1
|
Chaimowitz NS, Smith MR, Forbes Satter LR. JAK/STAT defects and immune dysregulation, and guiding therapeutic choices. Immunol Rev 2024; 322:311-328. [PMID: 38306168 DOI: 10.1111/imr.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.
Collapse
Affiliation(s)
- Natalia S Chaimowitz
- Department of Immunology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Madison R Smith
- UT Health Sciences Center McGovern Medical School, Houston, Texas, USA
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Houston, Texas, USA
- William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, Texas, USA
| |
Collapse
|
2
|
Garelli S, Dalla Costa M, Sabbadin C, Barollo S, Rubin B, Scarpa R, Masiero S, Fierabracci A, Bizzarri C, Crinò A, Cappa M, Valenzise M, Meloni A, De Bellis AM, Giordano C, Presotto F, Perniola R, Capalbo D, Salerno MC, Stigliano A, Radetti G, Camozzi V, Greggio NA, Bogazzi F, Chiodini I, Pagotto U, Black SK, Chen S, Rees Smith B, Furmaniak J, Weber G, Pigliaru F, De Sanctis L, Scaroni C, Betterle C. Autoimmune polyendocrine syndrome type 1: an Italian survey on 158 patients. J Endocrinol Invest 2021; 44:2493-2510. [PMID: 34003463 PMCID: PMC8502131 DOI: 10.1007/s40618-021-01585-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Autoimmune Polyglandular Syndrome type 1 (APS-1) is a rare recessive inherited disease, caused by AutoImmune Regulator (AIRE) gene mutations and characterized by three major manifestations: chronic mucocutaneous candidiasis (CMC), chronic hypoparathyroidism (CH) and Addison's disease (AD). METHODS Autoimmune conditions and associated autoantibodies (Abs) were analyzed in 158 Italian patients (103 females and 55 males; F/M 1.9/1) at the onset and during a follow-up of 23.7 ± 15.1 years. AIRE mutations were determined. RESULTS The prevalence of APS-1 was 2.6 cases/million (range 0.5-17 in different regions). At the onset 93% of patients presented with one or more components of the classical triad and 7% with other components. At the end of follow-up, 86.1% had CH, 77.2% AD, 74.7% CMC, 49.5% premature menopause, 29.7% autoimmune intestinal dysfunction, 27.8% autoimmune thyroid diseases, 25.9% autoimmune gastritis/pernicious anemia, 25.3% ectodermal dystrophy, 24% alopecia, 21.5% autoimmune hepatitis, 17% vitiligo, 13.3% cholelithiasis, 5.7% connective diseases, 4.4% asplenia, 2.5% celiac disease and 13.9% cancer. Overall, 991 diseases (6.3 diseases/patient) were found. Interferon-ω Abs (IFNωAbs) were positive in 91.1% of patients. Overall mortality was 14.6%. The AIRE mutation R139X was found in 21.3% of tested alleles, R257X in 11.8%, W78R in 11.4%, C322fsX372 in 8.8%, T16M in 6.2%, R203X in 4%, and A21V in 2.9%. Less frequent mutations were present in 12.9%, very rare in 9.6% while no mutations in 11% of the cases. CONCLUSIONS In Italy, APS-1 is a rare disorder presenting with the three major manifestations and associated with different AIRE gene mutations. IFNωAbs are markers of APS-1 and other organ-specific autoantibodies are markers of clinical, subclinical or potential autoimmune conditions.
Collapse
Affiliation(s)
- S Garelli
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
- Unit of Internal Medicine, Ospedale dell'Angelo, Mestre-Venice, Italy
| | - M Dalla Costa
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
- Unit of Internal Medicine, Ospedale di Feltre, Belluno, Italy
| | - C Sabbadin
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
| | - S Barollo
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
| | - B Rubin
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
| | - R Scarpa
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
| | - S Masiero
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
| | - A Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C Bizzarri
- Endocrine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Crinò
- Endocrine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Cappa
- Endocrine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Valenzise
- Unit of Pediatrics, Department of Adulthood and Childhood Human Pathology, University of Messina, Messina, Italy
| | - A Meloni
- Ospedale Microcitemico and Dipartimento di Scienze Biomediche e Biotecnologiche, University of Cagliari, Cagliari, Italy
| | - A M De Bellis
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - C Giordano
- Endocrine Unit, Department of Biomedical Internal and Specialist Medicine (DIBIMIS), Palermo University, Palermo, Italy
| | - F Presotto
- Unit of Internal Medicine, Ospedale dell'Angelo, Mestre-Venice, Italy
| | - R Perniola
- Department of Pediatrics, Regional Hospital Vito Fazzi, Lecce, Italy
| | - D Capalbo
- Department of Mother and Child, University Federico II, Naples, Italy
| | - M C Salerno
- Pediatric Section, Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - A Stigliano
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - G Radetti
- Marienklinik, General Hospital, Bolzano, Italy
| | - V Camozzi
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
| | - N A Greggio
- EU-Endo-ERN Advisory Board Member, National Coordinator Endo-ERN Pediatric (SIEDP), Padua, Italy
| | - F Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - I Chiodini
- Unit of Bone Metabolism Diseases and Diabetes, Istituto Auxologico Italiano, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - U Pagotto
- Unit of Endocrinology and Prevention and Care of Diabetes, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - S K Black
- FIRS Laboratories RSR Ltd, Cardiff, UK
| | - S Chen
- FIRS Laboratories RSR Ltd, Cardiff, UK
| | | | | | - G Weber
- Unit of Pediatrics, Vita-Salute San Raffaele University, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - F Pigliaru
- Endocrine Unit, Azienda Ospedaliera-Universitaria of Cagliari, Cagliari, Italy
| | - L De Sanctis
- Pediatric Endocrinology, Department of Public Health and Pediatric Sciences, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - C Scaroni
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy
| | - C Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128, Padua, Italy.
| |
Collapse
|
3
|
Fierabracci A, Lanzillotta M, Vorgučin I, Palma A, Katanić D, Betterle C. Report of two siblings with APECED in Serbia: is there a founder effect of c.769C>T AIRE genotype? Ital J Pediatr 2021; 47:126. [PMID: 34078422 PMCID: PMC8173724 DOI: 10.1186/s13052-021-01075-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) or autoimmune polyglandular syndrome Type 1 is a rare autosomal recessive syndrome. The disorder is caused by mutations in the AIRE (AutoImmune Regulator) gene. According to the classic criteria, clinical diagnosis requires the presence of at least two of three main components: chronic mucocutaneous candidiasis, hypoparathyroidism and primary adrenal insufficiency. Furthermore, patients are often affected by other endocrine or non-endocrine associated autoimmune conditions. The enrichment of the non-classical triad seems to occur differently in different cohorts. Screenings of the population revealed that homozygous AIRE mutations c.769C > T, c.415C > T and c.254A > G have a founder effect in Finnish, Sardinian and Iranian Jew populations respectively. CASE PRESENTATION We report here the clinical and genetic characteristics of two new Serbian APECED siblings, one male and one female, actual age of 27 and 24 respectively, born from non-consanguineous parents. Addison's disease was diagnosed in the male at the age of 3.5 and hypoparathyroidism at the age of 4. The female developed hypoparathyroidism at 4 years of age. She presented diffuse alopecia, madarosis, onychomycosis, teeth enamel dysplasia. She further developed Addison's disease at the age of 11 and Hashimoto's thyroiditis at the age of 13.5. She had menarche at the age of 14 but developed autoimmune oophoritis and premature ovarian failure at the age of 16. A treatment with hydrocortisone, fludrocortisone and alfacalcidiol was established for both siblings; L-T4 (levo-thyroxine) for thyroid dysfunction and levonorgestrel and etinilestradiol for POF were also administered to the female. Genetic screening revealed a homozygous c.769C > T (R257X (p.Arg257X)) AIRE mutation. We additionally reviewed the literature on 11 previously published Serbian patients and evaluated the frequency of their main diseases in comparison to Finnish, Sardinian, Turkish, Indian and North/South American cohorts. CONCLUSION A founder effect was discovered for the R257X genotype detected in the DNA of 10 homozygous and 2 heterozygous patients. Of note, all Serbian APECED patients were affected by adrenal insufficiency and 10 out of 13 patients presented CMC.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Mariafrancesca Lanzillotta
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ivana Vorgučin
- Institute for Child and Youth Health Care of Vojvodina, Faculty of Medicine Novi Sad, Vojvodina, Serbia
| | - Alessia Palma
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dragan Katanić
- Institute for Child and Youth Health Care of Vojvodina, Faculty of Medicine Novi Sad, Vojvodina, Serbia
| | - Corrado Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
4
|
Ruan J, Wang X, Jiang X, Chen M. Acquired pure red cell aplasia and T cell large granular lymphocytic leukaemia in patients with autoimmune polyglandular syndrome type 1. BMC Med Genomics 2021; 14:22. [PMID: 33468135 PMCID: PMC7814426 DOI: 10.1186/s12920-020-00866-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pure red cell aplasia (PRCA) and large granular lymphocytic leukaemia (LGLL) are very rare complications of autoimmune polyendocrine syndrome type 1 (APS1). Here, we report a case of APS1 with PRCA and LGLL. Previous cases were reviewed, and possible mechanisms are discussed. CASE PRESENTATION A 31-year-old female presented with anaemia and was diagnosed with PRCA in our centre. She also had hypoparathyroidism for 24 years, premature ovarian failure for 10 years, osteoporosis for 5 years, recurrent pneumonia with bronchiectasis for 4 years and chronic diarrhoea for 1 year. Boosted whole-exome analysis showed AIRE heterozygous mutations, confirming the diagnosis as APS1. LGLL was diagnosed during follow-up. The PRCA responded well to glucocorticoid. treatment CONCLUSION: AIRE is causally related to the development of LGLL and consequent PRCA, which may be due to some immunological mechanisms.
Collapse
Affiliation(s)
- Jing Ruan
- Hematology Department, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Wang
- Hematology Department, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xianyong Jiang
- Hematology Department, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Miao Chen
- Hematology Department, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
7
|
Saggini A, Anogeianaki A, Angelucci D, Cianchetti E, D'Alessandro M, Maccauro G, Salini V, Caraffa A, Teté S, Conti F, Tripodi D, Fulcheri M, Frydas S, Rosati M, Shaik-Dasthagirisaheb Y. Cholesterol: An Inflammatory Compound. EUR J INFLAMM 2011. [DOI: 10.1177/1721727x1100900301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Obesity is one of the main rising causes of health problems in modern society and is correlated to type 2 diabetes mellitus, hypertension, heart disease and atherosclerosis. Bacterial products, endogenous substances such as oxidized LDL (ox-LDL) and heat shock proteins mediate activation of Toll-like receptors and reinforce the view that the innate immune system plays a key role in the genesis of atherosclerosis. In addition, natural killer T (NKT) cells respond to lipids presented via CD1d on APCs, and may also be able to affect atherosclerosis. All the main cell types involved in atherosclerosis such as endothelial cells, macrophages, T cells, smooth muscle cells and platelets express proinflammatory cytokines. In addition, CD4 ligation triggers the expression of adhesion molecules, cytokines and matrix metalloprotinease. IL-6 cytokines travels to the liver where it elicits acute phase response resolving in the release of serum amyloid-A C-reactive protein, fibrogen and plasminogen activator inhibitor-1. Therefore increasing body fat mass is associated with high levels of inflammatory cytokines such as IL-1 and TNF. In this study we revisit the interrelationship between fat and inflammation.
Collapse
Affiliation(s)
- A. Saggini
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - A. Anogeianaki
- Physiology Department, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - D. Angelucci
- AnatomoPathology Division, University of Chieti-Pescara, Chieti, Italy
| | | | | | - G. Maccauro
- Department of Orthopaedics, Catholic University of Rome, Rome, Italy
| | - V. Salini
- Orthopaedics Division, University of Chieti, Chieti, Italy
| | - A. Caraffa
- Orthopaedics Division, University of Perugia, Perugia, Italy
| | - S. Teté
- Department of Oral, Nano and Biotechnologies, University G. d'Annunzio, Chieti, Italy
| | - F. Conti
- Department of Gyneacology, “Santo Spirito” Hospital, Pescara, Italy
| | - D. Tripodi
- Department of Oral, Nano and Biotechnologies, University G. d'Annunzio, Chieti, Italy
| | - M. Fulcheri
- Psychology Division, University G. d'Annunzio, Chieti, Italy
| | - S. Frydas
- Parassitology Division, Thessaloniki University, Greece
| | - M. Rosati
- Department of Gyneacology, “Santo Spirito” Hospital, Pescara, Italy
| | | |
Collapse
|