1
|
Liu L, Wang B, Ma Y, Sun K, Wang P, Li M, Dong J, Qin M, Li M, Wei C, Tan Y, He J, Guo K, Yu XA. A review of Phyllanthus urinaria L. in the treatment of liver disease: viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma. Front Pharmacol 2024; 15:1443667. [PMID: 39185304 PMCID: PMC11341462 DOI: 10.3389/fphar.2024.1443667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the pathological production of liver disease in utility particularly complexity, the morbidity and mortality of liver disease including viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma (HCC) are rapidly increasing worldwide. Considering its insidious onset, rapid progression and drug resistance, finding an effective therapy is particularly worthwhile. Phyllanthus urinaria L. (P. urinaria), an ethnic medicine, can be applied at the stages of viral hepatitis, liver fibrosis/cirrhosis and HCC, which demonstrates great potential in the treatment of liver disease. Currently, there are numerous reports on the application of P. urinaria in treating liver diseases, but a detailed analysis of its metabolites and a complete summary of its pharmacological mechanism are still scarce. In this review, the phytochemical metabolites and ethnopharmacological applications of P. urinaria are summarized. Briefly, P. urinaria mainly contains flavonoids, lignans, tannins, phenolic acids, terpenoids and other metabolites. The mechanisms of P. urinaria are mainly reflected in reducing surface antigen secretion and interfering with DNA polymerase synthesis for anti-viral hepatitis activity, reducing hepatic stellate cells activity, inflammation and oxidative stress for anti-liver fibrosis/cirrhosis activity, as well as preventing tumor proliferation, invasion and angiogenesis for anti-HCC activity via relevant signaling pathways. Accordingly, this review provides insights into the future application of natural products in the trilogy of liver diseases and will provide a scientific basis for further research and rational utilization of P. urinaria.
Collapse
Affiliation(s)
- Linhua Liu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Yibo Ma
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Junlin Dong
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meirong Qin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Mingshun Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunshan Wei
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Jinsong He
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keying Guo
- Department of Biotechnology and Food Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Xie-an Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| |
Collapse
|
2
|
Wang Y, Huang S, Kong W, Wu C, Zeng T, Xie S, Chen Q, Kuang S, Zheng R, Wang F, Zhou C, Chen Y, Huang S, Lv Z. Corilagin alleviates liver fibrosis in zebrafish and mice by repressing IDO1-mediated M2 macrophage repolarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155016. [PMID: 37598639 DOI: 10.1016/j.phymed.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/25/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Liver fibrosis caused by chronic liver injury, eventually develops into liver cirrhosis and hepatocellular carcinoma. Currently, there are no effective drugs to relieve liver fibrosis due to the lack of molecular pathogenesis characteristics. Former research demonstrates that the hepatic immune microenvironment plays a key role in the pathogenesis of liver fibrosis, thus macrophages are important immune cells in the liver. Our previous study has found that IDO1 plays an important role in the liver immune microenvironment. CRG is a gallic acid tannin found in medicinal plants of many ethnicities that protects against inflammation, tumors and chronic liver disease. However, the mechanism of by which CRG mediates the interaction of IDO1 with macrophages during hepatic immune maturation is not clear. PURPOSE To investigate the regulatory mechanism of CRG in liver fibrosis and the intrinsic relationship between IDO1 and macrophage differentiation. METHODS Zebrafish, RAW264.7 cells and mice were used in the study. IDO1 overexpression and knockdown cell lines were constructed using lentiviral techniques. RESULTS We discovered that CRG remarkably reduced the AST and ALT serum levels. Histological examination revealed that CRG ameliorates CCL4-induced liver fibrosis and depressed the expression of α-SMA, Lamimin, Collagen-Ι and fibronectin. Besides, we found that CRG promoted increased MerTK expression on partly macrophages. Interestingly, in vitro, we found that CRG suppressed IDO1 expression and regulated macrophage differentiation by upregulating CD86, CD80 and iNOS, while downregulating CD206, CD163, IL-4 and IL-10 expression. Additionally, we found that CRG could inhibit hepatic stellate cell activation by direct or indirect action. CONCLUSION Our findings suggest that CRG alleviates liver fibrosis by mediating IDO1-mediated M2 macrophage repolarization.
Collapse
Affiliation(s)
- Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wen Kong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ruise Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fengsui Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Wang M, Cao L. Hydrolysable tannins as a potential therapeutic drug for the human fibrosis-associated disease. Drug Dev Res 2023; 84:1096-1113. [PMID: 37386756 DOI: 10.1002/ddr.22089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Fibrosis is a pathological change with abnormal tissue regeneration due to a response to persistent injury, which is extensively related to organ damage and failure, leading to high morbidity and mortality worldwide. Although the pathogenesis of fibrosis has been comprehensively elucidated, there are few effective therapies for treating fibrotic diseases. Natural products are increasingly regarded as an effective strategy for fibrosis with numerous favorable functions. Hydrolysable tannins (HT) are a type of natural products that have the potential to treat the fibrotic disease. In this review, we describe some biological activities and the therapeutic prospects of HT in organ fibrosis. Furthermore, the underlying mechanisms of inhibition of HT on fibrotic organs in relation to inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and proliferation, and extracellular matrix accumulation are discussed. Understanding the mechanism of HT against fibrotic diseases will provide a new strategy for the prevention and attenuation of fibrosis progression.
Collapse
Affiliation(s)
- Meiwei Wang
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Linghui Cao
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
4
|
Bopardikar M, Koti Ainavarapu SR, Hosur RV. Pyrogallol, Corilagin and Chebulagic acid target the "fuzzy coat" of alpha-synuclein to inhibit the fibrillization of the protein. RSC Adv 2022; 12:35770-35777. [PMID: 36545068 PMCID: PMC9749937 DOI: 10.1039/d2ra04358k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The accumulation of the intrinsically disordered protein alpha-synuclein (αSyn) in the form of insoluble fibrillar aggregates in the central nervous system is linked to a variety of neurodegenerative disorders such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. Here we show that Pyrogallol, Corilagin and Chebulagic acid, compounds containing a different number of catechol rings, are independently capable of delaying and reducing the extent of αSyn fibrillization. The efficiency of inhibition was found to correlate with the number of catechol rings. Further, our NMR studies reveal that these compounds interact with the N-terminal region of αSyn which is unstructured even in the fibrillar form of the protein and is known as the "fuzzy coat" of fibrils. Thus, Corilagin and Chebulagic acid target the fuzzy coat of αSyn and not the amyloid core which is a common target for the inhibition of protein fibrillization. Our results indicate that the N-terminus also plays a key role in the fibrillization of αSyn.
Collapse
Affiliation(s)
- Mandar Bopardikar
- Department of Chemical Sciences, Tata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai 400005India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai 400005India
| | - Ramakrishna V. Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina CampusSantacruzMumbai 400098India
| |
Collapse
|
5
|
Zhou X, Xiong J, Lu S, Luo L, Chen ZL, Yang F, Jin F, Wang Y, Ma Q, Luo YY, Wang YJ, Zhou JB, Liu P, Zhao L. Inhibitory Effect of Corilagin on miR-21-Regulated Hepatic Fibrosis Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 47:1541-1569. [PMID: 31752524 DOI: 10.1142/s0192415x19500794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Corilagin is a polyphenol that can be extracted from many medicinal plants and shows multiple pharmacological effects. We aimed to investigate the role of corilagin on miR-21-regulated hepatic fibrosis, especially miR-21-regulated TGF-β1/Smad signaling pathway, in hepatic stellate LX2 cell line and Sprague-Dawley rats. The mRNA or protein levels of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase-1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), collagen type I alpha 1 (COL1A1), Smad2, Smad3, Smad2/3, p-Smad2, p-Smad3, p-Smad2/3, and transforming growth factor-β1 (TGF-β1) in LX2 cells and liver tissues were determined. Furthermore, gain-of and loss-of function of miR-21 in miR-21-regulated TGF-β1/Smad signaling pathway were analyzed in LX2 cells. Liver tissues and serum were collected for pathological analysis, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Corilagin treatment reduced mRNA or protein levels of miR-21, CTGF, α-SMA, TIMP-1, TGF-β1, COL1A1, p-Smad2, p-Smad3, and p-Smad2/3 both in vitro and in vivo. While corilagin increased mRNA and protein levels of Smad7 and MMP-9. After gain-of and loss-of function of miR-21, the downstream effectors of miR-21-regulated TGF-β1/Smad signaling pathway in LX2 cells changed accordingly, and the changes were inhibited by corilagin. Simultaneously, administration of corilagin not only ameliorated pathological manifestation of liver fibrosis but also reduced levels of α-SMA and COL1A1 in liver tissues and TGF-β1, ALT levels in serum. Corilagin is able to potentially prevent liver fibrosis by blocking the miR-21-regulated TGF-β1/Smad signaling pathway in LX2 cells and CCl4-induced liver fibrosis rats, which may provide a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jun Xiong
- Department of Hepatobiliary Surgery, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shi Lu
- Department of Obstetrics and Gynaecology, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, P. R. China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University & Shangdong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, Shandong, P. R. China
| | - Yao Wang
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, P. R. China
| | - Ying-Ying Luo
- Department of Integrated Traditional and Western Medicine, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jia-Bin Zhou
- School of Clinical Medical, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Lei Zhao
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
6
|
Xiong XL, Ding Y, Chen ZL, Wang Y, Liu P, Qin H, Zhou LS, Zhang LL, Huang J, Zhao L. Emodin Rescues Intrahepatic Cholestasis via Stimulating FXR/BSEP Pathway in Promoting the Canalicular Export of Accumulated Bile. Front Pharmacol 2019; 10:522. [PMID: 31191298 PMCID: PMC6540617 DOI: 10.3389/fphar.2019.00522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Aim Bile salt export pump (BSEP) have been confirmed to play an important role for bile acid canalicular export in the treatment of cholestasis. In this study, we investigated the stimulatory effect of emodin on BSEP signaling pathway in cholestasis. Methods Cell and animal experiments were given different concentrations of emodin. The BSEP upstream molecule farnesoid X receptor was down-regulated by small interfering RNA (siRNA) technology or guggulsterones and up-regulated by lentivirus or GW4064. Real-time PCR and Western blotting was employed to detect the mRNA and protein levels of BSEP in LO2 cell, rat primary hepatocytes and liver tissue. Immunohistochemistry (IHC) was used to examine the expression of BSEP in liver tissues. Rat liver function and pathological changes of liver tissue were performed by biochemical test and hematoxylin and eosin (HE) staining. Results Emodin could increase the mRNA and protein expression of BSEP and FXR. When down-regulating farnesoid X receptor expression with the siRNA or inhibitor guggulsterones, and up-regulating farnesoid X receptor expression with the lentivirus or agonist GW4064, emodin could increase the mRNA level of BSEP and FXR and the protein level of BSEP, FXR1, and FXR2. Emodin also had a notable effect on rat primary hepatocytes experiment, rat pathological manifestation, BSEP, FXR1, and FXR2 positive staining in liver tissues and the test of liver function. Conclusion Emodin has a protective effect and a rescue activity on cholestasis via stimulating FXR/BSEP pathways in promoting the canalicular export of accumulated bile.
Collapse
Affiliation(s)
- Xiao-Li Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Liu
- School of First Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huan Qin
- Department of Clinical Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Shan Zhou
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Ling Zhang
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Pathology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Ding F, Li C, Xu Y, Li J, Li H, Yang G, Sun Y. PEGylation Regulates Self-Assembled Small-Molecule Dye-Based Probes from Single Molecule to Nanoparticle Size for Multifunctional NIR-II Bioimaging. Adv Healthc Mater 2018; 7:e1800973. [PMID: 30358138 DOI: 10.1002/adhm.201800973] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/04/2018] [Indexed: 12/14/2022]
Abstract
To date, small-molecule dye-based probes have been at the forefront of research in biomedical imaging, especially in the second near-infrared (NIR-II) window (1.0-1.7 µm). However, how to precisely regulate the synthesized size of NIR-II organic dye-based probes remains challenging. Moreover, systematic studies on whether the size of NIR-II probes affects optical/pharmacokinetic properties are still rare. Here, an ingenious PEGylation strategy is developed to regulate the self-assembly size of organic dye-based (CH1055 scaffold) NIR-II probes (SCH1-SCH4) from nanoparticles to the single molecule, and the relationship between their size and chemical/physical properties is thoroughly investigated. Based on their own merits, nanoprobe SCH1 (≈170 nm), with outstanding fluorescent brightness (quantum yield ≈0.14%), performs accurate tracing of the lymphatic system as well as identification of vessel networks in mice brains with excellent signal-to-background ratio images. Meanwhile, rapidly excreted SCH4, showing fast and high passive liver tumor uptake and promising tumor/normal tissue ratios (>7), is capable of facilitating precise image-guided tumor surgery, and also demonstrates the first example of the assessment of liver fibrosis in the NIR-II window.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Chonglu Li
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Yuling Xu
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Jiaxin Li
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing University Nanjing 210023 China
| | - Haibing Li
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical BiologyMinistry of EducationInternational Joint Research Center for Intelligent Biosensor Technology and HealthChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 China
| |
Collapse
|
8
|
Li X, Deng Y, Zheng Z, Huang W, Chen L, Tong Q, Ming Y. Corilagin, a promising medicinal herbal agent. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.01.030 pmid: 29324311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
9
|
Abstract
Corilagin, a component of Phyllanthus urinaria extract, possesses antioxidant, thrombolytic, antiatherogenic, and hepatoprotective properties, but the mechanism underlying these effects remains unclear. Previous studies showed that the Akt (protein kinase B) signaling pathway exerts anti-inflammatory and organ protective effects. The aim of this study was to investigate the mechanism of action of corilagin and determine whether these effects are mediated through the Akt-dependent pathway in a trauma-hemorrhagic shock-induced liver injury rodent model. Hemorrhagic shock was induced in male Sprague–Dawley rats; mean blood pressure was maintained at 35 mm Hg to 40 mm Hg for 90 min, followed by fluid resuscitation. During resuscitation, three doses of corilagin alone (1 mg/kg, 5 mg/kg, or 10 mg/kg, intravenously) were administered. Furthermore, a single dose of corilagin (5 mg/kg) with and without Wortmannin (1 mg/kg, PI3K inhibitor), Wortmannin alone, or vehicle was administered. Twenty-four hours after resuscitation, plasma alanine aminotransferase and aspartate aminotransferase concentration and hepatic parameters were measured. One-way ANOVA was used for statistical analysis. Hepatic myeloperoxidase activity and the concentrations of plasma alanine aminotransferase and aspartate aminotransferase, interleukin-6, tumor necrosis factor-α, intercellular adhesion molecule-1, and cytokine-induced neutrophil chemoattractant-1 (CINC-1) and CINC-3 increased following hemorrhagic shock. These parameters were significantly attenuated in corilagin-treated rats following hemorrhagic shock. Hepatic phospho-Akt expression was also higher in corilagin-treated rats than in vehicle-treated rats. The elevation of phospho-Akt was abolished by combined treatment with Wortmannin and corilagin. Our results suggest that corilagin exerts its protective effects on hemorrhagic shock-induced liver injury, at least, via the Akt-dependent pathway.
Collapse
|
10
|
Yang F, Wang Y, Li G, Xue J, Chen ZL, Jin F, Luo L, Zhou X, Ma Q, Cai X, Li HR, Zhao L. Effects of corilagin on alleviating cholestasis via farnesoid X receptor-associated pathways in vitro and in vivo. Br J Pharmacol 2018; 175:810-829. [PMID: 29235094 DOI: 10.1111/bph.14126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the ameliorative effects of corilagin on intrahepatic cholestasis induced by regulating liver farnesoid X receptor (FXR)-associated pathways in vitro and in vivo. EXPERIMENTAL APPROACH Cellular and animal models were treated with different concentrations of corilagin. In the cellular experiments, FXR expression was up-regulated by either lentiviral transduction or GW4064 treatment and down-regulated by either siRNA technology or treatment with guggulsterones. Real-time PCR and Western blotting were employed to detect the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, CYP7A1, CYP7B1, NTCP, MRP2 and SULT2A1. Immunohistochemistry was used to examine the expression of BSEP in liver tissues. Rat liver function and pathological changes in hepatic tissue were assessed using biochemical tests and haematoxylin and eosin staining. RESULTS Corilagin increased the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1, and decreased those of CYP7A1, CYP7B1 and NTCP. After either up- or down-regulating FXR using different methods, corilagin could still increase the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1 and decrease the protein levels of CYP7A1, CYP7B1 and NTCP, especially when administered at a high concentration. Corilagin also exerted a notable effect on the pathological manifestations of intrahepatic cholestasis, BSEP staining in liver tissues and liver function. CONCLUSIONS AND IMPLICATIONS Corilagin exerts a protective effect in hepatocytes and can prevent the deleterious activities of intrahepatic cholestasis by stimulating FXR-associated pathways.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Province Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Lei Luo
- School of First Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, China
| | - Xin Cai
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Hua-Rong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Li X, Deng Y, Zheng Z, Huang W, Chen L, Tong Q, Ming Y. Corilagin, a promising medicinal herbal agent. Biomed Pharmacother 2018; 99:43-50. [PMID: 29324311 DOI: 10.1016/j.biopha.2018.01.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Corilagin, a gallotannin, is one of the major active components of many ethnopharmacological plants. It was isolated from Caesalpinia coriaria (Jacq.) Willd. (dividivi) by Schmidt in 1951 for the first time. In the past few decades, corilagin was reported to exhibit anti-tumor, anti-inflammatory and hepatoprotective activities, etc. However, little attention was paid to its pharmacological properties due to the complicated and inefficient extract method. In recent years, with the development of extraction technology corilagin was much easier to obtain than before. Thus, people return to pay attention to its anti-tumor, hepatoprotective, and anti-inflammatory activities, particularly as an anti-tumor agent candidate. Our research team had focused on the distribution, preparation and anti-tumor activity of corilagin since 2005. We found corilagin showed good anti-tumor activity on hepatocellular carcinoma and ovarian cancer. What's more, corilagin showed a low level of toxicity toward normal cells and tissues. Due to the extensive attention that corilagin has received, we present a systematic review of the pharmacological effects of corilagin. In this review, we summarized all the pharmacological effects of corilagin with a focus on the molecular mechanism of anti-tumor activity and show you how corilagin affected the signaling pathways of tumor cells as well as its physicochemical properties, distribution and preparation methods.
Collapse
Affiliation(s)
- Xuan Li
- Institute of Chemical Engnieering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yuan Deng
- Institute of Chemical Engnieering, Huaqiao University, Xiamen, Fujian 361021, China; Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, China
| | - Zhizhong Zheng
- Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, China
| | - Wen Huang
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Lianghua Chen
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Qingxuan Tong
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Yanlin Ming
- Institute of Chemical Engnieering, Huaqiao University, Xiamen, Fujian 361021, China; Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian 361002, China; Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China.
| |
Collapse
|
12
|
Yang F, Luo L, Zhu ZD, Zhou X, Wang Y, Xue J, Zhang J, Cai X, Chen ZL, Ma Q, Chen YF, Wang YJ, Luo YY, Liu P, Zhao L. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-β1/Smad7 Signaling Pathway in Vitro and in Vivo. Front Pharmacol 2017; 8:929. [PMID: 29311932 PMCID: PMC5742161 DOI: 10.3389/fphar.2017.00929] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of pharmacological effects. However, the protective effects and mechanisms of CGA on liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver fibrosis in Sprague-Dawley rats. Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3, Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in LX2 cells. The liver tissue and serum were collected for histopathological examination, immunohistochemistry (IHC) and ELISA. Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and TGF-β1 were inhibited by CGA both in vitro and in vivo. Meanwhile, CGA elevated the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown and overexpression, the downstream molecules also changed accordingly. CGA also lessened the degree of liver fibrosis in the pathological manifestation and reduced α-SMA and collagen I expression in liver tissue and TGF-β1 in serum. Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis agent that improves liver fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-De Zhu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Juan Zhang
- Department of Pulmonary Diseases, Jingmen City Hospital of Traditional Chinese Medicine, Jingmen, China
| | - Xin Cai
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ma
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yun-Fei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Ying Luo
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Li YQ, Chen YF, Dang YP, Wang Y, Shang ZZ, Ma Q, Wang YJ, Zhang J, Luo L, Li QQ, Zhao L. Corilagin Counteracts IL-13Rα1 Signaling Pathway in Macrophages to Mitigate Schistosome Egg-Induced Hepatic Fibrosis. Front Cell Infect Microbiol 2017; 7:443. [PMID: 29094025 PMCID: PMC5651236 DOI: 10.3389/fcimb.2017.00443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
The IL-13Rα1 signaling pathway and M2 macrophages play crucial roles in schistosome egg-induced hepatic fibrosis via the expression of pro-fibrotic molecules. This study aims to investigate the inhibitory effect and mechanism of action of corilagin on schistosome egg-induced hepatic fibrosis via the IL-13Rα1 signaling pathway in M2 macrophages in vitro and in vivo. The mRNA and protein expression of IL-13Rα1, PPARγ, KLF4, SOCS1, STAT6, p-STAT6, and TGF-β was measured in vitro with corilagin treatment after IL-13 stimulation and in vivo corilagin treatment after effectively killing the adult schistosomes in schistosome-infected mice. Histological analysis of liver tissue was assessed for the degree of hepatic fibrosis. The results revealed that corilagin significantly reduced the expression of PPARγ, KLF4, SOCS1, p-STAT6, and TGF-β compared with model group and praziquantel administration (p < 0.01 or p < 0.05) in vivo and in vitro, which indicated a strong inhibitory effect of corilagin on IL-13Rα1 signaling pathway. As well, the inhibitory effect of corilagin showed a significant dose-dependence (p < 0.05). The area of fibrosis and distribution of M2 macrophages in mouse liver tissue were reduced significantly and dose-dependently with corilagin treatment compared to model group or praziquantel administration (p < 0.01 or p < 0.05), indicating that corilagin suppressed IL-13Rα1 signaling pathway and M2 macrophage polarization effectively in vivo. Furthermore, the anti-fibrogenic effect persisted even when IL-13Rα1 was up- or down-regulated in vitro. In conclusion, corilagin can suppress schistosome egg-induced hepatic fibrosis via inhibition of M2 macrophage polarization in the IL-13Rα1 signaling pathway.
Collapse
Affiliation(s)
- Yi-Qing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Fei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhen-Zhong Shang
- School of Basic Medical Sciences, Guangxi University of Chinese Medicine, Nanning, China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zhang
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Quan-Qiang Li
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Jin F, Han GK, Zhang H, Zhang R, Li GH, Feng S, Qin XY, Kong LS, Nie QM, Li HR, Zhao L. Difference in the Inhibitory Effect of Temozolomide on TJ905 Glioma Cells and Stem Cells. Front Neurol 2017; 8:474. [PMID: 28955297 PMCID: PMC5601416 DOI: 10.3389/fneur.2017.00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
This study aims to determine the difference in the inhibitory effect of temozolomide (TMZ) on TJ905 glioma cells and stem cells. TJ905 cancer stem cells were isolated. Livin is a member of the inhibitor of apoptosis protein family. The TJ905 cells and cancer stem cells were transfected with a Livin-shRNA and negative-shRNA, respectively, and then treated with TMZ. At 48 h post-transfection, a cell counting kit 8 assay, flow cytometry, and real-time qPCR were performed to detect cell proliferation, the cell cycle, and the expression of the Caspase-3, -7, and -9 mRNAs, respectively. As a result, the suppressive effect of TMZ on TJ905 cells was more significant than its effect on TJ905 cancer stem cells. TMZ exerted an inhibitory effect on the growth of TJ905 glioma cells by arresting them at G0/G1 phase and arresting cancer stem cells at S phase in a dose-dependent manner. TMZ inhibited Livin mRNA expression and increased the expression of the Caspase-3, -7, and -9 mRNAs. Low Livin mRNA expression induced high levels of Caspase-3, -7, and -9 expressions, thus promoting the apoptosis of both TJ905 cells and cancer stem cells in response to TMZ treatment. The TJ905 cells transfected with the Livin-shRNA were more sensitive to TMZ, whereas the TJ905 glioma stem cells transfected with the Livin-shRNA showed no significant changes in their sensitivity to TMZ. In conclusion, the Livin gene may play an important role in the resistance mechanisms of TJ905 glioma cells and cancer stem cells. However, Livin had a more distinct role in TMZ resistance, cell proliferation, and the cell cycle in TJ905 glioma cells than in cancer stem cells.
Collapse
Affiliation(s)
- Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Guang-Kui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Ran Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Gen-Hua Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Song Feng
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Xian-Yun Qin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Ling-Sheng Kong
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Quan-Min Nie
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Shandong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Hua-Rong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Antischistosomiasis Liver Fibrosis Effects of Chlorogenic Acid through IL-13/miR-21/Smad7 Signaling Interactions In Vivo and In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.01347-16. [PMID: 27872076 DOI: 10.1128/aac.01347-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/17/2016] [Indexed: 12/23/2022] Open
Abstract
This study investigated the antischistosomiasis liver fibrosis effects of chlorogenic acid (CGA) on interleukin 13 (IL-13)/microRNA-21 (miR-21)/Smad7 signaling interactions in the hepatic stellate LX2 cell line and schistosome-infected mice. The transfection was based on the ability of the GV273-miR-21-enhanced green fluorescent protein (EGFP) and GV369-miR-21-EGFP lentiviral system to up- or downregulate the miR-21 gene in LX2 cells. The mRNA expression of miR-21, Smad7, and connective tissue growth factor (CTGF) and the protein expression of Smad7, CTGF, Smad1, phosphor-Smad1 (p-Smad1), Smad2, p-Smad2, Smad2/3, p-Smad2/3, transforming growth factor β (TGF-β) receptor I, and α-smooth muscle actin (α-SMA) was assayed. Pathological manifestation of hepatic tissue was assessed for the degree of liver fibrosis in animals. The results showed that CGA could inhibit the mRNA expression of miR-21, promote Smad7, and inhibit CTGF mRNA expression. Meanwhile, CGA could significantly lower the protein levels of CTGF, p-Smad1, p-Smad2, p-Smad2/3, TGF-β receptor I, and α-SMA and elevate the Smad7 protein level. In vivo, with treatment with CGA, the signaling molecules of IL-13/miR-21/Smad7 interactions were markedly regulated. CGA could also reduce the degree of liver fibrosis in pathological manifestations. In conclusion, CGA could inhibit schistosomiasis-induced hepatic fibrosis through IL-13/miR-21/Smad7 signaling interactions in LX2 cells and schistosome-infected mice and might serve as an antifibrosis agent for treating schistosomiasis liver fibrosis.
Collapse
|
16
|
Li HR, Liu J, Zhang SL, Luo T, Wu F, Dong JH, Guo YJ, Zhao L. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:18. [PMID: 28056977 PMCID: PMC5217594 DOI: 10.1186/s12906-016-1533-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
Background Sepsis is one of the serious disorders in clinical practice. Recent studies found toll-like receptors 4 (TLR4) played an important role in sepsis. In this study, we tried to find the influence of Corilagin on TLR4 signal pathways in vitro and in vivo. Methods The cellular and animal models of sepsis were established by LPS and then interfered with Corilagin. Real-time PCR and western blot were employed to detect the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6. ELISA was used to determine the IL-6 and IL-1β levels in supernatant and serum. Results The survival rate was improved in the LPS + Corilagin group, and the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6 were significantly decreased than that in the LPS group both in cellular and animal models (P < 0.01). The pro-inflammatory cytokines IL-6 and IL-1β were greatly decreased in the LPS + Corilagin group both in supernatant and serum (P < 0.01). Conclusions Corilagin exerts the anti-inflammatory effects by down-regulating the TLR4 signaling molecules to ameliorate the extreme inflammatory status in sepsis.
Collapse
|
17
|
Mechanism of Corilagin interference with IL-13/STAT6 signaling pathways in hepatic alternative activation macrophages in schistosomiasis-induced liver fibrosis in mouse model. Eur J Pharmacol 2016; 793:119-126. [PMID: 27845069 DOI: 10.1016/j.ejphar.2016.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
This study tried to find the mechanism of Corilagin interference with interleukin (IL)-13/signal transducer and activator of transcription (STAT) 6 signaling pathways in IL-13-activated liver alternative activation macrophages in schistosomiasis-induced liver fibrosis in Balb/c mice. As a result, IL-13 in serum and the mRNA expression of IL-13 Receptor α1, IL-4 Receptor α and downstream mediators supressor of cytokine signaling (SOCS) 1, Kruppel-like factor (KLF) 4, peroxisome proliferator-activated receptor (PPAR) δ in the liver tissue were significantly inhibited by Corilagin (P<0.05 or 0.01). The protein expression of IL-13 Receptor α1, IL-4 Receptor α, SOCS1, KLF4, PPARγ, PPARδ and Phospho-STAT6 (P-STAT6) in Corilagin group were also markedly suppressed when compared with the model group (P<0.05 or 0.01). Furthermore, the inhibitory effect was enhanced when the concentration of Corilagin increased (P<0.05). By hematoxylin and eosin (HE) staining, when compared with the model group, the Corilagin group showed smaller granulomas (P<0.05 or 0.01). The area of positive cells and integrated optical density (IOD) of CD68, CD206 and KLF4 was significantly decreased by Corilagin stained by IHC (P<0.05 or 0.01). In conclusion, Corilagin had potential to relieve hepatic fibrosis caused by egg granuloma in Schistosoma japonicum infection by decreasing the expression of molecules associated with IL-13/STAT6 signaling pathway in liver alternative activation macrophages.
Collapse
|
18
|
Ding Y, Xiong XL, Zhou LS, Yan SQ, Qin H, Li HR, Zhang LL, Chen P, Yao C, Jiang ZX, Zhao L. Preliminary study on Emodin alleviating alpha-naphthylisothiocyanate-induced intrahepatic cholestasis by regulation of liver farnesoid X receptor pathway. Int J Immunopathol Pharmacol 2016; 29:805-811. [PMID: 27707957 DOI: 10.1177/0394632016672218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of this study is to investigate Emodin on alleviating intrahepatic cholestasis by regulation of liver farnesoid X receptor (FXR) pathway. Cell and animal models of intrahepatic cholestatis were established. Biochemical tests and histomorphology were performed. The messenger RNA (mRNA) and protein expression of FXR, small heterodimer partner (SHP), uridine diphosphate glucuronosyltransferase 2 family polypeptide B4 (UGT2B4), and bile salt export pump (BSEP) was detected. As a result, compared with the model group, the serum levels of biochemical test were significantly lower in the Emodin group (P <0.01). The histopathological changes were remitted significantly by Emodin treatment. In the model group, the mRNA and protein expression of FXR, SHP, UGT2B4, and BSEP was significantly lower than in the normal group in cell models (P <0.05). With Emodin intervention, the expression of FXR, SHP, UGT2B4, and BSEP was notably increased (P <0.05). In conclusion, Emodin plays a protective role in intrahepatic cholestasis by promoting FXR signal pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao-Li Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Shan Zhou
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Su-Qi Yan
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Huan Qin
- Department of Clinical Laboratory, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hua-Rong Li
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ling-Ling Zhang
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Chen
- Department of Respiration, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cong Yao
- Department of Health, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhi-Xia Jiang
- Department of Integrated Chinese and Western Medicine, Wuhan Medical & Healthcare Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
19
|
Yang F, Wang Y, Xue J, Ma Q, Zhang J, Chen YF, Shang ZZ, Li QQ, Zhang SL, Zhao L. Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol Int 2016; 65:308-15. [DOI: 10.1016/j.parint.2016.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/28/2022]
|
20
|
Corilagin ameliorates schistosomiasis hepatic fibrosis through regulating IL-13 associated signal pathway in vitro and in vivo. Parasitology 2016; 143:1629-38. [DOI: 10.1017/s0031182016001128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMMARYInterleukin (IL)-13-associated signal pathway plays an important role in schistosomiasis hepatic fibrosis. In this study we tried to investigate the effects of corilagin to ameliorate schistosomiasis hepatic fibrosis through regulating IL-13-associated signal pathway in vitro and in vivo. Cellular model was set up with hepatic stellate cells-T6 cells stimulated by rIL-13 and male Balb/c mice were infected with Schistosoma japonicum cercariaeas as animal model. Liver histological changes were observed with haematoxylin and eosin staining. Masson staining was employed to observe the change of egg granulomas. Expression of Col (collagen) and Col III were examined with Immunohistochemistry. Western bolt was employed to detect the JAK-1 and IL13Rα1 proteins. The mRNA expression of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were tested by quantitative polymerase chain reaction. As a result, less inflammatory changes were found in all corilagin groups compared with model group and praziquantel group. The mRNA levels of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were significantly decreased after corilagin intervention (P < 0·01). JAK-1 and IL-13Rα1 protein levels were also greatly decreased in the corilagin groups (P < 0·01). In conclusion, corilagin could ameliorate schistosomiasis hepatic fibrosis by down-regulating the expression of IL-13 and signal molecules in IL-13 pathway.
Collapse
|
21
|
Zheng B, Chen D, Yang X, Igo LP, Li Z, Ye X, Xiang Z. Development and validation of an UPLC-PDA method for the determination of corilagin in rat plasma and its application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1031:76-79. [PMID: 27459126 DOI: 10.1016/j.jchromb.2016.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/18/2016] [Indexed: 11/17/2022]
Abstract
Corilagin, which was isolated from several medical herbs, has been reported to exert many pharmacological activities. A simple and rapid liquid ultra-performance liquid chromatography (UPLC) coupled to photodiode array (PDA) method has been developed to quantify corilagin in rat plasma. In this study, plasma samples were prepared by ethyl acetate extraction. Separation was performed on a HSS T3 (100mm×2.1mm, 1.8μm) column by using a mobile phase of acetonitrile and water with 0.1% trifluoroacetic acid (v/v). Corilagin and internal standard epicatechin were detected at a wavelength of 266nm. The calibration curve was linear (r>0.998) over a concentration range of 0.2μg/mL to 20μg/mL with a lower quantification limit of 0.2μg/mL. Both intra and inter-day precision values were within 5.7% and extraction recovery were greater than 81.0%. Stability tests showed that corilagin and IS remained stable during the analytical procedure. The validated UPLC-PDA method was then used to analyze the pharmacokinetics of corilagin administered to rats intravenously (10mg/kg) or orally (50mg/kg). Oral bioavailability of corilagin was calculated to be 10.7%, indicating that this component is not suitable for oral administration. The results provide basis for further preclinical studies on corilagin.
Collapse
Affiliation(s)
- Bingjing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Dahui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiangxiang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longo Phemba Igo
- School of International Studies, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhengxue Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoxia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Involvement of TLR2 and TLR9 in the anti-inflammatory effects of chlorogenic acid in HSV-1-infected microglia. Life Sci 2015; 127:12-8. [DOI: 10.1016/j.lfs.2015.01.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/23/2022]
|
23
|
Corilagin Protects Against HSV1 Encephalitis Through Inhibiting the TLR2 Signaling Pathways In Vivo and In Vitro. Mol Neurobiol 2014; 52:1547-1560. [DOI: 10.1007/s12035-014-8947-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
24
|
Jin F, Cheng D, Tao JY, Zhang SL, Pang R, Guo YJ, Ye P, Dong JH, Zhao L. Anti-inflammatory and anti-oxidative effects of corilagin in a rat model of acute cholestasis. BMC Gastroenterol 2013; 13:79. [PMID: 23641818 PMCID: PMC3655894 DOI: 10.1186/1471-230x-13-79] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/26/2013] [Indexed: 12/15/2022] Open
Abstract
Background Nowadays, treatments for cholestasis remain largely nonspecific and often ineffective. Recent studies showed that inflammatory injuries and oxidative stress occur in the liver with cholestasis. In this study, we would use corilagin to treat the animal model of acute cholestasis in order to define the activity to interfere with inflammation-related and oxidative stress pathway in cholestatic pathogenesis. Methods Rats were administrated with alpha-naphthylisothiocyanate to establish model of cholestasis and divided into corilagin, ursodeoxycholic acid, dexamethasone, model and normal groups with treatment of related agent. At 24h, 48h and 72h time points after administration, living condition, serum markers of liver damage, pathological changes of hepatic tissue, nuclear factor (NF)-kappaB, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) were examined and observed. Results Compared to model group, corilagin had remarkable effect on living condition, pathological manifestation of liver tissue, total bilirubin, direct bilirubin, (P<0.01), but no effect on alanine aminotransferase (ALT) and aspartate aminotransferase (AST). With corilagin intervention, levels of MPO, MDA and translocation of NF-κB were notably decreased, and levels of SOD and NO were markedly increased (P<0.05 or P<0.01). Conclusions It is shown that corilagin is a potential component to relieve cholestasis through inflammation-related and oxidation-related pathway.
Collapse
Affiliation(s)
- Feng Jin
- Department of Neurosurgery, Neuro-oncology Laboratory, Affiliated Hospitalof Jining Medical College, Jining, Shandong 272029, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou YP, Zhang SL, Cheng D, Li HR, Tang ZM, Xue J, Cai W, Dong JH, Zhao L. Preliminary Exploration on Anti-Fibrosis Effect of Kaempferol in Mice with Schistosoma Japonicum Infection. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study is to explore the effectiveness and mechanism of kaempferol on treatment of hepatic fibrosis induced by schistosoma egg. Thirty-six healthy male balb/c mice were randomly divided into 6 groups, including negative group, positive group, and 4 different dosages of kaempferol treatment groups. Each mouse was infected with 20 schistosoma Cercariae japonicum, except the ones in the negative group. Four weeks later, every infected mouse was administrated with 500mg/kg/day praziquantel for 2 days, and all kaempferol groups were followed by a 4-week administration of kaempferol with 5, 10, 15 and 20mg/kg/day respectively, while both control groups were administrated with normal saline. AH the mice were sacrificed on the 59th day after infection. The liver tissues were taken for Masson staining to detect collagen and real-time quantitative PCR to detect the mRNA expression of IL-13, collagen 1 and MMP-2. As a result, Masson stain showed that the optical density of the interested region in the positive group was significantly higher than that in the negative group (P<0.01), and the optical density in all kaempferol groups was significantly lower than that in the positive group (P<0.05 or P<0.01). Real-time PCR showed that the mRNA expression of IL-13 in the positive group was significantly higher than that in the negative group (P<0.01), and the expression of IL-13 in the 20mg/kg and 15mg/kg kaempferol groups was significantly lower than that in the positive group, respectively (P<0.05). The mRNA expression of collagen 1 in the positive group was significantly higher than that in the negative group (P<0.01), and mRNA expression of collagen 1 in the 20mg/kg kaempferol group was significantly lower than that in the positive group (P<0.05). There were no significant differences between the positive and negative groups on mRNA expression of MMP-2. The mRNA expression of MMP-2 in all kaempferol groups was significantly higher than that in the positive group (P<0.05 or P<0.01). In conclusion, kaempferol can ameliorate schistosoma egg-induced hepatic fibrosis via regulating the IL-13 signal pathway. Kaempferol is very likely to be an IL-13 targeted anti-fibrosis medicine.
Collapse
Affiliation(s)
- Y-P. Zhou
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Integrated Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - S-L. Zhang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - D. Cheng
- Liver Disease Center, Department of Infectious Disease, Second Xiangya Hospital, Xiangya Medical School, Central South University, Changsha, PR China
| | - H-R. Li
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Z-M. Tang
- Department of Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - J. Xue
- Tumor Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - W. Cai
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - J-H. Dong
- Central Lab, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - L. Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|