi K, Cerilli M, Bertoli A, Modesti A, Lauro D. A Survey of Autoantibodies to Self Antigens in Graves' Disease Patients with Thyroid-Associated Ophthalmopathy. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R. Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - M. Romano
- Endocrinology and Reference Center for Type 2 Diabetes, Department of Medicine, University Hospital Policlinico “Tor Vergata”, Rome, Italy
| | - M.P. Caputo
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - G. Sconocchia
- Institute of Translational Pharmacology, Department of Biomedicine, CNR, Rome, Italy
| | - B. Capuani
- Endocrinology and Reference Center for Type 2 Diabetes, Department of Medicine, University Hospital Policlinico “Tor Vergata”, Rome, Italy
| | - A. Coppola
- Endocrinology and Reference Center for Type 2 Diabetes, Department of Medicine, University Hospital Policlinico “Tor Vergata”, Rome, Italy
| | - C. Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata
| | - D. Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - A. Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - R. Mancino
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata
| | - K. Andreadi
- Endocrinology and Reference Center for Type 2 Diabetes, Department of Medicine, University Hospital Policlinico “Tor Vergata”, Rome, Italy
| | - M. Cerilli
- Endocrinology and Reference Center for Type 2 Diabetes, Department of Medicine, University Hospital Policlinico “Tor Vergata”, Rome, Italy
| | - A. Bertoli
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - A. Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - D. Lauro
- Endocrinology and Reference Center for Type 2 Diabetes, Department of Medicine, University Hospital Policlinico “Tor Vergata”, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
6
|
Ingrosso G, Fantini M, Nardi A, Benvenuto M, Sacchetti P, Masuelli L, Ponti E, Frajese GV, Lista F, Schillaci O, Santoni R, Modesti A, Bei R. Local radiotherapy increases the level of autoantibodies to ribosomal P0 protein but not to heat shock proteins, extracellular matrix molecules and EGFR/ErbB2 receptors in prostate cancer patients. Oncol Rep 2012; 29:1167-74. [PMID: 23254686 DOI: 10.3892/or.2012.2197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is a common cancer among men in developed countries. Although hormonotherapy and radiotherapy (RT) represent valid therapies for prostate cancer treatment, novel immunological approaches have been explored. The development of clinical trials employing cancer vaccines has indicated that immune response to tumor antigens can be boosted and that vaccine administration can improve patient survival. Immune response to tumor antigens could also be enhanced after standard therapies. In the present study, we determined the occurrence of antibodies to extracellular matrix (ECM) molecules, heat shock protein (HSP), ribosomal P0 protein, EGFR, ErbB2 and prostate-specific antigen (PSA) in 35 prostate cancer patients prior to and following local RT and hormonotherapy. We demonstrated that immunity to P0, ECM molecules [collagens (C) CI, CIII, CV, fibronectin (FN) and laminin (LM)] and to HSP90 was associated with malignancy in untreated patients. None of the patient sera showed antibodies to EGFR, while 2 and 1 patients showed reactivity to ErbB2 and PSA, respectively. We also demonstrated that 8 months after therapy the IgG serum levels to CI, CIII, FN and HSP90 significantly decreased. Conversely, the level of P0 autoantibodies increased after therapy in 10 patients. Five of the 10 patients with increased levels of P0 autoantibodies were treated with RT plus hormonotherapy. Treatment of patients did not change the levels of antibodies against EGFR, ErbB2 and PSA. Our results indicated that the modification of antibody level to self molecules after standard treatment of prostate cancer patients is influenced by the type of antigen. Ribosomal P0 protein appears to be a high immunogenic antigen and its immunogenicity increases following RT. In addition, 10 patients with increased levels of autoantibodies to P0 showed PSA mean levels lower than the remaining 25 patients at 18 months. This study may contribute to a better understanding of the immunobiological behavior of prostate cancer patients following standard treatment.
Collapse
Affiliation(s)
- Gianluca Ingrosso
- Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiotherapy, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Faggioni G, Pomponi A, De Santis R, Masuelli L, Ciammaruconi A, Monaco F, Di Gennaro A, Marzocchella L, Sambri V, Lelli R, Rezza G, Bei R, Lista F. West Nile alternative open reading frame (N-NS4B/WARF4) is produced in infected West Nile Virus (WNV) cells and induces humoral response in WNV infected individuals. Virol J 2012; 9:283. [PMID: 23173701 PMCID: PMC3574045 DOI: 10.1186/1743-422x-9-283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/12/2012] [Indexed: 01/29/2023] Open
Abstract
Background West Nile Virus (WNV) is a flavivirus that requires an efficient humoral and cellular host response for the control of neuroinvasive infection. We previously reported the existence of six alternative open reading frame proteins in WNV genome, one of which entitled WARF4 is exclusively restricted to the lineage I of the virus. WARF4 is able to elicit antibodies in WNV infected horses; however, there was no direct experimental proof of the existence of this novel protein. The purpose of this study was to demonstrate the in vitro production of WARF4 protein following WNV infection of cultured VERO cells and its immunity in WNV infected individuals. Results We produced a monoclonal antibody against WARF4 protein (MAb 3A12) which detected the novel protein in WNV lineage I-infected, cultured VERO cells while it did not react with WNV lineage II infected cells. MAb 3A12 specificity to WARF4 protein was confirmed by its reactivity to only one peptide among four analyzed that cover the full WARF4 amino acids sequence. In addition, WARF4 protein was expressed in the late phase of WNV lineage I infection. Western blotting and bioinformatics analyses strongly suggest that the protein could be translated by programmed −1 ribosomal frameshifting process. Since WARF4 is embedded in the NS4B gene, we rename this novel protein N-NS4B/WARF4. Furthermore, serological analysis shows that N-NS4B/WARF4 is able to elicit antibodies in WNV infected individuals. Conclusions N-NS4B/WARF4 is the second Alternative Reading Frame (ARF) protein that has been demonstrated to be produced following WNV infection and might represent a novel tool for a better characterization of immune response in WNV infected individuals. Further serological as well as functional studies are required to characterize the function of the N-NS4B/WARF4 protein. Since the virus might actually make an extensive use of ARFs, it appears important to investigate the novel six ARF putative proteins of WNV.
Collapse
Affiliation(s)
- Giovanni Faggioni
- Histology and Molecular Biology Section, Army Medical and Veterinary Research Center Via Santo Stefano Rotondo, 4 00184 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Masuelli L, Budillon A, Marzocchella L, Mrozek MA, Vitolo D, Di Gennaro E, Losito S, Sale P, Longo F, Ionna F, Lista F, Muraro R, Modesti A, Bei R. Caveolin-1 overexpression is associated with simultaneous abnormal expression of the E-cadherin/α-β catenins complex and multiple ErbB receptors and with lymph nodes metastasis in head and neck squamous cell carcinomas. J Cell Physiol 2012; 227:3344-53. [PMID: 22213373 DOI: 10.1002/jcp.24034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The presence of lymph node metastases is one of the most important prognostic indicators in head and neck squamous cell carcinomas (HNSCCs). An alteration of the E-cadherin-catenins complex and EGFR is essential for the invasiveness of cancer cells. Caveolin-1, the major structural protein of the caveolae, represents a scaffolding molecule for several signaling proteins including EGFR. Although caveolin-1 has been shown to play a role in inducing the invasive phenotype of cancer cells, its role appears to be cell-type specific and for some tumors it has not been defined yet. In this study we used 57 HNSCC specimens to investigate whether the abnormal expression of caveolin-1 was associated with the derangement of the E-cadherin-catenins complex and with the overexpression of ErbB receptors. We demonstrate that in HNSCCs caveolin-1 overexpression is associated with the simultaneous abnormal expression of at least one member of the E-cadherin/α-β catenins complex and multiple ErbB receptors as well as with lymph node metastases. We also demonstrate that chronic stimulation of a human hypopharyngeal carcinoma cell line (FaDu) with EGF induced the internalization of β-catenin and caveolin-1 and their co-localization with EGFR. Moreover, EGF treatment induced an increased physical interaction between EGFR/β-catenin/caveolin-1 and between E-cadherin/β-catenin/caveolin-1. These molecular events were associated with an increased directional motility of FaDu cells in vitro. These findings may provide new insight into the biology of HNSCC progression and help to identify subgroups of primary HNSCCs with a more aggressive behavior.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Masuelli L, Pompa G, Fabrizi M, Quaranta A, Vozza I, Piccoli L, Antonelli A, Marzocchella L, Di Carlo S, Perrotti V, Giganti M, Piattelli A, Quaranta M, Modesti A, Bei R. Patients with Peri-Implantitis, unlike Those with a Healthy Peri-Implant Microenvironment, Display Antibodies to More Than One Heat Shock Protein (HSP 27, HSP 65 and HSP 90) Linear Epitope. EUR J INFLAMM 2011. [DOI: 10.1177/1721727x1100900306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The success of a dental implant treatment requires hard and soft tissue integration and osseointegration, mechanisms that entail a direct anchorage of the implant in the bone without interposition of soft tissue. Peri-implantitis is defined as an inflammatory reaction of the tissues surrounding a functioning dental implant. During inflammation, a high incidence of autoantibodies has been reported. The hypothesis of the present study is that the occurrence of autoantibodies to self-antigens including extracellular matrix (ECM) molecules and heat shock proteins (HSPs) might affect the dental implant outcome. Therefore, we evaluated the occurrence of antibodies to ECM molecules (Collagen (C) I, III, IV, V, fibronectin, laminin) and HSPs (HSP 27, HSP 65, HSP 90) in subjects with a healthy peri-implant microenvironment (n=29) as compared to patients with peri-implantitis (n=13). We also evaluated the HSP 27 expression in gingival fibroblasts grown in an inflammatory microenvironment. Antibodies to conformational ECM epitopes of CI, CIII and laminin were observed both in subjects with healthy peri-implant conditions and peri-implantitis. Antibodies to more than one HSP linear epitope were found in patients with peri-implantitis but not with healthy peri-implant conditions (p=0.024). Gingival fibroblasts grown in an inflammatory microenvironment showed increased HSP 27 cytoplasmic and plasma membrane expression as compared to fibroblasts grown in normal conditions. Immunity to multiple linear HSPs epitopes in patients with peri-implantitis and not in patients with a healthy peri-implant microenvironment might be relevant for monitoring the implant outcome and help to understand the role of subsets of autoantibodies in implant osseointegration.
Collapse
Affiliation(s)
- L. Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome
| | - G. Pompa
- Department of Stomatology and Maxillofacial Sciences, Sapienza University of Rome, Rome
| | - M. Fabrizi
- Department of Stomatology and Maxillofacial Sciences, Sapienza University of Rome, Rome
| | - A. Quaranta
- Department of Stomatology and Maxillofacial Sciences, Sapienza University of Rome, Rome
| | - I. Vozza
- Department of Stomatology and Maxillofacial Sciences, Sapienza University of Rome, Rome
| | - L. Piccoli
- Department of Stomatology and Maxillofacial Sciences, Sapienza University of Rome, Rome
| | - A. Antonelli
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome
| | - L. Marzocchella
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome
| | - S. Di Carlo
- Department of Stomatology and Maxillofacial Sciences, Sapienza University of Rome, Rome
| | - V. Perrotti
- Dental School, University of Chieti-Pescara, Chieti, Italy
| | - M.G. Giganti
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome
| | - A. Piattelli
- Dental School, University of Chieti-Pescara, Chieti, Italy
| | - M. Quaranta
- Department of Stomatology and Maxillofacial Sciences, Sapienza University of Rome, Rome
| | - A. Modesti
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome
| | - R. Bei
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome
| |
Collapse
|
10
|
Bei R, Masuelli L, Palumbo C, Tresoldi I, Scardino A, Modesti A. Long-Lasting Tissue Inflammatory Processes Trigger Autoimmune Responses to Extracellular Matrix Molecules. Int Rev Immunol 2009; 27:137-75. [DOI: 10.1080/08830180801939280] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Albonici L, Doldo E, Palumbo C, Orlandi A, Bei R, Pompeo E, Mineo T, Modesti A, Manzari V. Placenta Growth Factor is a Survival Factor for Human Malignant Mesothelioma Cells. Int J Immunopathol Pharmacol 2009; 22:389-401. [DOI: 10.1177/039463200902200216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Placenta growth factor (PlGF) is a key regulator of pathological angiogenesis and its overexpression has been linked to neoplastic progression. To assess whether PlGF could have a role in malignant mesothelioma (MM), we analyzed the expression of PlGF, VEGF, and their cognate receptors (VEGF-R1 and VEGF-R2) and co-receptors (neuropilin-1 and neuropilin-2) in MM cell lines as well as in resected MM tissues, hyperplastic/reactive mesothelium and normal mesothelium. MM cell cultures expressed both ligands and the associated receptors to a variable extent and released different amounts of PlGF. As assessed by immunohistochemistry, PlGF expression was switched on in hyperplastic/reactive compared to normal mesothelium. Moreover, 74 and 94% of MM tissues overexpressed PlGF and VEGF-R1, respectively ( p<0.05 MM vs normal mesothelium). Administration of recombinant PlGF-2 did not elicit a significant stimulation of MM cell growth, while it was associated with a transient phosphorylation of Akt, suggesting that PlGF-2 could activate downstream effectors of proliferative and cytoprotective signals via VEGF-R1 in MM cells. Indeed, the administration of an anti-PlGF antibody was found to cause a significant reduction of MM cell survival. In conclusion, our data demonstrate that, by acting as a survival factor, PlGF can play a role which goes beyond the stimulation of angiogenesis in MM. This evidence could help the rational design of new therapeutic interventions for this aggressive tumor.
Collapse
Affiliation(s)
| | | | | | - A. Orlandi
- Department of Biopathology and Image Diagnostics, Institute of Anatomic Pathology, Rome, Italy
| | | | - E. Pompeo
- Department of Surgery, Thoracic Surgery Division; “Tor Vergata” University, Rome, Italy
| | - T.C. Mineo
- Department of Surgery, Thoracic Surgery Division; “Tor Vergata” University, Rome, Italy
| | | | | |
Collapse
|
12
|
Acute antibody-mediated complement activation mediates lysis of pancreatic islets cells and may cause tissue loss in clinical islet transplantation. Transplantation 2008; 85:1193-9. [PMID: 18431241 DOI: 10.1097/tp.0b013e31816b22f3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical islet transplantation is associated with loss of transplanted islets necessitating tissue from more than one donor to obtain insulin independence. The instant blood-mediated inflammatory reaction (IBMIR) is one explanation to the tissue loss. Complement activation is an important cytotoxic component of the IBMIR, and in the present study, we have investigated this component in detail. METHODS Isolated human islets were analyzed by large particle flow cytometry and confocal microscopy after incubation in human ABO-compatible hirudin-plasma. RESULTS After incubation in plasma, the islets bound IgG and IgM, CIq, C4, C3 and C9. The binding of C3b/iC3b was evident already after 5 min. The binding of C3b/iC3b and the generation of C3a and sC5b-9 were inhibited by the complement inhibitor Compstatin. Lysis as reflected by propidium iodide (PI) staining and release of C-peptide was also inhibited by Compstatin. There were significant correlations between IgM/IgG versus C3b/iC3b and between sC5b-9 and C-peptide. CONCLUSION The conclusion is that complement is activated by natural IgG and IgM antibodies already after 5 min. The complement activation leads to lysis of cells of the pancreatic islets. This very rapid reaction may be an essential entity of the damage induced by the IBMIR in clinical islet transplantation.
Collapse
|
13
|
Mastrangelo F, Nargi E, Carone L, Dolci M, Caciagli F, Ciccarelli R, Lutiis MAD, Karapanou V, Shaik BY, Conti P, Teté S. Tridimensional Response of human Dental Follicular Stem Cells onto a Synthetic Hydroxyapatite Scaffold. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Filiberto Mastrangelo
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| | - Elena Nargi
- Department of Biomedical Scienze, Division of Pharmacology and Toxicology, University “G. d'Annunzio,”
| | - Luigi Carone
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| | - Marco Dolci
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| | - Francesco Caciagli
- Department of Biomedical Scienze, Division of Pharmacology and Toxicology, University “G. d'Annunzio,”
| | - Renata Ciccarelli
- Department of Biomedical Scienze, Division of Pharmacology and Toxicology, University “G. d'Annunzio,”
| | | | | | - Basha Y. Shaik
- Department of Oral Biology, Dental Medicine, Boston University
| | - Pio Conti
- Immunology Division, University “G. d'Annunzio,”
| | - Stefano Teté
- Department of Stomatology and Oral Science, Division of Oral Surgery, University “G. d'Annunzio,”
| |
Collapse
|
14
|
Castellani ML, Bhattacharya K, Tagen M, Kempuraj D, Perrella A, De Lutiis M, Boucher W, Conti P, Theoharides TC, Cerulli G, Salini V, Neri G. Anti-chemokine therapy for inflammatory diseases. Int J Immunopathol Pharmacol 2007; 20:447-53. [PMID: 17880758 DOI: 10.1177/039463200702000303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemokines are inflammatory proteins acting via G-protein coupled chemokine receptors that trigger different signaling pathways. Monocyte chemoattractant protein-1 (CCL2/MCP-1) and regulated on activation, normal T expressed and secreted (CCL5/RANTES) are the two major members of the CC chemokine beta subfamily. The roles of RANTES and MCP-1 are emerging in regulating the recruitment of inflammatory cells into tissue during inflammation. The inhibition of MCP-1 and RANTES with corresponding antibodies or other inhibitors may provide benefits in different clinical scenarios including cancer, inflammation, CNS disorders, parasitic disease, autoimmune and heart diseases. RANTES and MCP-1 may represent targets for diagnostic procedures and therapeutic intervention, and may be useful as a prognostic factor in the above diseases.
Collapse
Affiliation(s)
- M L Castellani
- Department of Internal Medicine and Science of Ageing, University of Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Carinci F, Arcelli D, Lo Muzio L, Francioso F, Valentini D, Evangelisti R, Volinia S, D'Angelo A, Meroni G, Zollo M, Pastore A, Ionna F, Mastrangelo F, Conti P, Tetè S. Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma. Transl Res 2007; 150:233-45. [PMID: 17900511 DOI: 10.1016/j.trsl.2007.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/25/2022]
Abstract
Classification and prognosis of larynx squamous cell carcinoma (LSCC) depends on clinical and histopathological examination. Currently, expression profiling harbors the potential to investigate, classify, and better manage cancer. Gene expression profiles of 22 primary LSCCs were analyzed by microarrays containing 19,200 cDNAs. GOAL functionally classified differentially expressed genes, and a novel "in silico" procedure identified physical gene clusters differentially transcribed. A signature of 158 genes differentiated tumors with nodal metastasis. A novel statistical method allowed categorization of metastatic tumors into 2 distinct subgroups of differential gene expression patterns. Among genes correlated to nodal metastatic progression, we verified in vitro that NM23-H3 reduced cell motility and TRIM8 were a growth suppressor. Six chromosomal regions were specifically downregulated in metastatic tumors. This large-scale gene expression analysis in LSCC provides information on changes in genomic activity associated with lymphonodal metastasis and identifies molecules that might prove useful as novel therapeutic targets.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/secondary
- Carrier Proteins/genetics
- Cell Line, Tumor
- Cluster Analysis
- DNA, Complementary/genetics
- Disease Progression
- Down-Regulation/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm
- Humans
- Laryngeal Neoplasms/genetics
- Laryngeal Neoplasms/metabolism
- Laryngeal Neoplasms/pathology
- Lymphatic Metastasis
- Male
- NM23 Nucleoside Diphosphate Kinases/genetics
- Neoplasm Staging
- Nerve Tissue Proteins/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Prognosis
- RNA, Neoplasm/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Proteins/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Francesco Carinci
- Department of Maxillofacial Surgery, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Niu Q, Yang Y, Zhang Q, Niu P, He S, Di Gioacchino M, Conti P, Boscolo P. The relationship between Bcl-2 gene expression and learning & memory impairment in chronic aluminum-exposed rats. Neurotox Res 2007; 12:163-9. [DOI: 10.1007/bf03033913] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|