1
|
Jin L, Jiang Q, Huang H, Zhou X. Topical histone deacetylase inhibitor remetinostat improves IMQ-induced psoriatic dermatitis via suppressing dendritic cell maturation and keratinocyte differentiation and inflammation. Eur J Pharmacol 2024; 983:177011. [PMID: 39304110 DOI: 10.1016/j.ejphar.2024.177011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes and infiltration of immune cells. Although psoriasis has entered the era of biological treatment, there is still a need to explore more effective therapeutic targets and drugs due to the presence of resistance and adverse reactions to biologics. Remetinostat, an HDAC inhibitor, can maintain its potency within the skin with minimal systemic effects, making it a promising topical medication for treating psoriasis. But its effectiveness in treating psoriasis has not been evaluated. In this study, the topical application of remetinostat significantly improved psoriasiform inflammation in an imiquimod-induced mice model by inhibiting CD86 expression of CD11C+I-A/I-E+ dendritic cells (DCs) in the skin. Moreover, remetinostat could dampen the maturation and activation of bone marrow-derived DCs in vitro, as well as the expression of psoriasis-related inflammatory mediators by keratinocytes. In addition, remetinostat could promote keratinocyte differentiation without affecting its proliferation. Our findings demonstrate that remetinostat improves psoriasis by inhibiting the maturation and activation of DCs and the differentiation and inflammation of keratinocytes, which may facilitate the potential application of remetinostat in anti-psoriasis therapy.
Collapse
Affiliation(s)
- Liping Jin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huining Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Li F, Zhuo L, Xie F, Luo H, Li Y, Lin H, Li X. Exploration of small molecule compounds targeting abdominal aortic aneurysm based on CMap database and molecular dynamics simulation. Vascular 2024:17085381241273289. [PMID: 39155144 DOI: 10.1177/17085381241273289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
OBJECTIVE The mitigation of abdominal aortic aneurysm (AAA) growth through pharmaceutical intervention offers the potential to avert the perils associated with AAA rupture and the subsequent need for surgical intervention. Nevertheless, the existing effective drugs for AAA treatment are limited, necessitating a pressing exploration for novel therapeutic medications. METHODS AAA-related transcriptome data were downloaded from GEO, and differentially expressed genes (DEGs) in AAA tissue were screened for GO and KEGG enrichment analyses. Small molecule compounds and their target proteins with negative connectivity to the AAA expression profile were predicted in the Connectivity Map (CMap) database. Molecular docking and molecular dynamics simulation were performed to predict the binding of the target protein to the small molecule compound, and the MM/GBSA method was used to calculate the binding free energy. Cluster analysis was performed using the cluster tool in the GROMACS package. An AAA cell-free model was built, and CETSA experiments were used to demonstrate the binding ability of small molecules to the target protein in cells. RESULTS A total of 2244 DEGs in AAA were obtained through differential analysis, and the DEGs were mainly enriched in the tubulin binding biological function and cell cycle pathway. The CMap results showed that Apicidin had a potential therapeutic effect on AAA with a connectivity score of -97.74, and HDAC4 was the target protein of Apicidin. Based on literature, HDAC4-Apicidin was selected as the subsequent research object. The lowest affinity of Apicidin-HDAC4 molecular docking was -8.218 kcal/mol. Molecular dynamics simulation results indicated that Apicidin-HDAC4 could form a stable complex. MM/GBSA analysis showed a total binding free energy of -55.40 ± 0.79 kcal/mol, and cluster analysis showed that there were two main conformational clusters during the binding process, accounting for 22.4% and 57.8%, respectively. Apicidin could form hydrogen bonds with surrounding residues for stable binding. CETSA experiment proved the stable binding ability of Apicidin and HDAC4. CONCLUSION Apicidin inhibited HDAC4 in AAA and exhibited favorable protein-ligand interactions and stability, making it a potential candidate drug for treating AAA.
Collapse
Affiliation(s)
- Fushan Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Liqing Zhuo
- Department of Electrocardiography, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Fangtao Xie
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Haiping Luo
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Ying Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Huyu Lin
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Xiaoguang Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| |
Collapse
|
3
|
Moran B, Davern M, Reynolds JV, Donlon NE, Lysaght J. The impact of histone deacetylase inhibitors on immune cells and implications for cancer therapy. Cancer Lett 2023; 559:216121. [PMID: 36893893 DOI: 10.1016/j.canlet.2023.216121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Many cancers possess the ability to suppress the immune response to malignant cells, thus facilitating tumour growth and invasion, and this has fuelled research to reverse these mechanisms and re-activate the immune system with consequent important therapeutic benefit. One such approach is to use histone deacetylase inhibitors (HDACi), a novel class of targeted therapies, which manipulate the immune response to cancer through epigenetic modification. Four HDACi have recently been approved for clinical use in malignancies including multiple myeloma and T-cell lymphoma. Most research in this context has focussed on HDACi and tumour cells, however, little is known about their impact on the cells of the immune system. Additionally, HDACi have been shown to impact the mechanisms by which other anti-cancer therapies exert their effects by, for example, increasing accessibility to exposed DNA through chromatin relaxation, impairing DNA damage repair pathways and increasing immune checkpoint receptor expression. This review details the effects of HDACi on immune cells, highlights the variability in these effects depending on experimental design, and provides an overview of clinical trials investigating the combination of HDACi with chemotherapy, radiotherapy, immunotherapy and multimodal regimens.
Collapse
Affiliation(s)
- Brendan Moran
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Maria Davern
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Noel E Donlon
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
4
|
Iwata T, Kaneda-Ikeda E, Takahashi K, Takeda K, Nagahara T, Kajiya M, Sasaki S, Ishida S, Yoshioka M, Matsuda S, Ouhara K, Fujita T, Kurihara H, Mizuno N. Regulation of osteogenesis in bone marrow-derived mesenchymal stem cells via histone deacetylase 1 and 2 co-cultured with human gingival fibroblasts and periodontal ligament cells. J Periodontal Res 2023; 58:83-96. [PMID: 36346011 DOI: 10.1111/jre.13070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to determine the regulatory mechanism of bone marrow-derived mesenchymal stem cell (BM-MSC) differentiation mediated by humoral factors derived from human periodontal ligament (HPL) cells and human gingival fibroblasts (HGFs). We analyzed histone deacetylase (HDAC) expression and activity involved in BM-MSC differentiation and determined their regulatory effects in co-cultures of BM-MSCs with HPL cells or HGFs. BACKGROUND BM-MSCs can differentiate into various cell types and can, thus, be used in periodontal regenerative therapy. However, the mechanism underlying their differentiation remains unclear. Transplanted BM-MSCs are affected by periodontal cells via direct contact or secretion of humoral factors. Therefore, their activity is regulated by humoral factors derived from HPL cells or HGFs. METHODS BM-MSCs were indirectly co-cultured with HPL cells or HGFs under osteogenic or growth conditions and then analyzed for osteogenesis, HDAC1 and HDAC2 expression and activity, and histone H3 acetylation. BM-MSCs were treated with trichostatin A, or their HDAC1 or HDAC2 expression was silenced or overexpressed during osteogenesis. Subsequently, they were evaluated for osteogenesis or the effects of HDAC activity. RESULTS BM-MSCs co-cultured with HPL cells or HGFs showed suppressed osteogenesis, HDAC1 and HDAC2 expression, and HDAC phosphorylation; however, histone H3 acetylation was enhanced. Trichostatin A treatment remarkably suppressed osteogenesis, decreasing HDAC expression and enhancing histone H3 acetylation. HDAC1 and HDAC2 silencing negatively regulated osteogenesis in BM-MSCs to the same extent as that achieved by indirect co-culture with HPL cells or HGFs. Conversely, their overexpression positively regulated osteogenesis in BM-MSCs. CONCLUSION The suppressive effects of HPL cells and HGFs on BM-MSC osteogenesis were regulated by HDAC expression and histone H3 acetylation to a greater extent than that mediated by HDAC activity. Therefore, regulation of HDAC expression has prospects in clinical applications for effective periodontal regeneration, mainly, bone regeneration.
Collapse
Affiliation(s)
- Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Keita Takahashi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinya Sasaki
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
5
|
Alseksek RK, Ramadan WS, Saleh E, El-Awady R. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. Int J Mol Sci 2022; 23:8141. [PMID: 35897717 PMCID: PMC9331760 DOI: 10.3390/ijms23158141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Throughout the process of carcinogenesis, cancer cells develop intricate networks to adapt to a variety of stressful conditions including DNA damage, nutrient deprivation, and hypoxia. These molecular networks encounter genomic instability and mutations coupled with changes in the gene expression programs due to genetic and epigenetic alterations. Histone deacetylases (HDACs) are important modulators of the epigenetic constitution of cancer cells. It has become increasingly known that HDACs have the capacity to regulate various cellular systems through the deacetylation of histone and bounteous nonhistone proteins that are rooted in complex pathways in cancer cells to evade death pathways and immune surveillance. Elucidation of the signaling pathways involved in the adaptive responses to cellular stress and the role of HDACs may lead to the development of novel therapeutic agents. In this article, we overview the dominant stress types including metabolic, oxidative, genotoxic, and proteotoxic stress imposed on cancer cells in the context of HDACs, which guide stress adaptation responses. Next, we expose a closer view on the therapeutic interventions and clinical trials that involve HDACs inhibitors, in addition to highlighting the impact of using HDAC inhibitors in combination with stress-inducing agents for the management of cancer and to overcome the resistance to current cancer therapy.
Collapse
Affiliation(s)
- Rahma K. Alseksek
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ekram Saleh
- Clinical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Vinogradova EV, Zhang X, Remillard D, Lazar DC, Suciu RM, Wang Y, Bianco G, Yamashita Y, Crowley VM, Schafroth MA, Yokoyama M, Konrad DB, Lum KM, Simon GM, Kemper EK, Lazear MR, Yin S, Blewett MM, Dix MM, Nguyen N, Shokhirev MN, Chin EN, Lairson LL, Melillo B, Schreiber SL, Forli S, Teijaro JR, Cravatt BF. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell 2020; 182:1009-1026.e29. [PMID: 32730809 PMCID: PMC7775622 DOI: 10.1016/j.cell.2020.07.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.
Collapse
Affiliation(s)
| | - Xiaoyu Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Remillard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel C Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yujia Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Yamashita
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kawauchi-cho, Tokushima 771-0192, Japan
| | - Vincent M Crowley
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael A Schafroth
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Minoru Yokoyama
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth M Lum
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Esther K Kemper
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael R Lazear
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sifei Yin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Megan M Blewett
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nhan Nguyen
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Kim S, Santhanam S, Lim S, Choi J. Targeting Histone Deacetylases to Modulate Graft-Versus-Host Disease and Graft-Versus-Leukemia. Int J Mol Sci 2020; 21:ijms21124281. [PMID: 32560120 PMCID: PMC7349873 DOI: 10.3390/ijms21124281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.
Collapse
Affiliation(s)
- Sena Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| | | | - Sora Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|
8
|
Bezu L, Wu Chuang A, Liu P, Kroemer G, Kepp O. Immunological Effects of Epigenetic Modifiers. Cancers (Basel) 2019; 11:cancers11121911. [PMID: 31805711 PMCID: PMC6966579 DOI: 10.3390/cancers11121911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Epigenetic alterations are associated with major pathologies including cancer. Epigenetic dysregulation, such as aberrant histone acetylation, altered DNA methylation, or modified chromatin organization, contribute to oncogenesis by inactivating tumor suppressor genes and activating oncogenic pathways. Targeting epigenetic cancer hallmarks can be harnessed as an immunotherapeutic strategy, exemplified by the use of pharmacological inhibitors of DNA methyltransferases (DNMT) and histone deacetylases (HDAC) that can result in the release from the tumor of danger-associated molecular patterns (DAMPs) on one hand and can (re-)activate the expression of tumor-associated antigens on the other hand. This finding suggests that epigenetic modifiers and more specifically the DNA methylation status may change the interaction of chromatin with chaperon proteins including HMGB1, thereby contributing to the antitumor immune response. In this review, we detail how epigenetic modifiers can be used for stimulating therapeutically relevant anticancer immunity when used as stand-alone treatments or in combination with established immunotherapies.
Collapse
Affiliation(s)
- Lucillia Bezu
- Service anesthésie-réanimation, Hôpital européen Georges Pompidou, AP-HP, 75015 Paris, France;
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Alejandra Wu Chuang
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, 215123 Suzhou, China
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: (G.K.); (O.K.)
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Correspondence: (G.K.); (O.K.)
| |
Collapse
|
9
|
Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20092241. [PMID: 31067680 PMCID: PMC6539010 DOI: 10.3390/ijms20092241] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022] Open
Abstract
Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration. Finally, we have included examples of ongoing trials for each of the above categories of HDACis as standalone agents or in combination with immunotherapeutic approaches.
Collapse
|
10
|
Meddens CA, van der List ACJ, Nieuwenhuis EES, Mokry M. Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut 2019; 68:928-941. [PMID: 30692146 DOI: 10.1136/gutjnl-2018-317516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have identified over 200 loci associated with IBD. We and others have recently shown that, in addition to variants in protein-coding genes, the majority of the associated loci are related to DNA regulatory elements (DREs). These findings add a dimension to the already complex genetic background of IBD. In this review we summarise the existing evidence on the role of DREs in IBD. We discuss how epigenetic research can be used in candidate gene approaches that take non-coding variants into account and can help to pinpoint the essential pathways and cell types in the pathogenesis of IBD. Despite the increased level of genetic complexity, these findings can contribute to novel therapeutic options that target transcription factor binding and enhancer activity. Finally, we summarise the future directions and challenges of this emerging field.
Collapse
Affiliation(s)
- Claartje Aleid Meddens
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. J Immunother 2018; 41:169-180. [DOI: 10.1097/cji.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Kim HP, Lee YS, Park JH, Kim YJ. Transcriptional and epigenetic networks in the development and maturation of dendritic cells. Epigenomics 2013; 5:195-204. [DOI: 10.2217/epi.13.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that provide a critical link between the innate and adaptive immune responses. The genetic program required for differentiation of DCs from their hematopoietic precursors is controlled by both cytokines and transcription factors. The signals transduced from cytokines recruit specific transcription factors, enabling the expression of a distinct transcriptome that is required for specification of different DC lineages. The establishment of a distinct transcriptome also depends on chromatin modifications associated with critical cis elements of lineage-specific genes. In this review, recent advances in the understanding of the transcriptional network governing DC lineage specification are summarized, along with current views of the dynamic DC epigenome.
Collapse
Affiliation(s)
- Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, & Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Frikeche J, Peric Z, Brissot E, Grégoire M, Gaugler B, Mohty M. Impact of HDAC inhibitors on dendritic cell functions. Exp Hematol 2012; 40:783-91. [PMID: 22728031 DOI: 10.1016/j.exphem.2012.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/10/2012] [Accepted: 06/14/2012] [Indexed: 12/18/2022]
Abstract
Histone deacetylase inhibitors are presently used in the routine clinic treatment against cancers. Recent data have established that some of these treatments have potent anti-inflammatory or immunomodulatory effects at noncytotoxic doses that might be of benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of histone deacetylase inhibitors to modulate the immune system. Dendritic cells are professional antigen presenting cells that play a major role in this immune system. Data summarized in this review brings some novel information on the impact of histone deacetylase inhibitors on dendritic cell functions, which may have broader implications for immunotherapeutic strategies.
Collapse
|
14
|
Orlikova B, Schnekenburger M, Zloh M, Golais F, Diederich M, Tasdemir D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol Rep 2012; 28:797-805. [PMID: 22710558 PMCID: PMC3583578 DOI: 10.3892/or.2012.1870] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 01/30/2023] Open
Abstract
Histone deacetylase enzymes (HDACs) are emerging as a promising biological target for cancer and inflammation. Using a fluorescence assay, we tested the in vitro HDAC inhibitory activity of twenty-one natural chalcones, a widespread group of natural products with well-known anti-inflammatory and antitumor effects. Since HDACs regulate the expression of the transcription factor NF-κB, we also evaluated the inhibitory potential of the compounds on NF-κB activation. Only four chalcones, isoliquiritigenin (no. 10), butein (no. 12), homobutein (no. 15) and the glycoside marein (no. 21) showed HDAC inhibitory activity with IC50 values of 60–190 μM, whereas a number of compounds inhibited TNFα-induced NF-κB activation with IC50 values in the range of 8–41 μM. Interestingly, three chalcones (nos. 10, 12 and 15) inhibited both TNFα-induced NF-κB activity and total HDAC activity of classes I, II and IV. Molecular modeling and docking studies were performed to shed light into dual activity and to draw structure-activity relationships among chalcones (nos. 1–21). To the best of our knowledge this is the first study that provides evidence for HDACs as potential drug targets for natural chalcones. The dual inhibitory potential of the selected chalcones on NF-κB and HDACs was investigated for the first time. This study demonstrates that chalcones can serve as lead compounds in the development of dual inhibitors against both targets in the treatment of inflammation and cancer.
Collapse
Affiliation(s)
- B Orlikova
- Laboratory of Molecular and Cellular Biology of Cancer, Cancer and Blood Research Foundation, Kirchberg Hospital, Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
15
|
Licciardi PV, Karagiannis TC. Regulation of immune responses by histone deacetylase inhibitors. ISRN HEMATOLOGY 2012; 2012:690901. [PMID: 22461998 PMCID: PMC3313568 DOI: 10.5402/2012/690901] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023]
Abstract
Both genetic and epigenetic factors are important regulators of the immune system. There is an increasing body of evidence attesting to epigenetic modifications that influence the development of distinct innate and adaptive immune response cells. Chromatin remodelling via acetylation, methylation, phosphorylation, and ubiquitination of histone proteins as well as DNA, methylation is epigenetic mechanisms by which immune gene expression can be controlled. In this paper, we will discuss the role of epigenetics in the regulation of host immunity, with particular emphasis on histone deacetylase inhibitors. In particular, the role of HDAC inhibitors as a new class of immunomodulatory therapeutics will also be reviewed.
Collapse
Affiliation(s)
- Paul V Licciardi
- Allergy and Immune Disorders Group, Murdoch Childrens Research Institute, Melbourne, VIC 3052, Australia
| | | |
Collapse
|
16
|
Li Q, Han D, Cong B, Shan B, Zhang J, Chen H, Ma C, Liyanage SS. Cholecystokinin octapeptide significantly suppresses collagen-induced arthritis in mice by inhibiting Th17 polarization primed by dendritic cells. Cell Immunol 2011; 272:53-60. [PMID: 22004797 DOI: 10.1016/j.cellimm.2011.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 12/14/2022]
Abstract
Cholecystokinin octapeptide (CCK-8) is a neuropeptide, and is shown to be a potent immunomodulator with predominant anti-inflammatory effects. Although the regulatory effect of CCK-8 on macrophages and B cells has been defined, the effect of CCK-8 on dendritic cells (DCs) and T cells is not well understood. In this study, we showed that CCK-8 reduced the expression of CD80, CD86, and MHCII on DCs. Moreover, CCK-8 promoted Th1 and inhibited Th17 polarization by increasing the production of IL-12 and decreasing the production of IL-6 and IL-23 on DCs in vitro and in vivo. In addition, intraperitoneal administration of CCK-8 to mice with collagen-induced arthritis (CIA) was found to effectively reduce the incidence of arthritis, delay its onset and prevent the occurrence of joint damage. Collectively, these results suggest that CCK-8 significantly suppresses the incidence and severity of CIA in mice, through the inhibition of DC mediated Th17 polarization.
Collapse
Affiliation(s)
- Qiaoxia Li
- Institute of Basic Medicine, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, Hebei Province, P R China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Misaki K, Morinobu A, Saegusa J, Kasagi S, Fujita M, Miyamoto Y, Matsuki F, Kumagai S. Histone deacetylase inhibition alters dendritic cells to assume a tolerogenic phenotype and ameliorates arthritis in SKG mice. Arthritis Res Ther 2011; 13:R77. [PMID: 21592365 PMCID: PMC3218887 DOI: 10.1186/ar3339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 04/15/2011] [Accepted: 05/18/2011] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The purpose of this study was to elucidate the effects of histone deacetylase inhibition on the phenotype and function of dendritic cells and on arthritis in SKG mice. METHODS Arthritis was induced in SKG mice by zymosan A injection. Trichostatin A, a histone deacetylase inhibitor, was administered and its effects on arthritis were evaluated by joint swelling and histological evaluation. Interleukin-17 production in lymph node cells was determined by an enzyme-linked immunosorbent assay (ELISA). Foxp3 expression in lymph node cells and the phenotypes of splenic dendritic cells were examined by fluorescence-activated cell sorting (FACS). Bone marrow-derived dendritic cells (BM-DC) were generated with granulocyte macrophage colony-stimulating factor. The effects of trichostatin A on cell surface molecules, cytokine production, indoleamine 2,3-dioxygenase (IDO) expression and T cell stimulatory capacity were examined by FACS, ELISA, quantitative real-time polymerase chain reaction and Western blot, and the allo-mixed lymphocyte reaction, respectively. RESULTS Trichostatin A, when administered before the onset of arthritis, prevented SKG mice from getting arthritis. Trichostatin A treatment also showed therapeutic effects on arthritis in SKG mice, when it was administered after the onset of arthritis. Trichostatin A treatment reduced Th17 cells and induced regulatory T cells in lymph node, and also decreased co-stimulatory molecule expression on splenic dendritic cells in vivo. In vitro, trichostatin A markedly suppressed zymosan A-induced interleukin-12 and interleukin-6 production by BM-DC and up-regulated IDO expression at mRNA and protein levels. Trichostatin A-treated BM-DC also showed less T cell stimulatory capacity. CONCLUSIONS Histone deacetylase inhibition changes dendritic cells to a tolerogenic phenotype and ameliorates arthritis in SKG mice.
Collapse
Affiliation(s)
- Kenta Misaki
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Akio Morinobu
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Jun Saegusa
- Department of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Shimpei Kasagi
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masaaki Fujita
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiaki Miyamoto
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Fumichika Matsuki
- Department of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Shunichi Kumagai
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine. 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
18
|
Dinarello CA, Fossati G, Mascagni P. Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med 2011; 17:333-52. [PMID: 21556484 DOI: 10.2119/molmed.2011.00116] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/04/2011] [Indexed: 01/04/2023] Open
Abstract
This issue of Molecular Medicine contains 14 original research reports and state-of-the-art reviews on histone deacetylase inhibitors (HDACi's), which are being studied in models of a broad range of diseases not related to the proapoptotic properties used to treat cancer. The spectrum of these diseases responsive to HDACi's is for the most part due to several antiinflammatory properties, often observed in vitro but importantly also in animal models. One unifying property is a reduction in cytokine production as well as inhibition of cytokine postreceptor signaling. Distinct from their use in cancer, the reduction in inflammation by HDACi's is consistently observed at low concentrations compared with the higher concentrations required for killing tumor cells. This characteristic makes HDACi's attractive candidates for treating chronic diseases, since low doses are well tolerated. For example, low oral doses of the HDACi givinostat have been used in children to reduce arthritis and are well tolerated. In addition to the antiinflammatory properties, HDACi's have shown promise in models of neurodegenerative disorders, and HDACi's also hold promise to drive HIV-1 out of latently infected cells. No one molecular mechanism accounts for the non-cancer-related properties of HDACi's, since there are 18 genes coding for histone deacetylases. Rather, there are mechanisms unique for the pathological process of specific cell types. In this overview, we summarize the preclinical data on HDACi's for therapy in a wide spectrum of diseases unrelated to the treatment of cancer. The data suggest the use of HDACi's in treating autoimmune as well as chronic inflammatory diseases.
Collapse
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
19
|
Faraco G, Cavone L, Chiarugi A. The therapeutic potential of HDAC inhibitors in the treatment of multiple sclerosis. Mol Med 2011; 17:442-7. [PMID: 21373721 DOI: 10.2119/molmed.2011.00077] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 11/06/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating autoimmune disorder of the central nervous system (CNS) for which there is no efficacious cure. Thanks to numerous preclinical and clinical studies, drugs able to mitigate the inexorable course of the disease have been made available recently. Still, there is a terrible need for compounds capable of reducing the severity of the autoimmune attack and of blocking progression of the disorder. Also, besides the classic immunosuppressive strategies, it is now appreciated that compounds directly targeting neuronal death can be of relevance to the treatment of MS patients. Acetylation homeostasis is a key regulator of both immune cell activation and neuronal survival. Of note, potent histone deacetylase inhibitors (HDACi) endowed with antiinflammatory and neuroprotective properties have been identified. Efficacy of HDACi in experimental models of MS has been reported consistently. In this review, we provide an appraisal of the literature on HDACi and MS, also discussing the mechanisms by which HDACi can suppress the autoimmune attack to the CNS.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York, USA
| | | | | |
Collapse
|
20
|
Glauben R, Siegmund B. Inhibition of histone deacetylases in inflammatory bowel diseases. Mol Med 2011; 17:426-33. [PMID: 21365125 DOI: 10.2119/molmed.2011.00069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 12/14/2022] Open
Abstract
This review, comprised of our own data and that of others, provides a summary overview of histone deacetylase (HDAC) inhibition on intestinal inflammation as well as inflammation-mediated carcinogenesis. Experimental colitis in mice represents an excellent in vivo model to define the specific cell populations and target tissues modulated by inhibitors of HDAC. Oral administration of either suberyolanilide hydroxamic acid (SAHA) or ITF2357 results in an amelioration in these models, as indicated by a significantly reduced colitis disease score and histological score. This effect was paralleled by suppression of proinflammatory cytokines at the site of inflammation as well as specific changes in the composition of cells within the lamina propria. In addition, tumor number and size was significantly reduced in two models of inflammation-driven tumorigenesis, namely interleukin (IL)-10-deficient mice and the azoxymethane-dextran sulfate sodium (DSS) model, respectively. The mechanisms affected by HDAC inhibition, contributing to this antiinflammatory and antiproliferative potency will be discussed in detail. Furthermore, with regard to the relevance in human inflammatory bowel disease, the doses of ITF2357 considered safe in humans and the corresponding serum concentrations are consistent with the efficacious dosing used in our in vivo as well as in vitro experiments. Thus, the data strongly suggest that HDAC inhibitors could serve as a therapeutic option in inflammatory bowel disease.
Collapse
Affiliation(s)
- Rainer Glauben
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
21
|
Koshkina NV, Rao-Bindal K, Kleinerman ES. Effect of the histone deacetylase inhibitor SNDX-275 on Fas signaling in osteosarcoma cells and the feasibility of its topical application for the treatment of osteosarcoma lung metastases. Cancer 2011; 117:3457-67. [PMID: 21287529 DOI: 10.1002/cncr.25884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/21/2010] [Accepted: 11/29/2010] [Indexed: 11/06/2022]
Abstract
BACKGROUND Patients with lung metastases from osteosarcoma (OS) have poor response to salvage therapy. Understanding the mechanisms involved in the metastatic process of OS may lead to new effective therapeutic approaches. The authors reported previously that up-regulation of the Fas receptor by transfecting OS cells with Fas plasmid inhibited the in vivo growth of metastases in the lungs. METHODS In the current study, the authors treated OS cells with the histone deacetylase inhibitor SNDX-275 and studied its cytotoxicity and its effect on Fas signaling in vitro and in vivo. RESULTS Subtoxic doses of SNDX-275 were able to activate the Fas pathway in OS cells by increasing the expression of Fas messenger RNA; however, the increased expression was not always followed by increased levels of Fas receptor expression on the cell surface. The treatment of cells with a combination of SNDX-275 and Fas ligand (FasL) had a stronger cytotoxic effect on tested OS cells than either agent alone. Inhibition of the Fas pathway in cells by inhibition of the Fas-associated death domain (FADD) molecule eliminated this combination effect, indicating that activity of FADD is important for the efficacy of this agent in the FasL-expressing environment of the lungs. Intranasal administration of SNDX-275 in mice with OS lung metastases revealed that SNDX-275 may inhibit metastatic growth at a dose of 0.13 mg/kg, which is approximately 200-fold lower than the therapeutically effective oral dose reported previously. CONCLUSIONS The current findings indicated that SNDX-275 can activate Fas signaling in OS cells in vitro and in vivo and that the administration of SDNX-275 by inhalation is feasible as a treatment for OS metastases and warrants its further investigation.
Collapse
Affiliation(s)
- Nadezhda V Koshkina
- Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
22
|
Hancock WW. Rationale for HDAC inhibitor therapy in autoimmunity and transplantation. Handb Exp Pharmacol 2011; 206:103-23. [PMID: 21879448 DOI: 10.1007/978-3-642-21631-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While there are currently more than 70 ongoing clinical trials of inhibitors of so-called classical HDACs (HDACi) as anticancer therapies, given their potency as antiproliferative and angiostatic agents, HDACi also have considerable therapeutic potential as anti-inflammatory and immunosuppressive drugs. The utility of HDACi as anti-inflammatory agents is dependent upon their proving safe and effective in experimental models. Current pan-HDACi compounds are not well suited to this role, given the broad distribution of target HDACs and their complex and multifaceted mechanisms of action. In contrast, the development of isoform-selective HDACi may provide important new tools for therapy in autoimmunity and transplantation. This chapter discusses which HDACs are worthwhile targets in inflammation and progress toward their therapeutic inhibition, including the use of HDAC subclass and isoform-selective HDACi to promote the functions of Foxp3+ T regulatory cells.
Collapse
Affiliation(s)
- Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, 916B Abramson Research Center, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|